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1. Introduction and preliminary

Let H be a real Hilbert space, C a nonempty closed convex subset of H , and T : C→ C a
mapping. Recall that T is nonexpansive if

‖Tx−Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C, (1.1)

and T is asymptotically nonexpansive if there exists a sequence {kn} of positive real num-
bers with limn→∞ kn = 1 and such that

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖ ∀n≥ 1, x, y ∈ C. (1.2)

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points
of T ; that is, F(T)= {x ∈ C : Tx = x}. Also, recall that a family S= {T(s) | 0≤ s <∞} of
mappings from C into itself is called an asymptotically nonexpansive semigroup on C if
it satisfies the following conditions:

(i) T(0)x = x for all x ∈ C;
(ii) T(s+ t)= T(s)T(t) for all s, t ≥ 0;

(iii) there exists a positive valued function L : [0,∞)→ [1,∞) such that lims→∞Ls = 1
and ‖T(s)x−T(s)y‖ ≤ Ls‖x− y‖ for all x, y ∈ C and s≥ 0;

(iv) for all x ∈ C, s 	→ T(s)x is continuous.
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2 Nonexpansive mapping

We denote by F(S) the set of all common fixed points of S, that is, F(S) = ⋂0≤s<∞
F(T(s)). It is known that F(S) is closed and convex. Construction of fixed point of non-
expansive mapping is an important subject in the theory of nonexpansive mappings and
finds applications in a number of applied areas, in particular, in image recovery and signal
processing (see, e.g., [14, 15]). However, the sequence {Tnx}∞n=0 of iterates of the map-
ping T at a point x ∈ C may not converge in the weak topology. Thus averaged iterations
prevail. In fact, Mann’s iterations do have weak convergence. More precisely, Mann’s iter-
ation procedure is a sequence {xn} defined by

xn+1 = αnxn +
(

1−αn
)

Txn, (1.3)

where the initial guess x0 ∈ C is chosen arbitrarily.
Reich [9] proved that if E is a uniformly convex Banach space with a Fréchet differen-

tiable norm and if {αn} is chosen such that
∑∞

n=1αn(1−αn)=∞, then the sequence {xn}
defined by (1.3) converges weakly to a fixed point of T . However we note that Mann’s
iterations have only weak convergence even in a Hilbert space [1].

Recently many authors want to modify the Mann iteration method (1.3) so that strong
convergence is guaranteed have recently been made. Nakajo and Takahashi [8] proposed
the following modification of the Mann iteration (1.3) for a single nonexpansive mapping
T in a Hilbert space:

x0 ∈ C arbitrarily,

yn = αnxn +
(

1−αn
)

Txn,

Cn =
{

z ∈ C :
∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥
}

,

Qn =
{

z ∈ C :
〈

x0− xn,xn− z
〉≥ 0

}

,

xn+1 = PCn∩Qnx0,

(1.4)

where PK denotes the metric projection from H onto a closed convex subset K of H and
proved that sequence {xn} converges strongly to PF(T)x0.

They also proposed the following iteration process for a nonexpansive semigroup S=
{T(s)|0≤ s <∞} in a Hilbert space H :

x0 ∈ C arbitrarily,

yn = αnxn +
(

1−αn
) 1
tn

∫ tn

0
T(s)xnds,

Cn =
{

z ∈ C :
∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥
}

,

Qn =
{

z ∈ C :
〈

x0− xn,xn− z
〉≥ 0

}

,

xn+1 = PCn∩Qnx0.

(1.5)

They proved that if the sequence {αn} is bounded from one and if {tn} is a positive
real divergent sequence, then the sequence {xn} generated by (1.5) converges strongly to
PF(S)x0.
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Halpern [3] firstly studied iteration scheme as follows:

xn+1 = αnu+
(

1−αn
)

Txn, n≥ 0, (1.6)

where u,x0 ∈ C are arbitrary (but fixed) and {αn} ⊂ (0,1). He pointed out that the con-
ditions limn→∞αn = 0 and

∑∞
n=1αn = ∞ are necessary in the sense that if the iteration

scheme (1.6) converges to a fixed point of T , then these conditions must be satisfied. Ten
years later, Lions [6] investigated the general case in Hilbert space under the conditions

lim
n→∞αn = 0,

∞
∑

n=1

αn =∞, lim
n→∞

αn−αn+1

α2
n+1

= 0 (1.7)

on the parameters. However, Lions’ conditions on the parameters were more restric-
tive and did not include the natural candidate {αn = 1/n}. Reich [10] gave the iteration
scheme (1.6) in the case when E is uniformly smooth and αn = n−δ with 0 < δ < 1.

