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We prove the Hyers-Ulam-Rassias stability of homomorphisms in real Banach algebras
and of generalized derivations on real Banach algebras for the following Cauchy-Jensen
functional equations: f (x + y/2 + z) + f (x− y/2 + z) = f (x) + 2 f (z), 2 f (x + y/2 + z) =
f (x) + f (y) + 2 f (z), which were introduced and investigated by Baak (2006). The con-
cept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem
that appeared in his paper (1978).

Copyright © 2007 Choonkil Park. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [2]
concerning the stability of group homomorphisms: let (G1,∗) be a group and let
(G2,�,d) be a metric group with the metric d(·,·). Given ε > 0, does there exist a δ(ε) > 0
such that if a mapping h : G1 →G2 satisfies the inequality

d
(
h(x∗ y),h(x)�h(y)

)
< δ (1.1)

for all x, y ∈G1, then there is a homomorphism H : G1 →G2 with

d
(
h(x),H(x)

)
< ε (1.2)

for all x ∈ G1? If the answer is affirmative, we would say that the equation of homo-
morphism H(x∗ y) = H(x)�H(y) is stable. The concept of stability for a functional
equation arises when we replace the functional equation by an inequality which acts as a
perturbation of the equation. Thus, the stability question of functional equations is that



2 Fixed Point Theory and Applications

“how do the solutions of the inequality differ from those of the given functional equa-
tion”?

Hyers [3] gave a first affirmative answer to the question of Ulam for Banach spaces.
Let X and Y be Banach spaces. Assume that f : X → Y satisfies

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε (1.3)

for all x, y ∈ X and some ε ≥ 0. Then, there exists a unique additive mapping T : X → Y
such that

∥
∥ f (x)−T(x)

∥
∥≤ ε (1.4)

for all x ∈ X .
Rassias [4] provided a generalization of Hyers’ theorem which allows the

Cauchy difference to be unbounded.

Theorem 1.1 (Th. M. Rassias). Let f : E→ E′ be a mapping from anormed vector space E
into a Banach space E′ subject to the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε(‖x‖p +‖y‖p) (1.5)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then, the limit

L(x)= lim
n→∞

f
(
2nx
)

2n
(1.6)

exists for all x ∈ E and L : E→ E′ is the unique additive mapping which satisfies

∥
∥ f (x)−L(x)

∥
∥≤ 2ε

2− 2p ‖x‖p (1.7)

for all x ∈ E. Also, if for each x ∈ E the function f (tx) is continuous in t ∈ R, then L is
R-linear.

The above inequality (1.5) has provided a lot of influence in the development of what is
now known as a Hyers-Ulam-Rassias stability of functional equations. Beginning around
the year 1980, the topic of approximate homomorphisms, or the stability of the equa-
tion of homomorphism, was studied by a number of mathematicians. Găvruţa [5] gen-
eralized Rassias’ result. The stability problems of several functional equations have been
extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [6–17]).

Rassias [18], following the spirit of the innovative approach of Rassias [4] for the un-
bounded Cauchy difference, proved a similar stability theorem in which he replaced the
factor ‖x‖p +‖y‖p by ‖x‖p · ‖y‖q for p,q ∈R with p+ q �= 1 (see also [19] for a number
of other new results).
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Theorem 1.2 [18–20]. Let X be a real normed linear space and Y a real complete normed
linear space. Assume that f : X → Y is an approximately additive mapping for which there
exist constants θ ≥ 0 and p ∈R −{1} such that f satisfies the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ θ · ‖x‖p/2 · ‖y‖p/2 (1.8)

for all x, y ∈ X . Then, there exists a unique additive mapping L : X → Y satisfying

∥
∥ f (x)−L(x)

∥
∥≤ θ

|2p− 2|‖x‖
p (1.9)

for all x ∈ X . If, in addition, f : X → Y is a mapping such that the transformation t→ f (tx)
is continuous in t ∈R for each fixed x ∈ X , then L is an R-linear mapping.

We recall two fundamental results in fixed point theory.

