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1. Introduction

The concept of fuzzy sets was introduced initially by Zadeh [1] in 1965. Since then, to
use this concept in topology and analysis many authors have expansively developed the
theory of fuzzy sets and applications. Especially, Deng [2], Erceg [3], Kaleva and Seikkala
[4], and Kramosil and Michálek [5] have introduced the concepts of fuzzy metric spaces
in different ways. George and Veeramani [6] and Kramosil and Michálek [5] have in-
troduced the concept of fuzzy topological spaces induced by fuzzy metric which have
very important applications in quantum particle physics particularly in connection with
both string and E-infinity theories which were given and studied by El Naschie [7–10].
Many authors [11–17] have studied the fixed point theory in fuzzy (probabilistic) metric
spaces. On the other hand, there have been a number of generalizations of metric spaces.
One of such generalizations is generalized metric space (or D-metric space) initiated by
Dhage [18] in 1992. He proved the existence of unique fixed point of a self-map satis-
fying a contractive condition in complete and bounded D-metric spaces. Dealing with
D-metric space, Ahmad et al. [19], Dhage [18, 20], Dhage et al. [21], Rhoades [22], Singh
and Sharma [23], and others made a significant contribution in fixed point theory of
D-metric space. Unfortunately, almost all theorems in D-metric spaces are not valid (see
[24–26]).
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In this paper, we introduce D∗-metric which is a probable modification of the def-
inition of D-metric introduced by Dhage [18, 20] and prove some basic properties in
D∗-metric spaces.

In what follows (X ,D∗) will denote a D∗-metric space, N the set of all natural num-
bers, and R+ the set of all positive real numbers.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D∗-metric) on X is a
function, D∗ : X3→[0,∞), that satisfies the following conditions for each x, y,z,a∈ X :

(1) D∗(x, y,z)≥ 0,
(2) D∗(x, y,z)= 0 if and only if x = y = z,
(3) D∗(x, y,z)=D∗(p{x, y,z}), (symmetry) where p is a permutation function,
(4) D∗(x, y,z)≤D∗(x, y,a) +D∗(a,z,z).

The pair (X ,D∗) is called a generalized metric (or D∗-metric) space.

Immediate examples of such a function are
(a) D∗(x, y,z)=max{d(x, y),d(y,z),d(z,x)},
(b) D∗(x, y,z)= d(x, y) +d(y,z) +d(z,x).

Here, d is the ordinary metric on X .
(c) If X =Rn then we define

D∗(x, y,z)= (‖x− y‖p +‖y− z‖p +‖z− x‖p)1/p
(1.1)

for every p ∈R+.
(d) If X =R, then we define

D∗(x, y,z)=
⎧
⎨

⎩
0 if x = y = z,

max{x, y,z} otherwise.
(1.2)

Remark 1.2. In a D∗-metric space, we prove that D∗(x,x, y)=D∗(x, y, y). For
(i) D∗(x,x, y)≤D∗(x,x,x) +D∗(x, y, y)=D∗(x, y, y) and similarly

(ii) D∗(y, y,x)≤D∗(y, y, y) +D∗(y,x,x)=D∗(y,x,x).
Hence by (i), (ii) we get D∗(x,x, y)=D∗(x, y, y).

Let (X ,D∗) be a D∗-metric space. For r > 0, define

BD∗(x,r)= {y ∈ X : D∗(x, y, y) < r
}
. (1.3)

Example 1.3. Let X =R. Denote D∗(x, y,z)= |x− y|+ |y− z|+ |z− x| for all x, y,z ∈R.
Thus

BD∗(1,2)= {y ∈R : D∗(1, y, y) < 2
}

= {y ∈R : |y− 1|+ |y− 1| < 2
}

= {y ∈R : |y− 1| < 1} = (0,2).