Wittmann [13] studied the iteration scheme (1.6) in the case when E is a Hilbert space
and {αn} satisfies

lim
n→∞αn = 0,

∞
∑

n=1

αn =∞,
∞
∑

n=1

∥
∥αn+1−αn

∥
∥ <∞. (1.8)

Reich [11] obtained a strong convergence of the iterates (1.6) with two necessary and
decreasing conditions on parameters for convergence in the case when E is uniformly
smooth with a weakly continuous duality mapping.

Recently, Martinez-Yanes and Xu [7] adapted the iteration (1.6) in Hilbert space as
follows:

x0 ∈ C arbitrarily,

yn = αnx0 +
(

1−αn
)

Txn,

Cn =
{

z ∈ C :
∥
∥yn− z

∥
∥

2 ≤ ∥∥xn− z
∥
∥

2
+αn

(∥
∥x0
∥
∥

2
+ 2
〈

xn− x0,z
〉)}

,

Qn =
{

z ∈ C :
〈

x0− xn,xn− z
〉≥ 0

}

,

xn+1 = PCn∩Qnx0.

(1.9)

More precisely, they prove the following theorem.

Theorem 1.1 (Martinez-Yanes and Xu [7]). Let H be a real Hilbert space,C a closed convex
subset of H , and T : C → C a nonexpansive mapping such that F(T) �= ∅. Assume that
{αn} ⊂ (0,1) is such that limn→∞αn = 0. Then the sequence {xn} defined by (1.9) converges
strongly to PF(T)x0.

The purpose of this paper is to employ Nakajo and Takahashi’s [8] idea to modify pro-
cess (1.6) for asymptotically nonexpansive mappings and asymptotically nonexpansive
semigroup to have strong convergence theorem in Hilbert space.

In the sequel, we need the following lemmas for the proof of our main results.
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Lemma 1.2. Let K be a closed convex subset of real Hilbert space H and let PK be the metric
projection from H onto K (i.e., for x ∈H , Pk is the only point in K such that ‖x−Pkx‖ =
inf{‖x− z‖ : z ∈ K}). Given x ∈H and z ∈ K . Then z = PKx if and only if there holds the
relations

〈x− z, y− z〉 ≤ 0 ∀y ∈ K. (1.10)

Lemma 1.3 (Lin et al. [5]). Let T be an asymptotically nonexpansive mapping defined on a
bounded closed convex subset C of a Hilbert space H . Assume that {xn} is a sequence in C
with the properties (i) xn⇀ p and (ii) Txn− xn→ 0. Then p ∈ F(T).

Lemma 1.4 (Kim and Xu [4]). Let C be a nonexpansive bounded closed convex subset of H
and let S= {T(t) : 0≤ t <∞} be an asymptotically nonexpansive semigroup on C. Then it
holds that

limsup
s→∞

limsup
n→∞

sup
x∈C

∥
∥
∥
∥T(s)

(
1
t

∫ t

0
T(u)xndu

)

− 1
t

∫ t

0
T(u)xndu

∥
∥
∥
∥= 0. (1.11)

Lemma 1.5. Let C be a nonexpansive bounded closed convex subset of H and let S= {T(s) :
0 ≤ s <∞} be an asymptotically nonexpansive semigroup on C. If {xn} is a sequence in
C satisfying the properties (i) xn⇀ z; (ii) limsups→∞ limsupn→∞‖T(s)xn − xn‖ = 0, then
z ∈ F(S).

Proof. This lemma is the continuous version of [12, Lemma 2.3]. The proof given in [12]
is easily extended to the continuous case. �

2. Main results

In this section we propose a modification of the Halpern iteration method to have strong
convergence for asymptotically nonexpansive mappings and asymptotically nonexpan-
sive semigroup in Hilbert space.