Theorem 1.3 [21]. Let (X ,d) be a complete metric space and let J : X → X be strictly con-
tractive, that is,

d(Jx, J y)≤ L f (x, y), ∀x, y ∈ X (1.10)

for some Lipschitz constant L < 1. Then,
(1) the mapping J has a unique fixed point x∗ = Jx∗;
(2) the fixed point x∗ is globally attractive, that is,

lim
n→∞ J

nx = x∗ (1.11)

for any starting point x ∈ X ;
(3) one has the following estimation inequalities:

d
(
Jnx,x∗

)≤ Lnd
(
x,x∗

)
,

d
(
Jnx,x∗

)≤ 1
1−L

d
(
Jnx, Jn+1x

)
,

d(x,x∗)≤ 1
1−L

d(x, Jx)

(1.12)

for all nonnegative integers n and all x ∈ X .

Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d
satisfies the following:

(1) d(x, y)= 0 if and only if x = y;
(2) d(x, y)= d(y,x) for all x, y ∈ X ;
(3) d(x,z)≤ d(x, y) + f (y,z) for all x, y,z ∈ X .

Theorem 1.4 [22]. Let (X ,d) be a complete generalized metric space and let J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for each given element
x ∈ X , either

d
(
Jnx, Jn+1x

)=∞ (1.13)
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for all nonnegative integers n or there exists a positive integer n0 such that
(1) d

(
Jnx, Jn+1x

)
<∞,∀n≥ n0;

(2) the sequence
{
Jnx
}

converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d

(
y, y∗

)≤ (1/(1−L))d(y, J y) for all y ∈ Y .

This paper is organized as follows. In Section 2, using the fixed point method, we
prove the Hyers-Ulam-Rassias stability of homomorphisms in real Banach algebras for
the Cauchy-Jensen functional equations.

In Section 3, using the fixed point method, we prove the Hyers-Ulam-Rassias stabil-
ity of generalized derivations on real Banach algebras for the Cauchy-Jensen functional
equations.

2. Stability of homomorphisms in real Banach algebras

Throughout this section, assume that A is a real Banach algebra with norm ‖ · ‖A and
that B is a real Banach algebra with norm ‖ · ‖B.

For a given mapping f : A→ B, we define

C f (x, y,z) := f
(
x+ y

2
+ z
)

+ f
(
x− y

2
+ z
)
− f (x)− 2 f (z) (2.1)

for all x, y,z ∈ A.
We prove the Hyers-Ulam-Rassias stability of homomorphisms in real Banach algebras

for the functional equation C f (x, y,z)= 0.

Theorem 2.1. Let f : A→ B be a mapping for which there exists a function ϕ : A3 → [0,∞)
such that

∞∑

j=0

1
2 j ϕ

(
2 jx,2 j y,2 jz

)
<∞, (2.2)

∥
∥C f (x, y,z)

∥
∥
B ≤ ϕ(x, y,z), (2.3)

∥
∥ f (xy)− f (x) f (y)

∥
∥
B ≤ ϕ(x, y,0) (2.4)

for all x, y,z ∈ A. If there exists an L < 1 such that ϕ(x,x,x) ≤ 2Lϕ(x/2,x/2,x/2) for all
x ∈ A and if f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
homomorphism H : A→ B such that

∥
∥ f (x)−H(x)

∥
∥
B ≤

1
2− 2L

ϕ(x,x,x) (2.5)

for all x ∈A.

Proof. Consider the set

X := {g : A→ B} (2.6)
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and introduce the generalized metric on X :

d(g,h)= inf
{
C ∈R+ :

∥
∥g(x)−h(x)

∥
∥
B ≤ Cϕ(x,x,x), ∀x ∈A

}
. (2.7)

It is easy to show that (X ,d) is complete.
Now, we consider the linear mapping J : X → X such that

Jg(x) := 1
2
g(2x) (2.8)

for all x ∈ A.
By [21, Theorem 3.1],

d(Jg, Jh)≤ Ld(g,h) (2.9)

for all g,h∈ X .
Letting y = z = x in (2.3), we get

∥
∥ f (2x)− 2 f (x)

∥
∥
B ≤ ϕ(x,x,x) (2.10)

for all x ∈ A. So

∥
∥
∥
∥ f (x)− 1

2
f (2x)

∥
∥
∥
∥
B
≤ 1

2
ϕ(x,x,x) (2.11)

for all x ∈ A. Hence d( f , J f )≤ 1/2.
By Theorem 1.4, there exists a mapping H : A→ B such that the following hold.