(1.4)
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Definition 1.4. Let (X ,D∗) be a D∗-metric space and A⊂ X .
(1) If for every x ∈ A, there exists r > 0 such that BD∗(x,r) ⊂ A, then subset A is

called open subset of X .
(2) SubsetA ofX is said to beD∗-bounded if there exists r > 0 such thatD∗(x, y, y) <

r for all x, y ∈A.
(3) A sequence {xn} in X converges to x if and only if D∗(xn,xn,x)=D∗(x,x,xn)→0

as n→∞. That is, for each ε > 0 there exists n0 ∈N such that

∀n≥ n0 =⇒D∗
(
x,x,xn

)
< ε(∗). (1.5)

This is equivalent; for each ε > 0, there exists n0 ∈N such that

∀n,m≥ n0 =⇒D∗
(
x,xn,xm

)
< ε(∗∗). (1.6)

Indeed, if (∗) holds, then

D∗
(
xn,xm,x

)=D∗
(
xn,x,xm

)≤D∗
(
xn,x,x

)
+D∗(x,xm,xm) <

ε
2

+
ε
2
= ε. (1.7)

Conversely, set m= n in (∗∗), then we have D∗(xn,xn,x) < ε.
(4) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there ex-

ists n0 ∈N such that D∗(xn,xn,xm) < ε for each n,m≥ n0. The D∗-metric space
(X ,D∗) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that
BD∗(x,r)⊂A. Then τ is a topology on X (induced by the D∗-metric D∗).

Lemma 1.5. Let (X ,D∗) be a D∗-metric space. If r > 0, then ball BD∗(x,r) with center x ∈ X
and radius r is open ball.

Proof. Let z ∈ BD∗(x,r), hence D∗(x,z,z) < r. Let D∗(x,z,z) = δ and r′ = r − δ. Let y ∈
BD∗(z,r′), by triangular inequality we have D∗(x, y, y)=D∗(y, y,x)≤D∗(y, y,z) +D∗(z,
x,x) < r′ + δ = r. Hence BD∗(z,r′) ⊆ BD∗(x,r). Hence the ball BD∗(x,r) is an open ball.

�

Definition 1.6. Let (X ,D∗) be a D∗-metric space. D∗ is said to be a continuous function
on X3 if

lim
n→∞D

∗(xn, yn,zn
)=D∗(x, y,z) (1.8)

whenever a sequence {(xn, yn,zn)} in X3 converges to a point (x, y,z)∈ X3, that is,

lim
n→∞xn = x, lim

n→∞yn = y, lim
n→∞zn = z. (1.9)

Lemma 1.7. Let (X ,D∗) be a D∗-metric space. Then D∗ is a continuous function on X3.

Proof. Suppose the sequence {(xn, yn,zn)} in X3 converges to a point (x, y,z) ∈ X3, that
is,

lim
n→∞xn = x, lim

n→∞yn = y, lim
n→∞zn = z. (1.10)
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Then for each ε > 0 there exist n1, n2, and n3 ∈ N such that D∗(x,x,xn) < ε/3∀n ≥ n1,
D∗(y, y, yn) < ε/3 for all n≥ n2, and D∗(z,z,zn) < ε/3∀n≥ n3.

If we set n0 =max{n1,n2,n3}, then for all n≥ n0 by triangular inequality we have

D∗
(
xn, yn,zn

)≤D∗
(
xn, yn,z

)
+D∗

(
z,zn,zn

)

≤D∗
(
xn,z, y

)
+D∗

(
y, yn, yn

)
+D∗

(
z,zn,zn

)

≤D∗(z, y,x) +D∗
(
x,xn,xn

)
+D∗

(
y, yn, yn

)
+D∗

(
z,zn,zn

)

< D∗(x, y,z) +
ε
3

+
ε
3

+
ε
3
=D∗(x, y,z) + ε.