Theorem 2.1. Let C be a bounded closed convex subset of a Hilbert space H and let T : C→
C be an asymptotically nonexpansive mapping with sequence {kn}. Assume that {αn}∞n=0

and {βn}∞n=0 are sequences in (0,1) such that limn→∞αn = 0, limn→∞βn = 1, and M is an
appropriate constant such that M ≥ ‖x0− v‖2, for all v ∈ C. Define a sequence {xn} in C by
the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = βnxn +
(

1−βn
)

Tnxn,

yn = αnx0 +
(

1−αn
)

Tnzn,

Cn =
{

v ∈ C :
∥
∥yn− v

∥
∥

2 ≤ ∥∥xn− v
∥
∥

2
+
∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn,v
〉

+αnM
}

,

Qn =
{

v ∈ C :
〈

x0− xn,xn− v
〉≥ 0

}

,

xn+1 = PCn∩Qnx0.

(2.1)

Then {xn} converges to PF(T)x0, provided k2
n(1−αn)− 1≤ 0.
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Proof. From [2] we know that T has a fixed point in C. That is, F(T) �= ∅. It is obviously
that Cn is closed and Qn is closed and convex for each n ≥ 0. Next observe that C is
convex. For v1,v2 ∈ Cn and t ∈ (0,1), putting v = tv1 + (1− t)v2. It is sufficient to show
that v ∈ Cn. Indeed, the defining inequality in Cn is equivalent to the inequality

2
〈

zn− yn, v
〉≤ ∥∥zn

∥
∥

2−∥∥yn
∥
∥

2
+αnM. (2.2)

Therefore, we have

2
〈

zn− yn,v
〉= 2

〈

zn− yn, tv1 + (1− t)v2
〉

= 2t
〈

zn− yn,v1
〉

+ 2(1− t)
〈

zn− yn,v2
〉

≤ ∥∥zn
∥
∥

2−∥∥yn
∥
∥

2
+αnM,

(2.3)

which implies that C is convex. Next, we show that F(T)⊂ Cn for all n. Indeed, for each
p ∈ F(T),

∥
∥yn− p

∥
∥

2 = ∥∥αnx0− p+
(

1−αn
)(

Tnzn− p
)∥
∥

2

≤ αn
∥
∥x0− p

∥
∥

2
+
(

1−αn
)

k2
n

∥
∥zn− p

∥
∥

2

≤ ∥∥xn− p
∥
∥

2−∥∥xn− p
∥
∥

2
+αn

∥
∥x0− p

∥
∥

2
+
(

1−αn
)

k2
n

∥
∥zn− p

∥
∥

2

≤ ∥∥xn− p
∥
∥

2
+
(∥
∥zn− p

∥
∥

2−∥∥xn− p
∥
∥

2
)

+αn
∥
∥x0− p

∥
∥

2

≤ ∥∥xn− p
∥
∥

2
+
(∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn, p
〉)

+αnM.

(2.4)

Therefore, p ∈ Cn for each n≥ 1, which implies that F(T)⊂ Cn. Next we show that

F(T)⊂Qn ∀n≥ 0. (2.5)

We prove this by induction. For n= 0, we have F(T)⊂ C =Q0. Assume that F(T)⊂Qn.
Since xn+1 is the projection of x0 onto Cn∩Qn, by Lemma 1.2 we have

〈

x0− xn+1,xn+1− z
〉≥ 0 ∀z ∈ Cn∩Qn. (2.6)

As F(T) ⊂ Cn ∩Qn by the induction assumptions, the last inequality holds, in particu-
lar, for all z ∈ F(T). This together with the definition of Qn+1 implies that F(T)⊂ Qn+1.
Hence (2.5) holds for all n ≥ 0. In order to prove limn→∞‖xn+1− xn‖ = 0, from the def-
inition of Qn we have xn = PQnx0 which together with the fact that xn+1 ∈ Cn∩Qn ⊂ Qn

implies that

∥
∥x0− xn

∥
∥≤ ∥∥x0− xn+1

∥
∥. (2.7)