(1) H is a fixed point of J , that is,

H(2x)= 2H(x) (2.12)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d( f ,g) <∞}. (2.13)

This implies that H is a unique mapping satisfying (2.12) such that there exists
C ∈ (0,∞) satisfying

∥
∥H(x)− f (x)

∥
∥
B ≤ Cϕ(x,x,x) (2.14)

for all x ∈ A.
(2) d(Jn f ,H)→ 0 as n→∞. This implies the equality

lim
n→∞

f
(
2nx
)

2n
=H(x) (2.15)

for all x ∈ A.
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(3) d( f ,H)≤ (1/(1−L))d( f , J f ), which implies the inequality

d( f ,H)≤ 1
2− 2L

. (2.16)

This implies that the inequality (2.5) holds.
It follows from (2.2), (2.3), and (2.15) that
∥
∥
∥
∥H
(
x+ y

2
+ z
)

+H
(
x− y

2
+ z
)
−H(x)− 2H(z)

∥
∥
∥
∥
B

= lim
n→∞

1
2n
∥
∥ f
(
2n−1(x+ y) + 2nz

)
+ f
(
2n−1(x− y) + 2nz

)− f (2nx)− 2 f
(
2nz
)∥∥

B

≤ lim
n→∞

1
2n

ϕ
(
2nx,2ny,2nz

)= 0

(2.17)

for all x, y,z ∈ A. So

H
(
x+ y

2
+ z
)

+H
(
x− y

2
+ z
)
=H(x) + 2H(z) (2.18)

for all x, y,z ∈ A. By [1, Lemma 2.1], the mapping H : A→ B is Cauchy additive.
By the same reasoning as in the proof of Theorem of [4], the mapping H : A→ B is

R-linear.
It follows from (2.4) that

∥
∥H(xy)−H(x)H(y)

∥
∥
B = lim

n→∞
1
4n
∥
∥ f
(
4nxy

)− f
(
2nx
)
f
(
2ny

)∥∥
B

≤ lim
n→∞

1
4n

ϕ
(
2nx,2ny,0

)≤ lim
n→∞

1
2n

ϕ
(
2nx,2ny,0

)= 0
(2.19)

for all x, y ∈A. So

H(xy)=H(x)H(y) (2.20)

for all x, y ∈A. Thus, H : A→ B is a homomorphism satisfying (2.5), as desired. �

Corollary 2.2. Let r < 1 and θ be nonnegative real numbers, and let f : A→ B be a map-
ping such that

∥
∥C f (x, y,z)

∥
∥
B ≤ θ

(‖x‖rA +‖y‖rA +‖z‖rA
)
,

∥
∥ f (xy)− f (x) f (y)

∥
∥
B ≤ θ

(‖x‖rA +‖y‖rA
) (2.21)

for all x, y,z ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a
unique homomorphism H : A→ B such that

∥
∥ f (x)−H(x)

∥
∥
B ≤

3θ
2− 2r

‖x‖rA (2.22)

for all x ∈A.
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Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y,z) := θ
(‖x‖rA +‖y‖rA +‖z‖rA

)
(2.23)

for all x, y,z ∈ A. Then, L= 2r−1 and we get the desired result. �

Theorem 2.3. Let f : A→ B be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (2.3) and (2.4) such that

∞∑

j=0

4 jϕ
(
x

2 j ,
y

2 j ,
z

2 j

)
<∞ (2.24)

for all x, y,z ∈ A. If there exists an L < 1 such that ϕ(x,x,x) ≤ (1/2)Lϕ(2x,2x,2x) for all
x ∈ A and if f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
homomorphism H : A→ B such that

∥
∥ f (x)−H(x)

∥
∥
B ≤

L

2− 2L
ϕ(x,x,x) (2.25)

for all x ∈A.

Proof. We consider the linear mapping J : X → X such that

Jg(x) := 2g
(
x

2

)
(2.26)

for all x ∈ A.
It follows from (2.10) that

∥
∥
∥
∥ f (x)− 2 f

(
x

2

)∥∥
∥
∥
B
≤ ϕ

(
x

2
,
x

2
,
x

2

)
≤ L

2
ϕ(x,x,x) (2.27)

for all x ∈ A. Hence d( f , J f )≤ L/2.
By Theorem 1.4, there exists a mapping H : A→ B such that the following hold.