(1.11)

Hence we have

D∗
(
xn, yn,zn

)−D∗(x, y,z) < ε,

D∗(x, y,z)≤D∗
(
x, y,zn

)
+D∗

(
zn,z,z

)

≤D∗
(
x,zn, yn

)
+D∗

(
yn, y, y

)
+D∗

(
zn,z,z

)

≤D∗
(
zn, yn,xn

)
+D∗

(
xn,x,x

)
+D∗

(
yn, y, y

)
+D∗

(
zn,z,z

)

< D∗
(
xn, yn,zn

)
+
ε
3

+
ε
3

+
ε
3
=D∗

(
xn, yn,zn

)
+ ε.

(1.12)

That is,

D∗(x, y,z)−D∗
(
xn, yn,zn

)
< ε. (1.13)

Therefore we have |D∗(xn, yn,zn)−D∗(x, y,z)| < ε, that is,

lim
n→∞D

∗(xn, yn,zn
)=D∗(x, y,z). (1.14)

�

Lemma 1.8. Let (X ,D∗) be a D∗-metric space. If sequence {xn} in X converges to x, then x
is unique.

Proof. Let xn→y and y �= x. Since {xn} converges to x and y, for each ε > 0 there exist
n1,n2 ∈N such that D∗(x,x,xn) < ε/2∀n≥ n1 and D∗(y, y,xn) < ε/2∀n≥ n2.

If we set n0 =max{n1,n2}, then for every n≥ n0 by triangular inequality we have

D∗(x,x, y)≤D∗
(
x,x,xn

)
+D∗

(
xn, y, y

)
<
ε
2

+
ε
2
= ε. (1.15)

Hence D∗(x,x, y)= 0 which is a contradiction. So, x = y. �

Lemma 1.9. Let (X ,D∗) be a D∗-metric space. If sequence {xn} in X is convergent to x, then
sequence {xn} is a Cauchy sequence.
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Proof. Since xn→x, for each ε > 0 there exists n0 ∈N such that D∗(xn,xn,x) < ε/2∀n ≥
n0. Then for every n,m≥ n0, by triangular inequality, we have

D∗
(
xn,xn,xm

)≤D∗
(
xn,xn,x

)
+D∗

(
x,xm,xm

)

<
ε
2

+
ε
2
= ε. (1.16)

Hence sequence {xn} is a Cauchy sequence. �

Definition 1.10. Let A and S be two mappings from a D∗-metric space (X ,D∗) into itself.
Then {A,S} is said to be weakly commuting pair if

D∗(ASx,SAx,SAx)≤D∗(Ax,Sx,Sx), (1.17)

for all x ∈ X . Clearly, a commuting pair is weakly commuting, but not conversely as
shown in the following example.

Example 1.11. Let (X ,D∗) be a D∗-metric space, where X = [0,1] and

D∗(x, y,z)= |x− y|+ |y− z|+ |x− z|. (1.18)

Define self-maps A and S on X as follows:

Sx = x

2
, Ax = x

x+ 2
∀x ∈ X. (1.19)

Then for all x in X one gets

D∗(SAx,ASx,ASx)=
∣
∣
∣
∣

x

x+ 4
− x

2x+ 4

∣
∣
∣
∣+

∣
∣
∣
∣

x

x+ 4
− x

x+ 4

∣
∣
∣
∣+

∣
∣
∣
∣

x

x+ 4
− x

2x+ 4

∣
∣
∣
∣

= 2x2

(x+ 4)(2x+ 4)
≤ 2x2

2x+ 4

=
∣
∣
∣
∣
x

2
− x

x+ 2

∣
∣
∣
∣+

∣
∣
∣
∣
x

2
− x

x+ 2

∣
∣
∣
∣+ 0

=D∗(Sx,Ax,Ax).

(1.20)

So {A,S} is a weakly commuting pair.
However, for any nonzero x ∈ X we have

SAx = x

x+ 4
>

x

2x+ 4
= ASx. (1.21)

Thus A and S are not commuting mappings.

