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1. Introduction and preliminaries

Throughout this paper, let H be a real Hilbert space with inner product 〈·,·〉 and norm
‖ · ‖. Let C be a nonempty closed convex subset of H , we denote by PC(·) the metric
projection from H onto C. It is known that z = PC(x) is equivalent to 〈z− y,x− z〉 ≥ 0
for every y ∈ C. Recall that T : C → C is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all
x, y ∈ C. A point x ∈ C is a fixed point of T provided that Tx = x. Denote by F(T) the set
of fixed points of T , that is, F(T)= {x ∈ C : Tx = x}. It is known that F(T) is closed and
convex.

Construction of fixed points of nonexpansive mappings (and asymptotically nonex-
pansive mappings) is an important subject in the theory of nonexpansive mappings and
finds application in a number of applied areas, in particular, in image recovery and signal
processing (see, e.g., [1–5]). However, the sequence {Tnx}∞n=0 of iterates of the mapping
T at a point x ∈ C may not converge even in the weak topology. Thus averaged iterations
prevail. Indeed, Mann’s iterations do have weak convergence. More precisely, Mann’s it-
eration procedure is a sequence {xn} which is generated in the following recursive way:

xn+1 = αnxn +
(
1−αn

)
Txn, n≥ 0, (1.1)
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where the initial value x0 ∈ C is chosen arbitrarily. For example, Reich [6] proved that if
X is a uniformly convex Banach space with a Fréchet differentiable norm and if {αn} is
chosen such that

∑∞
n=1αn(1−αn)=∞, then the sequence {xn} defined by (1.1) converges

weakly to a fixed point of T . However we note that Mann’s iterations have only weak
convergence even in a Hilbert space [7].

Attempts to modify the Mann iteration method (1.1) so that strong convergence is
guaranteed have recently been made. Nakajo and Takahashi [8] proposed the following
modification of Mann iteration method (1.1) for a single nonexpansive mapping T in a
Hilbert space H :

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(
1−αn

)
Txn,

Cn =
{
z ∈ C :

∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥},

Qn =
{
z ∈ C :

〈
xn− z,x0− xn

〉≥ 0
}

,

xn+1 = PCn∩Qn

(
x0
)
.

(1.2)

They proved that if the sequence {αn} is bounded above from one, then the sequence
{xn} generated by (1.2) converges strongly to PF(T)(x0).

In recent years, the implicit iteration scheme for approximating fixed points of non-
linear mappings has been introduced and studied by several authors.

In 2001, Xu and Ori [9] introduced the following implicit iteration scheme for com-
mon fixed points of a finite family of nonexpansive mappings {Ti}Ni=1 in Hilbert spaces:

xn = αnxn−1 +
(
1−αn

)
Tnxn, n≥ 1, (1.3)

where Tn = TnmodN , and they proved weak convergence theorem.
In 2004, Osilike [10] extended results of Xu and Ori from nonexpansive mappings to

strictly pseudocontractive mappings. By this implicit iteration scheme (1.3) he proved
some convergence theorems in Hilbert spaces and Banach spaces.

We note that it is the same as Mann’s iterations that have only weak convergence the-
orems with implicit iteration scheme (1.3). In this paper, we introduce the following two
general composite implicit iteration schemes and modify them by hybrid method, so
strong convergence theorems are obtained:

xn = αnxn−1 +
(
1−αn

)
Tnyn,

yn = βnxn +
(
1−βn

)
Tnxn,

(1.4)

xn = αnxn−1 +
(
1−αn

)
Tnyn,

yn = βnxn−1 +
(
1−βn

)
Tnxn,

(1.5)

where Tn = TnmodN .
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Observe that if K is a nonempty closed convex subset of a real Banach space E and
T : K → K is a nonexpansive mapping, then for every u ∈ K , α,β ∈ [0,1], and positive
integer n, the operator S= S(α,β) : K → K defined by

Sx = αu+ (1−α)T
(
βx+ (1−β)Tx

)
(1.6)

satisfies

‖Sx− Sy‖ = (1−α)
∥
∥T
(
βx+ (1−β)Tx

)−T
(
βy + (1−β)Ty

)∥∥

≤ (1−α)
∥
∥(βx+ (1−β)Tx

)− (βy + (1−β)Ty
)∥∥

≤ (1−α)
[
β‖x− y‖+ (1−β)‖Tx−Ty‖]