This shows that the sequence {xn − x0} is nondecreasing. Since C is bounded. We ob-
tain that limn→∞‖xn− x0‖ exists. Notice again that xn = PQnx0 and xn+1 ∈Qn which give
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〈xn+1− xn,xn− x0〉 ≥ 0. Therefore, we have

∥
∥xn+1− xn

∥
∥

2 = ∥∥(xn+1− x0
)− (xn− x0

)∥
∥

2

≤ ∥∥xn+1− x0
∥
∥

2−∥∥xn− x0
∥
∥

2− 2
〈

xn+1− xn,xn− x0
〉

≤ ∥∥xn+1− x0
∥
∥

2−∥∥xn− x0
∥
∥

2
.

(2.8)

It follows that

lim
n→∞

∥
∥xn− xn+1

∥
∥= 0. (2.9)

On the other hand, It follows from xn+1 ∈ Cn that

∥
∥yn− xn+1

∥
∥

2 ≤ ∥∥xn− xn+1
∥
∥

2
+
∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn,xn+1
〉

+αnM. (2.10)

It follows from (2.1) and limn→∞βn = 1 that

∥
∥zn− xn

∥
∥= (1−βn

)∥
∥xn−Tnxn

∥
∥−→ 0. (2.11)

Next, we consider

∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn,xn+1
〉

= ∥∥zn
∥
∥

2
+
∥
∥xn
∥
∥

2− 2
〈

zn,xn
〉

+ 2
〈

xn− zn,xn+1
〉− 2

∥
∥xn
∥
∥

2
+ 2
〈

zn,xn
〉

= ∥∥zn− xn
∥
∥

2
+ 2
〈

xn− zn,xn+1
〉− 2

∥
∥xn
∥
∥

2
+ 2
〈

zn,xn
〉

= ∥∥zn− xn
∥
∥

2
+ 2
〈

zn,xn− xn+1
〉− 2

∥
∥xn
∥
∥

2
+ 2
〈

xn,xn+1
〉

.

(2.12)

Therefore, it follows from (2.9) and (2.11) that

∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn,xn+1
〉−→ 0. (2.13)

Furthermore, from (2.9), (2.13), and limn→∞αn = 0, we obtain

lim
n→∞

∥
∥yn− xn+1

∥
∥= 0. (2.14)

On the other hand, we consider

∥
∥yn−Tnxn

∥
∥≤ ∥∥yn−Tnzn

∥
∥+

∥
∥Tnzn−Tnxn

∥
∥

≤ αn
∥
∥x0−Tnzn

∥
∥+ kn

∥
∥zn− xn

∥
∥

= αn
∥
∥x0−Tnzn

∥
∥+ kn

(

1−βn
)∥
∥xn−Tnxn

∥
∥.

(2.15)
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Therefore, it follows that

∥
∥xn−Tnxn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1− yn

∥
∥+

∥
∥yn−Tnxn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+

∥
∥xn+1− yn

∥
∥+αn

∥
∥x0−Tnzn

∥
∥

+ kn
(

1−βn
)∥
∥xn−Tnxn

∥
∥.

(2.16)

That is,

(

1− kn
(

1−βn
))∥
∥xn−Tnxn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1− yn

∥
∥+αn

∥
∥x0−Tnzn

∥
∥. (2.17)

It follows from limn→∞βn = 1, limn→∞αn = 0, (2.9), and (2.14) that

lim
n→∞

∥
∥xn−Tnxn

∥
∥−→ 0. (2.18)

Putting k = sup{kn : n≥ 1} <∞, we obtain

∥
∥Txn− xn

∥
∥≤ ∥∥Txn−Tn+1xn

∥
∥+

∥
∥Tn+1xn−Tn+1xn+1

∥
∥

+
∥
∥Tn+1xn+1− xn+1

∥
∥+

∥
∥xn+1− xn

∥
∥

≤ k
∥
∥xn−Tnxn

∥
∥+

(

1 + k
)∥
∥xn− xn+1

∥
∥

+
∥
∥Tn+1xn+1− xn+1

∥
∥,

(2.19)

which implies that

∥
∥Txn− xn

∥
∥−→ 0. (2.20)