2. The main results

A class of implicit relation. Throughout this section (X ,D∗) denotes a D∗-metric space
and Φ denotes a family of mappings such that each ϕ∈Φ, ϕ : (R+)5→R+, and ϕ is con-
tinuous and increasing in each coordinate variable. Also γ(t) = ϕ(t, t,a1t,a2t, t) < t for
every t ∈R+ where a1 + a2 = 3.
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Example 2.1. Let ϕ : (R+)5→R+ be defined by

ϕ
(
t1, t2, t3, t4, t5

)= 1
7

(
t1 + t2 + t3 + t4 + t5

)
. (2.1)

The following lemma is the key in proving our result.

Lemma 2.2. For every t > 0, γ(t) < t if and only if limn→∞γn(t) = 0, where γn denotes the
composition of γ with itself n times.

Our main result, for a complete D∗-metric space X , reads as follows.

Theorem 2.3. Let A be a self-mapping of complete D∗-metric space (X ,D∗), and let S,T
be continuous self-mappings on X satisfying the following conditions:

(i) {A,S} and {A,T} are weakly commuting pairs such that A(X)⊂ S(X)∩T(X);
(ii) there exists a ϕ∈Φ such that for all x, y ∈ X ,

D∗(Ax,Ay,Az)

≤ ϕ(D∗(Sx,Ty,Tz),D∗(Sx,Ax,Ax),D∗(Sx,Ay,Ay),D∗(Ty,Ax,Ax),D∗(Ty,Ay,Ay)).
(2.2)

Then A, S, and T have a unique common fixed point in X .

Proof. Let x0 ∈ X be an arbitrary point in X . Then Ax0 ∈ X . Since A(X) is contained in
S(X), there exists a point x1 ∈ X such that Ax0 = Sx1. Since A(X) is also contained in
T(X), we can choose a point x2 ∈ X such that Ax1 = Tx2. Continuing this way, we define
by induction a sequence {xn} in X such that

Sx2n+1 =Ax2n = y2n, n= 0,1,2, . . . ,

Tx2n+2 =Ax2n+1 = y2n+1, n= 0,1,2, . . . .
(2.3)

For simplicity, we set

dn =D∗
(
yn, yn+1, yn+1

)
, n= 0,1,2 . . . . (2.4)

We prove that d2n ≤ d2n−1. Now, if d2n > d2n−1 for some n ∈ N, since ϕ is an increasing
function, then

d2n=D∗
(
y2n, y2n+1, y2n+1

)=D∗
(
Ax2n,Ax2n+1,Ax2n+1

)=D∗
(
Ax2n+1,Ax2n,Ax2n

)

≤ϕ

⎛

⎝
D∗
(
Sx2n+1,Tx2n,Tx2n

)
, D∗

(
Sx2n+1,Ax2n+1,Ax2n+1

)
,D∗

(
Sx2n+1,Ax2n,Ax2n

)

D∗
(
Tx2n,Ax2n+1,Ax2n+1

)
, D∗

(
Tx2n,Ax2n,A2n

)

⎞

⎠

=ϕ

⎛

⎝
D∗
(
y2n, y2n−1, y2n−1

)
, D∗

(
y2n, y2n+1, y2n+1

)
,D∗

(
y2n, y2n, y2n

)

D∗
(
y2n−1, y2n+1, y2n+1

)
, D∗

(
y2n−1, y2n, y2n

)

⎞

⎠ .

(2.5)
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Since

D∗
(
y2n−1, y2n+1, y2n+1

)≤D∗
(
y2n−1, y2n−1, y2n

)
+D∗

(
y2n, y2n+1, y2n+1

)= d2n−1 +d2n,
(2.6)

hence by the above inequality we have

d2n ≤ ϕ
(
d2n−1,d2n,0,d2n−1 +d2n,d2n−1

)≤ ϕ
(
d2n,d2n,d2n,2d2n,d2n

)
< d2n, (2.7)

a contradiction. Hence d2n ≤ d2n−1. Similarly, one can prove that d2n+1 ≤ d2n for n =
0,1,2, . . . . Consequently, {dn} is a nonincreasing sequence of nonnegative reals. Now,

d1 =D∗
(
y1, y2, y2

)=D∗
(
Ax1,Ax2,Ax2

)