≤ (1−α)
[
β‖x− y‖+ (1−β)‖x− y‖]≤ (1−α)‖x− y‖,

(1.7)

for all x, y ∈ K . Thus, if α > 0, then S is a contraction and so has a unique fixed point
x∗ ∈ K . Thus there exists a unique x∗ ∈ K such that

x∗ = αu+ (1−α)T
(
βx∗ + (1−β)Tx∗

)
. (1.8)

This implies that if αn > 0, the general composite implicit iteration scheme (1.4) can be
employed for the approximation of common fixed points of a finite family of nonexpan-
sive mappings.

For the same reason, the operator S= S(α,β) : K → K defined by

Sx = αu+ (1−α)T
(
βu+ (1−β)Tx

)
(1.9)

satisfies

‖Sx− Sy‖ = (1−α)
∥
∥T
(
βu+ (1−β)Tx

)−T
(
βu+ (1−β)Ty

)∥∥

≤ (1−α)
∥
∥(βu+ (1−β)Tx

)− (βu+ (1−β)Ty
)∥∥

≤ (1−α)(1−β)‖Tx−Ty‖ ≤ (1−α)(1−β)‖x− y‖,

(1.10)

for all x, y ∈ K . Thus, if (1− α)(1− β) < 1, the S is a contractive mapping, then S has a
unique fixed point x∗ ∈ K . Thus there exists a unique x∗ ∈ K such that

x∗ = αu+ (1−α)T
(
βu+ (1−β)Tx∗

)
. (1.11)

This implies that if (1−αn)(1− βn) < 1, the general composite implicit iteration scheme
(1.5) can be employed for the approximation of common fixed points of a finite family
of nonexpansive mappings.
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It is the purpose of this paper to modify iteration processes (1.4) and (1.5) by hybrid
method as follows:

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(
1−αn

)
Tnzn,

zn = βnyn +
(
1−βn

)
Tnyn,

Cn =
{
z ∈ C :

∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥},

Qn =
{
z ∈ C :

〈
xn− z,x0− xn

〉≥ 0
}

,

xn+1 = PCn∩Qn

(
x0
)
.

(1.12)

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(
1−αn

)
Tnzn,

zn = βnxn +
(
1−βn

)
Tnyn,

Cn =
{
z ∈ C :

∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥},

Qn =
{
z ∈ C :

〈
xn− z,x0− xn

〉≥ 0
}

,

xn+1 = PCn∩Qn

(
x0
)
,

(1.13)

whereTn = TnmodN , for common fixed points of a finite family of nonexpansive mappings
{Ti}Ni=1 in Hilbert spaces and to prove strong convergence theorems.

We will use the notation (1) ⇀ for weak convergence and → for strong convergence.
(2) ww(xn) = {x : ∃xnj ⇀ x} denotes the weak w-limit set of {xn}. We need some facts
and tools in a real Hilbert space H which are listed as lemmas below.

Lemma 1.1 (see Martinez-Yanes and Xu [11]). Let H be a real Hilbert space, C a closed
convex subset of H . Given points x, y ∈H , the set

D = {v ∈ C : ‖y− v‖� ‖x− v‖} (1.14)

is closed and convex.

Lemma 1.2 (see Goebel and Kirk [12]). Let C be a closed convex subset of a real Hilbert
space H and let T : C→ C be a nonexpansive mapping such that Fix(T) = ∅. If a sequence
{xn} in C is such that xn⇀ z and xn−Txn→ 0, then z = Tz.

Lemma 1.3 (see Martinez-Yanes and Xu[11]). Let K be a closed convex subset of H . Let
{xn} be a sequence in H and u ∈ H . Let q = Pku. If {xn} is such that ww(xn) ⊂ K and
satisfies the condition

∥
∥xn−u

∥
∥� ‖u− q‖, ∀n, (1.15)

then xn→ q.
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2. Main results

Let C be a nonempty closed convex subset of H , let {Ti}Ni=1 : C→ C be N nonexpansive
mappings with nonempty common fixed points set F. Assume that {αn} and {βn} are
sequences in [0,1]. We consider the sequence {xn} generated by (1.12). We assume that
αn > 0 (for all n∈N) in Lemmas 2.1, 2.2, and 2.3.