(1) H is a fixed point of J , that is,

H(2x)= 2H(x) (2.28)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d( f ,g) <∞}. (2.29)

This implies that H is a unique mapping satisfying (2.28) such that there exists
C ∈ (0,∞) satisfying

∥
∥H(x)− f (x)

∥
∥
B ≤ Cϕ(x,x,x) (2.30)

for all x ∈ A.
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(2) d(Jn f ,H)→ 0 as n→∞. This implies the equality

lim
n→∞2n f

(
x

2n

)
=H(x) (2.31)

for all x ∈ A.
(3) d( f ,H)≤ (1/(1−L))d( f , J f ), which implies the inequality

d( f ,H)≤ L

2− 2L
, (2.32)

which implies that the inequality (2.25) holds.
It follows from (2.3), (2.24), and (2.31) that
∥
∥
∥
∥H
(
x+ y

2
+ z
)

+H
(
x− y

2
+ z
)
−H(x)− 2H(z)

∥
∥
∥
∥
B

= lim
n→∞2n

∥
∥
∥
∥ f
(
x+ y

2n+1
+

z

2n

)
+ f
(
x− y

2n+1
+

z

2n

)
− f

(
x

2n

)
− 2 f

(
z

2n

)∥∥
∥
∥
B

≤ lim
n→∞2nϕ

(
x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞4nϕ
(
x

2n
,
y

2n
,
z

2n

)
= 0

(2.33)

for all x, y,z ∈ A. So

H
(
x+ y

2
+ z
)

+H
(
x− y

2
+ z
)
=H(x) + 2H(z) (2.34)

for all x, y,z ∈ A. By [1, Lemma 2.1], the mapping H : A→ B is Cauchy additive.
By the same reasoning as in the proof of Theorem of [4], the mapping H : A→ B is

R-linear.
It follows from (2.4) that

∥
∥H(xy)−H(x)H(y)

∥
∥
B = lim

n→∞4n
∥
∥
∥
∥ f
(
xy

4n

)
− f

(
x

2n

)
f
(
y

2n

)∥∥
∥
∥
B

≤ lim
n→∞4nϕ

(
x

2n
,
y

2n
,0
)
= 0

(2.35)

for all x, y ∈A. So

H(xy)=H(x)H(y) (2.36)

for all x, y ∈A. Thus, H : A→ B is a homomorphism satisfying (2.25), as desired. �

Corollary 2.4. Let r > 2 and θ be nonnegative real numbers, and let f : A→ B be a map-
ping satisfying (2.21). If f (tx) is continuous in t ∈R for each fixed x ∈ A, then there exists
a unique homomorphism H : A→ B such that

∥
∥ f (x)−H(x)

∥
∥
B ≤

3θ
2r − 2

‖x‖rA (2.37)

for all x ∈A.
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Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y,z) := θ
(‖x‖rA +‖y‖rA +‖z‖rA

)
(2.38)

for all x, y,z ∈ A. Then, L= 21−r and we get the desired result. �

3. Stability of generalized derivations on real Banach algebras

Throughout this section, assume that A is a real Banach algebra with norm ‖ · ‖A.
For a given mapping f : A→ A, we define

D f (x, y,z) := 2 f
(
x+ y

2
+ z
)
− f (x)− f (y)− 2 f (z) (3.1)

for all x, y,z ∈ A.

Definition 3.1 [23]. A generalized derivation δ : A→ A is R-linear and fulfills the general-
ized Leibniz rule

δ(xyz)= δ(xy)z− xδ(y)z+ xδ(yz) (3.2)

for all x, y,z ∈ A.

We prove the Hyers-Ulam-Rassias stability of generalized derivations on real Banach
algebras for the functional equation D f (x, y,z)= 0.

Theorem 3.2. Let f : A→ A be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (2.2) such that

∥
∥D f (x, y,z)

∥
∥
A ≤ ϕ(x, y,z), (3.3)

∥
∥ f (xyz)− f (xy)z+ x f (y)z− x f (yz)

∥
∥
A ≤ ϕ(x, y,z) (3.4)

for all x, y,z ∈ A. If there exists an L < 1 such that ϕ(x,x,x) ≤ 2Lϕ(x/2,x/2,x/2) for all
x ∈ A and if f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
generalized derivation δ : A→ A such that

∥
∥ f (x)− δ(x)

∥
∥
A ≤

1
4− 4L

ϕ(x,x,x) (3.5)

for all x ∈A.