≤ ϕ

(
D∗
(
Sx1,Tx2,Tx2

)
, D∗

(
Sx1,Ax1,Ax1

)
,D∗

(
Sx1,Ax2,Ax2

)

D∗
(
Tx2,Ax1,Ax1

)
, D∗

(
Tx2,Ax2,A2

)

)

= ϕ

(
D∗
(
y0, y1, y1

)
, D∗

(
y0, y1, y1

)
,D∗

(
y0, y2, y2

)

D∗
(
y1, y1, y1

)
, D∗

(
y1, y2, y2

)

)

= ϕ
(
d0,d0,d0 +d1,0,d0

)

≤ ϕ
(
d0,d0,2d0,d0,d0

)= γ
(
d0
)
.

(2.8)

In general, we have dn ≤ γn(d0). So if d0 > 0, then Lemma 2.2 gives limn→∞ dn = 0.
For d0 = 0, we clearly have limn→∞ dn = 0, since then dn = 0 for each n. Now we prove
that sequence {Axn = yn} is a Cauchy sequence. Since limn→∞ dn = 0, it is sufficient to
show that the sequence {Ax2n = y2n} is a Cauchy sequence. Suppose that {Ax2n = y2n}
is not a Cauchy sequence. Then there is an ε > 0 such that for each even integer 2k, for
k = 0,1,2, . . . , there exist even integers 2n(k) and 2m(k) with 2k ≤ 2n(k) < 2m(k) such
that

D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)

)
> ε. (2.9)

Let, for each even integer 2k,2m(k) be the least integer exceeding 2n(k) satisfying (2.9).
Therefore

D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)−2

)≤ ε , D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)

)
> ε. (2.10)

Then, for each even integer 2k we have

ε < D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)

)

≤D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)−2

)
+D∗

(
Ax2m(k)−2,Ax2m(k)−2,Ax2m(k)−1

)

+D∗
(
Ax2m(k)−1,Ax2m(k)−1,Ax2m(k)

)

=D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)−2

)
+d2m(k)−2 +d2m(k)−1.

(2.11)
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So, by (2.10) and dn→0, we obtain

lim
k→∞

D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)

)= ε. (2.12)

It follows immediately from the triangular inequality that

∣
∣
∣
∣D

∗(Ax2n(k),Ax2n(k),Ax2m(k)−1
)−D∗

(
Ax2n(k),Ax2n(k),Ax2m(k)

)
∣
∣
∣
∣≤ d2m(k)−1,

∣
∣
∣
∣D

∗(Ax2n(k)+1,Ax2n(k)+1,Ax2m(k)−1
)−D∗

(
Ax2n(k),Ax2n(k),Ax2m(k)

)
∣
∣
∣
∣ < d2m(k)−1 +d2n(k).

(2.13)

Hence by (2.10), as k→∞,

D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)−1

)−→ ε,

D∗
(
Ax2n(k)+1,Ax2n(k)+1,Ax2m(k)−1

)−→ ε.
(2.14)

Now

D∗
(
Ax2n(k),Ax2n(k),Ax2m(k)

)

≤D∗
(
Ax2n(k),Ax2n(k),Ax2n(k)+1

)
+D∗

(
Ax2n(k)+1,Ax2m(k),Ax2m(k)

)

≤d2n(k) +ϕ

(
D∗
(
Ax2n(k),Ax2m(k)−1,Ax2m(k)−1

)
, d2n(k),D∗

(
Ax2n(k),Ax2m(k),Ax2m(k)

)

D∗
(
Ax2m(k)−1,Ax2n(k)+1,Ax2n(k)+1

)
, d2m(k)−1

)

.