Lemma 2.1. {xn} is well defined and F ⊂ Cn∩Qn for every n∈N ∪{0}.
Proof. First observe that Cn is convex by Lemma 1.1. Next, we show that F ⊂ Cn for all n.
Indeed, we have, for all p ∈ F,

∥
∥yn− p

∥
∥= ∥∥αnxn +

(
1−αn

)
Tnzn− p

∥
∥� αn

∥
∥xn− p

∥
∥+

(
1−αn

)∥∥Tnzn− p
∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)∥∥zn− p
∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)∥∥βnyn +
(
1−βn

)
Tnyn− p

∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)[
βn
∥
∥yn− p

∥
∥+

(
1−βn

)∥∥Tnyn− p
∥
∥]

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)∥∥yn− p
∥
∥.

(2.1)

It follows that

∥
∥yn− p

∥
∥≤ ∥∥xn− p

∥
∥. (2.2)

So p ∈ Cn for every n≥ 0, therefore F ⊂ Cn for every n≥ 0.
Next, we show that F ⊂ Cn ∩Qn for all n ≥ 0. It suffices to show that F ⊂ Qn, for all

n≥ 0. We prove this by mathematical induction. For n= 0, we have F ⊂ C =Q0. Assume
that F ⊂Qn. Since xn+1 is the projection of x0 onto Cn∩Qn, we have

〈
xn+1− z,x0− xn+1

〉≥ 0, ∀z ∈Qn∩Cn, (2.3)

as F ⊂ Cn ∩Qn, the last inequality holds, in particular, for all z ∈ F. This together with
the definition of Qn+1, implies that F ⊂Qn+1. Hence the F ⊂ Cn∩Qn holds for all n≥ 0.
This completes the proof. �

Lemma 2.2. {xn} is bounded.

Proof. Since F is a nonempty closed convex subset of C, there exists a unique element
z0 ∈ F such that z0 = PF(x0). From xn+1 = PCn

⋂
Qn(x0), we have

∥
∥xn+1− x0

∥
∥≤ ∥∥z− x0

∥
∥, (2.4)

for every z ∈ Cn∩Qn. As z0 ∈ F ⊂ Cn∩Qn, we get

∥
∥xn+1− x0

∥
∥≤ ∥∥z0− x0

∥
∥, (2.5)

for each n≥ 0. This implies that {xn} is bounded, so the proof is complete. �
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Lemma 2.3. ‖xn+1− xn‖→ 0.

Proof. Indeed, by the definition of Qn, we have that xn = PQn(x0) which together with the
fact that xn+1 ∈ Cn∩Qn implies that

∥
∥x0− xn

∥
∥≤ ∥∥x0− xn+1

∥
∥. (2.6)

This shows that the sequence {‖xn − x0‖} is increasing, from Lemma 2.2, we know that
limn→∞‖xn − x0‖ exists. Noticing again that xn = PQn(x0) and xn+1 ∈ Qn which implies
that 〈xn+1− xn,xn− x0〉 ≥ 0, and noticing the identity

‖u− v‖2 = ‖u‖2−‖v‖2− 2〈u− v,v〉, ∀u,v ∈H , (2.7)

we have

∥
∥xn+1− xn

∥
∥2 = ∥∥(xn+1− x0

)− (xn− x0
)∥∥2

≤ ∥∥xn+1− x0
∥
∥2−∥∥xn− x0

∥
∥2− 2

〈
xn+1− xn,xn− x0

〉

≤ ∥∥xn+1− x0
∥
∥2−∥∥xn− x0

∥
∥2 −→ 0, n−→∞.

(2.8)

�

Theorem 2.4. If {αn} ⊂ (0,a] for some a ∈ (0,1) and {βn} ⊂ [b,1] for some b ∈ (0,1],
then xn→ z0, where z0 = PF(x0).