Proof. Consider the set

X := {g : A→ A} (3.6)

and introduce the generalized metric on X :

d(g,h)= inf
{
C ∈R+ :

∥
∥g(x)−h(x)

∥
∥
A ≤ Cϕ(x,x,x), ∀x ∈ A

}
. (3.7)

It is easy to show that (X ,d) is complete.
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We consider the linear mapping J : X → X such that

Jg(x) := 1
2
g(2x) (3.8)

for all x ∈ A.
By [21, Theorem 3.1],

d(Jg, Jh)≤ Ld(g,h) (3.9)

for all g,h∈ X .
Letting y = z = x in (3.3), we get

∥
∥2 f (2x)− 4 f (x)

∥
∥
A ≤ ϕ(x,x,x) (3.10)

for all x ∈ A. So
∥
∥
∥
∥ f (x)− 1

2
f (2x)

∥
∥
∥
∥
A
≤ 1

4
ϕ(x,x,x) (3.11)

for all x ∈ A. Hence d( f , J f )≤ 1/4.
By Theorem 1.4, there exists a mapping δ : A→ A such that the following hold.

(1) δ is a fixed point of J , that is,

δ(2x)= 2δ(x) (3.12)

for all x ∈ A. The mapping δ is a unique fixed point of J in the set

Y = {g ∈ X : d( f ,g) <∞}. (3.13)

This implies that δ is a unique mapping satisfying (3.12) such that there exists
C ∈ (0,∞) satisfying

∥
∥δ(x)− f (x)

∥
∥
A ≤ Cϕ(x,x,x) (3.14)

for all x ∈ A.
(2) d(Jn f ,δ)→ 0 as n→∞. This implies the equality

lim
n→∞

f
(
2nx
)

2n
= δ(x) (3.15)

for all x ∈ A.
(3) d( f ,δ)≤ (1/(1−L))d( f , J f ), which implies the inequality

d( f ,δ)≤ 1
4− 4L

. (3.16)

This implies that the inequality (3.5) holds.
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It follows from (2.2), (3.3), and (3.15) that
∥
∥
∥
∥2δ

(
x+ y

2
+ z
)
− δ(x)− δ(y)− 2δ(z)

∥
∥
∥
∥
A

= lim
n→∞

1
2n
∥
∥2 f

(
2n−1(x+ y) + 2nz

)− f
(
2nx
)− f

(
2ny

)− 2 f
(
2nz
)∥∥

A

≤ lim
n→∞

1
2n

ϕ
(
2nx,2ny,2nz

)= 0

(3.17)

for all x, y,z ∈ A. So

2δ
(
x+ y

2
+ z
)
= δ(x) + δ(y) + 2δ(z) (3.18)

for all x, y,z ∈ A. By [1, Lemma 2.1 ], the mapping δ : A→ A is Cauchy additive.
By the same reasoning as in the proof of Theorem of [4], the mapping δ : A→ A is

R-linear.
It follows from (3.4) that
∥
∥δ(xyz)− δ(xy)z+ xδ(y)z− xδ(yz)

∥
∥
A

= lim
n→∞

1
8n
∥
∥ f
(
8nxyz

)− f
(
4nxy

) · 2nz+ 2nx f
(
2ny

) · 2nz− 2nx f
(
4nyz

)∥∥
A

≤ lim
n→∞

1
8n

ϕ
(
2nx,2ny,2nz

)≤ lim
n→∞

1
2n

ϕ
(
2nx,2ny,2nz

)= 0

(3.19)

for all x, y,z ∈ A. So

δ(xyz)= δ(xy)z− xδ(y)z+ xδ(yz) (3.20)

for all x, y,z ∈ A. Thus, δ : A→ A is a generalized derivation satisfying (3.5). �

Corollary 3.3. Let r < 1 and θ be nonnegative real numbers, and let f : A→ A be a map-
ping such that

∥
∥D f (x, y,z)

∥
∥
A ≤ θ · ‖x‖r/3A · ‖y‖r/3A · ‖z‖r/3A ,

∥
∥ f (xyz)− f (xy)z+ x f (y)z− x f (yz)

∥
∥
A ≤ θ · ‖x‖r/3A · ‖y‖r/3A · ‖z‖r/3A

(3.21)

for all x, y,z ∈ A. If f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a
unique generalized derivation δ : A→ A such that

∥
∥ f (x)− δ(x)

∥
∥
A ≤

θ

4− 2r+1
‖x‖rA (3.22)

for all x ∈A.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y,z) := θ · ‖x‖r/3A · ‖y‖r/3A · ‖z‖r/3A (3.23)

for all x, y,z ∈ A. Then, L= 2r−1 and we get the desired result. �
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Theorem 3.4. Let f : A→ A be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (3.3) and (3.4) such that

∞∑

j=0

8 jϕ
(
x

2 j ,
y

2 j ,
z

2 j

)
<∞ (3.24)

for all x, y,z ∈ A. If there exists an L < 1 such that ϕ(x,x,x) ≤ (1/2)Lϕ(2x,2x,2x) for all
x ∈ A and if f (tx) is continuous in t ∈ R for each fixed x ∈ A, then there exists a unique
generalized derivation δ : A→ A such that

∥
∥ f (x)− δ(x)

∥
∥
A ≤

L

4− 4L
ϕ(x,x,x) (3.25)

for all x ∈A.