(2.15)

Using (2.14), lim k→∞ dn = 0, and continuity and nondecreasing property of ϕ in each
coordinate variable, we have

ε ≤ ϕ(ε,0,ε,ε,0)≤ ϕ(ε,ε,2ε,ε,ε)= γ(ε) < ε (2.16)

as k→∞, which is a contradiction. Thus {Axn = yn} is a Cauchy sequence and hence by
completeness of X , it converges to z ∈ X . That is,

lim
n→∞Axn = lim

n→∞yn = z. (2.17)

Since the sequences {Sx2n+1 = y2n+1} and {Tx2n = y2n} are subsequences of {Axn = yn};
they have the same limit z. As S and T are continuous, we have STx2n→Sz and TSx2n+1→
Tz.

Now consider

D∗
(
STx2n,TSx2n+1,TSx2n+1

)=D∗
(
SAx2n−1,TAx2n,TAx2n

)

≤D∗
(
SA2n−1,ASx2n−1,ASx2n−1

)

+D∗
(
ASx2n−1,ASx2n−1,ATx2n

)

+D∗
(
ATx2n,ATx2n,TAx2n

)
.

(2.18)
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Using (ii) and the weak commutativity of {A,S} and {A,T}, we get

D∗
(
STx2n,TSx2n+1,TSx2n+1

)

≤D∗
(
Sx2n−1,Ax2n−1,Ax2n−1

)
+D∗

(
ASx2n−1,ATx2n,ATx2n

)
+D∗

(
Ax2n,Ax2n,Tx2n

)

≤D∗
(
Sx2n−1,Ax2n−1,Ax2n−1

)

+ϕ

⎛

⎜
⎜
⎜
⎝

D∗
(
S2x2n−1,T2x2n,T2x2n

)
, D∗

(
S2x2n−1,ASx2n−1,ASx2n−1

)
,

D∗
(
S2x2n−1,ATx2n,ATx2n

)

D∗
(
T2x2n,ASx2n−1,ASx2n−1

)
, D∗

(
T2x2n,ATx2n,ATx2n

)

⎞

⎟
⎟
⎟
⎠

+D∗
(
Ax2n,Ax2n,Tx2n

)

≤D∗
(
Sx2n−1,Ax2n−1,Ax2n−1

)

+ϕ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D∗
(
S2x2n−1,T2x2n,T2x2n

)
,D∗

(
S2x2n−1,S2x2n−1,SAx2n−1

)

+D∗
(
Sx2n−1,Sx2n−1,Ax2n−1

)
,

D∗
(
S2x2n−1,TAx2n,TAx2n

)
+D∗

(
Tx2n,Tx2n,Ax2n

)
,

D∗
(
T2x2n,SAx2n−1,SAx2n−1

)
+D∗

(
Sx2n−1,Sx2n−1,Ax2n−1

)
,

D∗
(
T2x2n,TAx2n,TAx2n

)
+D∗

(
Tx2n,Ax2n,Ax2n

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+D∗
(
Ax2n,Ax2n,Tx2n

)
.

(2.19)

If D∗(Sz,Tz,Tz) > 0, then as n→∞ we have

D∗(Sz,Tz,Tz)

≤D∗(z,z,z) +ϕ

(
D∗(Sz,Tz,Tz), D∗(Sz,Sz,Sz) + 0,D∗(Sz,Tz,Tz) + 0

D∗(Tz,Sz,Sz) + 0, D∗(Tz,Tz,Tz) + 0

)

+ 0

≤ γ
(
D∗(Sz,Tz,Tz)

)
< D∗(Sz,Tz,Tz),

(2.20)

a contradiction.Therefore, Sz = Tz.
Now we will prove that Az = Sz. To end this, consider the inequality

D∗
(
SAx2n+1,Az,Az

)≤D∗
(
SAx2n+1,ASx2n+1,ASx2n+1

)
+D∗

(
Az,Az,ASx2n+1

)
. (2.21)

Again using (ii) and the weak commutativity of {A,S}, we have

D∗
(
SAx2n+1,Az,Az

)≤D∗
(
Sx2n+1,Ax2n+1,Ax2n+1

)

+ϕ

(
D∗
(
Sz,Tz,TSx2n+1

)
, D∗(Sz,Az,Az),D∗(Sz,Az,Az)

D∗(Tz,Az,Az), D∗(Tz,Az,Az)

)

.