Proof. We first prove that ‖Tnzn− xn‖→ 0, indeed,

∥
∥Tnzn− xn

∥
∥= 1

1−αn

∥
∥yn− xn

∥
∥≤ 1

1−αn

(∥∥yn− xn+1
∥
∥+

∥
∥xn+1− xn

∥
∥). (2.9)

Since xn+1 ∈ Cn, then

∥
∥yn− xn+1

∥
∥≤ ∥∥xn− xn+1

∥
∥, (2.10)

by Lemma 2.3 ‖xn+1− xn‖→ 0, so that ‖yn− xn+1‖→ 0, which leads to

∥
∥Tnzn− xn

∥
∥−→ 0. (2.11)

On the other hand, we have

∥
∥Tnxn− xn

∥
∥≤ ∥∥Tnxn−Tnzn

∥
∥+

∥
∥Tnzn− xn

∥
∥≤ ∥∥zn− xn

∥
∥+

∥
∥Tnzn− xn

∥
∥

≤ βn
∥
∥yn− xn

∥
∥+

(
1−βn

)∥∥Tnyn− xn
∥
∥+

∥
∥Tnzn− xn

∥
∥

≤ βn
∥
∥yn− xn

∥
∥+

(
1−βn

)[∥∥Tnyn−Tnxn
∥
∥+

∥
∥Tnxn− xn

∥
∥]+

∥
∥Tnzn− xn

∥
∥

≤ βn
∥
∥yn− xn

∥
∥+

(
1−βn

)[∥∥yn− xn
∥
∥+

∥
∥Tnxn− xn

∥
∥]+

∥
∥Tnzn− xn

∥
∥

≤ ∥∥yn− xn
∥
∥+

(
1−βn

)∥∥Tnxn− xn
∥
∥+

∥
∥Tnzn− xn

∥
∥,

(2.12)



F. Zhang and Y. Su 7

which implies that

∥
∥Tnxn− xn

∥
∥≤ 1

βn

∥
∥yn− xn

∥
∥+

1
βn

∥
∥Tnzn− xn

∥
∥. (2.13)

By the condition 0 < b ≤ βn and (2.11), we obtain that

∥
∥Tnxn− xn

∥
∥−→ 0, as n−→∞, (2.14)

from Lemma 2.3, we know that ‖xn+1− xn‖→ 0, so that for all j = 1,2, . . . ,N ,

∥
∥xn− xn+ j

∥
∥−→ 0, as n−→∞. (2.15)

So, for any i= 1,2, . . . ,N , we also have

∥
∥xn−Tn+ixn

∥
∥≤ ∥∥xn− xn+i

∥
∥+

∥
∥xn+i−Tn+ixn+i

∥
∥+

∥
∥Tn+ixn+i−Tn+ixn

∥
∥

≤ ∥∥xn− xn+i
∥
∥+

∥
∥xn+i−Tn+ixn+i

∥
∥+

∥
∥xn+i− xn

∥
∥

≤ 2
∥
∥xn− xn+i

∥
∥+

∥
∥xn+i−Tn+ixn+i

∥
∥.

(2.16)

Thus, it follows from (2.15) and (2.14) that

lim
n→+∞

∥
∥Tn+ixn− xn

∥
∥= 0, i= 1,2,3, . . . ,N. (2.17)

Because Tn = TnmodN , it is easy to see, for any l = 1,2,3, . . . ,N , that

lim
n→+∞

∥
∥Tlxn− xn

∥
∥= 0. (2.18)

By Lemma 1.2 and (2.18), we obtain thatww(xn)⊂ F(Tl). So,ww(xn)⊂ F =⋂N
l=1F(Tl),

this, together with ‖xn− x0‖� ‖PF(x0)− x0‖ (for all n∈N) and Lemma 1.3, guarantees
the strong convergence of {xn} to PF(x0). �

Remark 2.5. If we set βn = 1 for all n, then zn= yn and yn=αnxn + (1−αn)Tnyn, the itera-
tion scheme (1.12) becomes modified implicit iteration scheme, so we, from Theorem 2.4,
obtain the convergence theorem of composite modified implicit iteration scheme.

Theorem 2.6. Let C be a nonempty closed convex subset of H , let {Ti}Ni=1 : C → C be N
nonexpansive mappings with nonempty common fixed points set F. Assume that {αn} and
{βn} are sequences in [0,1] and {αn} ⊂ [0,a] for some a∈ [0,1) and {βn} ⊂ [b,1] for some
b ∈ (0,1], then the sequence {xn} generated by (1.13) has xn→ z0, where z0 = PF(x0).