Proof. We consider the linear mapping J : X → X such that

Jg(x) := 2g
(
x

2

)
(3.26)

for all x ∈ A.
It follows from (3.10) that

∥
∥
∥
∥ f (x)− 2 f

(
x

2

)∥∥
∥
∥
A
≤ 1

2
ϕ
(
x

2
,
x

2
,
x

2

)
≤ L

4
ϕ(x,x,x) (3.27)

for all x ∈ A. Hence d( f , J f )≤ L/4.
By Theorem 1.4, there exists a mapping δ : A→ A such that the following hold.

(1) δ is a fixed point of J , that is,

δ(2x)= 2δ(x) (3.28)

for all x ∈ A. The mapping δ is a unique fixed point of J in the set

Y = {g ∈ X : d( f ,g) <∞}. (3.29)

This implies that δ is a unique mapping satisfying (3.28) such that there exists
C ∈ (0,∞) satisfying

∥
∥δ(x)− f (x)

∥
∥
A ≤ Cϕ(x,x,x) (3.30)

for all x ∈ A.
(2) d

(
Jn f ,δ

)→ 0 as n→∞. This implies the equality

lim
n→∞2n f

(
x

2n

)
= δ(x) (3.31)

for all x ∈ A.
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(3) d( f ,δ)≤ (1/(1−L))d( f , J f ), which implies the inequality

d( f ,δ)≤ L

4− 4L
, (3.32)

which implies that the inequality (3.25) holds.
It follows from (3.3), (3.24), and (3.31) that

∥
∥
∥
∥2δ

(
x+ y

2
+ z
)
− δ(x)− δ(y)− 2δ(z)

∥
∥
∥
∥
A

= lim
n→∞2n

∥
∥
∥
∥2 f

(
x+ y

2n+1
+

z

2n

)
− f

(
x

2n

)
− f

(
y

2n

)
− 2 f

(
z

2n

)∥∥
∥
∥
A

≤ lim
n→∞2nϕ

(
x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞8nϕ
(
x

2n
,
y

2n
,
z

2n

)
= 0

(3.33)

for all x, y,z ∈ A. So

2δ
(
x+ y

2
+ z
)
= δ(x) + δ(y) + 2δ(z) (3.34)

for all x, y,z ∈ A. By [1, Lemma 2.1], the mapping δ : A→ A is Cauchy additive.
By the same reasoning as in the proof of Theorem of [4], the mapping δ : A→ A is

R-linear.
It follows from (3.4) that
∥
∥δ(xyz)− δ(xy)z+ xδ(y)z− xδ(yz)

∥
∥
A

= lim
n→∞8n

∥
∥
∥
∥ f
(
xyz

8n

)
− f

(
xy

4n

)
· z

2n
+

x

2n
f
(
y

2n

)
· z

2n
− x

2n
f
(
yz

4n

)∥∥
∥
∥
A

≤ lim
n→∞8nϕ

(
x

2n
,
y

2n
,
z

2n

)
= 0

(3.35)

for all x, y,z ∈ A. So

δ(xyz)= δ(xy)z− xδ(y)z+ xδ(yz) (3.36)

for all x, y,z ∈ A. Thus, δ : A→ A is a generalized derivation satisfying (3.28). �

Corollary 3.5. Let r > 3 and θ be nonnegative real numbers, and let f : A→ A be a map-
ping satisfying (3.21). If f (tx) is continuous in t ∈R for each fixed x ∈ A, then there exists
a unique generalized derivation δ : A→ A such that

∥
∥ f (x)− δ(x)

∥
∥
A ≤

θ

2r+1− 4
‖x‖rA (3.37)

for all x ∈A.

Proof. The proof follows from Theorem 3.4 by taking

ϕ(x, y,z) := θ · ‖x‖r/3A · ‖y‖r/3A · ‖z‖r/3A (3.38)

for all x, y,z ∈ A. Then, L= 21−r and we get the desired result. �
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