(2.22)
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Taking n→∞, we have

D∗(Sz,Az,Az)≤D∗(z,z,z) +ϕ

(
D∗(Sz,Tz,Tz),D∗(Sz,Az,Az),D∗(Sz,Az,Az)

D∗(Tz,Az,Az),D∗(Tz,Az,Az)

)

= ϕ
(
0,D∗(Sz,Az,Az),D∗(Sz,Az,Az),D∗(Sz,Az,Az),D∗(Sz,Az,Az)

)

≤ δ
(
D∗(Sz,Az,Az)

)
< D∗(Sz,Az,Az)

(2.23)

given there by Sz =Az. Thus Az = Sz = Tz. It now follows that

D∗
(
Az,Ax2n,Ax2n

)≤ ϕ

(
D∗
(
Sz,Tx2n,Tx2n

)
, D∗(Sz,Az,Az),D∗

(
Sz,Ax2n,Ax2n

)

D∗
(
Tx2n,Az,Az

)
, D∗

(
Tx2n,Ax2n,Ax2n

)

)

.

(2.24)

Then as n→∞, we get

D∗(Az,z,z)≤ ϕ
(
D∗(Sz,z,z),0,D∗(Sz,z,z),D∗(z,Az,Az),0

)

≤ γ
(
D∗(Az,z,z)

)
< D∗(Az,z,z),

(2.25)

a contradiction, and therefore Az = z = Sz = Tz. Thus z is a common fixed point of A,S,
and T . The unicity of the common fixed point is not hard to verify. This completes the
proof of the theorem. �

Example 2.4. Let (X ,D∗) be a D∗-metric space, where X = [0,1] and

D∗(x, y,z)= |x− y|+ |y− z|+ |x− z|. (2.26)

Define self-maps A,T , and S on X as follows:

Sx = x, Ax = 1, Tx = x+ 1
2

, (2.27)

for all x ∈ X.
Let

ϕ
(
t1, t2, t3, t4, t5

)= 1
7

(
t1 + t2 + t3 + t4 + t5

)
. (2.28)

Then

A(X)= {1} ⊂ [0,1]∩
[

1
2

,1
]
= S(X)∩T(X), (2.29)

and for every x ∈ X , we have

D∗(ATx,TAx,TAx)=D∗(1,1,1)= 0≤D∗(Ax,Tx,Tx),

D∗(ASx,SAx,SAx)=D∗(1,1,1)= 0≤D∗(Ax,Sx,Sx).
(2.30)

That is, the pairs (A,S) and (A,T) are weakly commuting.
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Also for all x, y,z ∈ X , we have

D∗(Ax,Ay,Az)= 0

≤ϕ
(
D∗(Sx,Ty,Tz),D∗(Sx,Ax,Ax),D∗(Sx,Ay,Ay),D∗(Ty,Ax,Ax),D∗(Ty,Ay,Ay)

)
.

(2.31)

That is, all conditions of Theorem 2.3 hold and 1 is the unique common fixed point of
A,S, and T .

Corollary 2.5. Let A,R,S,T , and H be self-mappings of complete D∗-metric space (X ,
D∗), and let SR,TH be continuous self-mappings on X satisfying the following conditions:

(i) {A,SR} and {A,TH} are weakly commuting pairs such that A(X) ⊂ SR(X)∩
TH(X);

(ii) there exists a ϕ∈Φ such that for all x, y ∈ X ,

D∗(Ax,Ay,Az)≤ ϕ

⎛

⎝
D∗(SRx,THy,THz),D∗(SRx,Ax,Ax),D∗(SRx,Ay,Ay),

D∗(THy,Ax,Ax),D∗(THy,Ay,Ay)

⎞

⎠ .