Proof. First, we prove that {xn} is well defined and F ⊂ Cn ∩Qn for every n ∈ N ∪{0}.
Observe that Cn is convex by Lemma 1.1. Next, we show that F ⊂ Cn for all n. Indeed, we
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have, for all p ∈ F,

∥
∥yn− p

∥
∥= ∥∥αnxn +

(
1−αn

)
Tnzn− p

∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)∥∥Tnzn− p
∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)∥∥zn− p
∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)∥∥[βnxn +
(
1−βn

)
Tnyn

]− p
∥
∥

� αn
∥
∥xn− p

∥
∥+

(
1−αn

)[
βn
∥
∥xn− p

∥
∥+

(
1−βn

)∥∥Tnyn− p
∥
∥]

�
(
αn +βn−αnβn

)∥∥xn− p
∥
∥+

(
1−αn

)(
1−βn

)∥∥yn− p
∥
∥.

(2.19)

It follows that

∥
∥yn− p

∥
∥≤ ∥∥xn− p

∥
∥. (2.20)

So p ∈ Cn for every n≥ 0, therefore F ⊂ Cn for every n≥ 0.
Next, we show that F ⊂ Cn ∩Qn for all n ≥ 0. It suffices to show that F ⊂ Qn, for all

n≥ 0. We prove this by mathematical induction. For n= 0, we have F ⊂ C =Q0. Assume
that F ⊂Qn. Since xn+1 is the projection of x0 onto Cn∩Qn, we have

〈
xn+1− z,x0− xn+1

〉≥ 0, ∀z ∈Qn∩Cn, (2.21)

as F ⊂ Cn ∩Qn, the last inequality holds, in particular, for all z ∈ F. This together with
the definition of Qn+1 implies that F ⊂Qn+1. Hence F ⊂ Cn∩Qn holds for all n≥ 0. This
completes the proof. �

By Lemma 2.2 {xn} is bounded and by Lemma 2.3 ‖xn+1 − xn‖ → 0, so that ‖yn −
xn‖→ 0, which leads to

∥
∥Tnzn− xn

∥
∥= 1

1−αn

∥
∥yn− xn

∥
∥−→ 0. (2.22)

On the other hand, we have
∥
∥Tnxn− xn

∥
∥≤ ∥∥Tnxn−Tnzn

∥
∥+

∥
∥Tnzn− xn

∥
∥

≤ ∥∥zn− xn
∥
∥+

∥
∥Tnzn− xn

∥
∥

≤ (1−βn
)∥∥Tnyn− xn

∥
∥+

∥
∥Tnzn− xn

∥
∥

≤ (1−βn
)[∥∥Tnyn−Tnxn

∥
∥+

∥
∥Tnxn− xn

∥
∥]+

∥
∥Tnzn− xn

∥
∥

≤ (1−βn
)[∥∥yn− xn

∥
∥+

∥
∥Tnxn− xn

∥
∥]+

∥
∥Tnzn− xn

∥
∥,

(2.23)

which implies that

∥
∥Tnxn− xn

∥
∥≤ 1−βn

βn

∥
∥yn− xn

∥
∥+

1
βn

∥
∥Tnzn− xn

∥
∥. (2.24)
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By the condition 0 < b ≤ βn and (2.22), we obtain that
∥
∥Tnxn− xn

∥
∥−→ 0, as n−→∞. (2.25)

As in the proof of Theorem 2.4 we have for any l = 1,2,3, . . . ,N that

lim
n→+∞

∥
∥Tlxn− xn

∥
∥= 0. (2.26)

By Lemma 1.2 and (2.26), we obtain that ww(xn)⊂ F(Tl). So, ww(xn)⊂ F =⋂N
l=1F(Tl),

this together with ‖xn − x0‖� ‖PF(x0)− x0‖ (for all n ∈ N) and Lemma 1.3 guarantees
the strong convergence of {xn} to PF(x0).

Remark 2.7. If we set βn = 1 for all n, then zn = xn and yn = αnxn + (1− αn)Tnxn, so
the iteration scheme (1.13) becomes modified Mann iteration, and if there is only one
nonexpansive mapping, we can obtain the theorem of Nakajo and Takahashi [8].
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