Assume that {xni} is a subsequence of {xn} such that xni ⇀ x̃. By Lemma 1.3 we have
x̃ ∈ F(T). Next we show that x̃ = PF(T)x0 and the convergence is strong. Put x = PF(T)x0

and consider the sequence {x0 − xni}. Then we have x0 − xni ⇀ x0 − x̃ and by the weak
lower semicontinuity of the norm and by the fact that ‖x0− xn+1‖ ≤ ‖x0− x‖ for all n≥ 0
which is implied by the fact that xn+1 = PCn∩Qnx0, we have

∥
∥x0− x

∥
∥≤ ∥∥x0− x̃

∥
∥≤ liminf

i→∞

∥
∥x0− xni

∥
∥≤ limsup

i→∞

∥
∥x0− xni

∥
∥≤ ∥∥x0− x

∥
∥. (2.21)

This gives

∥
∥x0− x

∥
∥= ∥∥x0− x̃

∥
∥,

∥
∥x0− xni

∥
∥−→ ∥∥x0− x

∥
∥. (2.22)

It follows that x0− xni → x0− x; hence, xni → x. Since {xni} is an arbitrary subsequence of
{xn}, we conclude that xn→ x. The proof is completed. �
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Theorem 2.2. Let C be a nonempty bounded closed convex subset of H and let S= {T(s) :
0 ≤ s <∞} be an asymptotically nonexpansive semigroup on C. Assume that {αn}∞n=0 and
{βn}∞n=0 are sequences in (0,1) such that limn→∞αn = 0 and limn→∞βn = 1. {tn} is a positive
real divergent sequence and M is an appropriate constant such that M ≥ ‖x0 − v‖ for all
v ∈ C. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = βnxn +
(

1−βn
) 1
tn

∫ tn

0
T(s)xnds,

yn = αnx0 +
(

1−αn
) 1
tn

∫ tn

0
T(s)znds,

Cn =
{

v ∈ C :
∥
∥yn− v

∥
∥

2 ≤ αn
∥
∥xn− v

∥
∥

2
+
∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn,v
〉

+αnM
}

,

Qn =
{

v ∈ C :
〈

x0− xn,xn− z
〉≥ 0

}

,

xn+1 = PCn∩Qnx0.
(2.23)

Then {xn} converges to PF(S)x0, provided ((1/tn)
∫ tn

0 Lsdt)2(1−αn)− 1≤ 0.

Proof. We only conclude the difference. First we show F(S) ⊂ Cn. It follows from C is
bounded, we obtain that F(S) �= ∅ (see [12]). Taking p ∈ F(S), we have

∥
∥yn− p

∥
∥

2 ≤ αn
∥
∥x0− p

∥
∥

2
+
(

1−αn
)
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)znds− p

∥
∥
∥
∥

2

≤ αn
∥
∥x0− p

∥
∥

2
+
(

1−αn
)
(

1
tn

∫ tn

0

∥
∥T(s)zn− p

∥
∥ds
)2

≤ αn
∥
∥x0− p

∥
∥

2
+
(

1−αn
)
(

1
tn

∫ tn

0
Lsds

)2
∥
∥zn− p

∥
∥

2

= ∥∥xn− p
∥
∥

2
+
(∥
∥zn− p

∥
∥

2−∥∥xn− p
∥
∥

2
)

+αn
∥
∥x0− p

∥
∥

2

≤ ∥∥xn− p
∥
∥

2
+
(∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn, p
〉)

+αnM.

(2.24)

It follows that F(S)⊂ Cn for each n≥ 0. From the proof of Theorem 2.1 we have the se-
quence {xn} is well defined and F(S)⊂ Cn∩Qn for each n≥ 0. Similarly to the argument
of Theorem 2.1 and noticing q = PF(S)x0, we have ‖xn+1− x0‖ ≤ ‖q− x0‖ for each n≥ 0
and ‖xn+1− xn‖→ 0. Next, we assume that a subsequence {xni} of {xn} converges weakly
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to q. It follows that

∥
∥T(s)xn− xn

∥
∥≤

∥
∥
∥
∥T(s)xn−T(s)