(2.32)

If SR= RS,TH =HT ,AH =HA, and AR= RA, then A,S,R,H , and T have a unique com-
mon fixed point in X .

Proof. By Theorem 2.3, A,TH , and SR have a unique common fixed point in X . That is,
there exists a∈ X , such that A(a)= TH(a)= SR(a)= a. We prove that R(a)= a. By (ii),
we get

D∗(ARa,Aa,Aa)≤ ϕ

⎛

⎝
D∗(SRRa,THa,THa),D∗(SRRa,ARa,ARa),D∗(SRRa,Aa,Aa),

D∗(THa,ARa,ARa),D∗(THa,Aa,Aa)

⎞

⎠ .

(2.33)

Hence if Ra �= a, then we have

D∗(Ra,a,a)≤ ϕ
(
D∗(Ra,a,a),D∗(Ra,Ra,Ra),D∗(Ra,a,a),D∗(a,Ra,Ra),D∗(a,a,a)

)

≤ ϕ
(
D∗(Ra,a,a),D∗(Ra,a,a),D∗(Ra,a,a),2D∗(Ra,a,a),D∗(Ra,a,a)

)

< D∗(Ra,a,a),
(2.34)

a contradiction. Therefore it follows that Ra = a. Hence S(a) = SR(a) = a. Similarly, we
get that T(a)=H(a)= a. �

Corollary 2.6. Let Ai be a sequence self-mapping of complete D∗-metric space (X ,D∗) for
i∈N, and let S,T be continuous self-mappings on X satisfying the following conditions:

(i) there exists i0 ∈N such that {Ai0 ,S} and {Ai0 ,T} are weakly commuting pairs such
that Ai0 (X)⊂ S(X)∩T(X);
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(ii) there exists a ϕ∈Φ and i, j,k ∈N such that for all x, y ∈ X ,

D∗
(
Aix,Aj y,Akz

)≤ ϕ

⎛

⎝
D∗(Sx,Ty,Tz),D∗

(
Sx,Aix,Aix

)
,D∗

(
Sx,Aj y,Aj y

)
,

D∗
(
Ty,Aix,Aix

)
,D∗

(
Ty,Aj y,Aj y

)

⎞

⎠ .

(2.35)

Then Ai,S, and T have a unique common fixed point in X for every i∈N.

Proof. By Theorem 2.3, S, T , and Ai0 , for some i= j = k = i0 ∈N, have a unique common
fixed point in X . That is, there exists a unique a∈ X such that

S(a)= T(a)= Ai0 (a)= a. (2.36)

Suppose there exists i∈N such that i �= i0 and j = i0,k = i0. Then we have

D∗
(
Aia,Ai0a,Ai0a

)≤ ϕ

(
D∗(Sa,Ta,Ta),D∗

(
Sa,Aia,Aia

)
,D∗

(
Sa,Ai0a,Ai0a

)
,

D∗
(
Ta,Aia,Aia

)
,D∗

(
Ta,Ai0a,Ai0a

)

)

.

(2.37)

Hence if Aia �= a, then we get

D∗
(
Aia,a,a

)≤ ϕ

⎛

⎝
D∗(a,a,a),D∗

(
a,Aia,Aia

)
,D∗(a,a,a),

D∗
(
a,Aia,Aia

)
,D∗(a,a,a)

⎞

⎠

≤ ϕ

(
D∗
(
Aia,a,a

)
,D∗

(
Aia,a,a

)
,D∗

(
Aia,a,a

)
,

2D∗
(
Aia,a,a

)
,D∗

(
Aia,a,a

)

)

< D∗
(
Aia,a,a

)
,

(2.38)

a contradiction. Hence for every i∈N it follows that Ai(a)= a for every i∈N. �
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