(
1
tn

∫ tn

0
T(s)xnds

)∥
∥
∥
∥

+
∥
∥
∥
∥T(s)

(
1
tn

∫ tn

0
T(s)xnds

)

− 1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥

+
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xnds− xn

∥
∥
∥
∥

≤ 2
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xnds− xn

∥
∥
∥
∥

+
∥
∥
∥
∥T(s)

(
1
tn

∫ tn

0
T(s)xnds

)

− 1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥,

(2.25)

for each n≥ 0. It follows from (2.23) that

∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)znds

∥
∥
∥
∥≤ αn

∥
∥
∥
∥x0− 1

tn

∫ tn

0
T(s)znds

∥
∥
∥
∥. (2.26)

Therefore, we obtain

∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)znds

∥
∥
∥
∥−→ 0. (2.27)

Next, we consider the first term on the right-hand side of (2.25)

∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xnds− xn

∥
∥
∥
∥≤

∥
∥xn− xn+1

∥
∥+

∥
∥xn+1− yn

∥
∥+

∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥. (2.28)

Since xn+1 ∈ Cn, we have

∥
∥yn− xn+1

∥
∥

2 ≤ αn
∥
∥xn− xn+1

∥
∥

2
+
∥
∥zn
∥
∥

2−∥∥xn
∥
∥

2
+ 2
〈

xn− zn,xn+1
〉

+αnM. (2.29)

Similar to the proof of Theorem 2.1, we have

lim
n→∞

∥
∥yn− xn+1

∥
∥= 0, (2.30)

and hence

∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥

≤
∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)znds

∥
∥
∥
∥+

∥
∥
∥
∥

1
tn

∫ tn

0
T(s)znds− 1

tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥

≤
∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)znds

∥
∥
∥
∥+

1
tn

∫ tn

0

∥
∥T(s)zn−T(s)xn

∥
∥ds

≤
∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)znds

∥
∥
∥
∥+

(
1
tn

∫ tn

0
Lsds

)
∥
∥zn− xn

∥
∥

2
.

(2.31)
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Since limn→∞βn = 1, we have

∥
∥zn− xn

∥
∥= (1−βn

)
∥
∥
∥
∥xn−

1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥−→ 0. (2.32)

It follows from (2.27) and (2.32) that

∥
∥
∥
∥yn−

1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥−→ 0. (2.33)

It follows from (2.30) and (2.33) that

∥
∥
∥
∥xn−

1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥−→ 0. (2.34)

On the other hand, by using Lemma 1.4 we obtain

limsup
s→∞

limsup
n→∞

∥
∥
∥
∥T(s)

(
1
tn

∫ tn

0
T(s)xnds

)

− 1
tn

∫ tn

0
T(s)xnds

∥
∥
∥
∥= 0. (2.35)

It follows from (2.34) and (2.35) that

limsup
s→∞

limsup
n→∞

∥
∥T(s)xn− xn

∥
∥= 0. (2.36)

Assume that a {xni} is a subsequence of {xn} such that {xni}⇀ q ∈ C, then q ∈ F(S)
(by Lemma 1.5). Next we show that q =ΠF(S)x0 and the convergence is strong. Put q′ =
ΠF(S)x0, from xn+1 =ΠCn∩Qnx0 and q′ ∈ F(S)⊂ Cn∩Qn, we have ‖xn+1− x0‖ ≤ ‖q′ − x0‖.
On the other hand, from weakly lower semicontinuity of the norm, we obtain

∥
∥q′ − x0

∥
∥≤ ∥∥x0− q

∥
∥≤ liminf

i→∞
∥
∥x0− xni

∥
∥

≤ limsup
i→∞

∥
∥x0− xni

∥
∥

≤ ∥∥q− x0
∥
∥.

(2.37)

It follows from definition of ΠF(S)x0 that we obtain q =ΠF(S)x0 and hence

∥
∥q′ − x0

∥
∥= ∥∥q− x0

∥
∥. (2.38)

It follows that xni → q′. Since {xni} is an arbitrarily weakly convergent sequence of {xn},
we can conclude that {xn} converges strongly to one point of ΠF(S)x0. This completes the
proof. �
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