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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, E∗ is the dual space of
E, K is a nonempty closed convex subset of E, and J : E→ 2E

∗
is the normalized duality

mapping defined by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2,‖ f ‖ = ‖x‖}, x ∈ E, (1.1)

where 〈·,·〉 denotes the duality pairing between E and E∗. The single-valued normalized
duality mapping is denoted by j.

Definition 1.1. Let T : K → K be a mapping.
(1) T is said to be uniformly L-Lipschitzian if there exists L > 0 (without loss of

generality, assume that L≥ 1) such that for any x, y ∈ K ,

∥
∥Tnx−Tny

∥
∥≤ L‖x− y‖ ∀n≥ 1; (1.2)



2 Fixed Point Theory and Applications

(2) T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂
[1,∞) with kn→ 1 such that for any given x, y ∈ K ,

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖ ∀n≥ 1; (1.3)

(3) T is said to be asymptotically pseudocontractive if there exists a sequence {kn} ⊂
[1,∞) with kn→ 1 such that, for any x, y ∈ K , there exists j(x− y)∈ J(x− y):

〈
Tnx−Tny, j(x− y)

〉≤ kn‖x− y‖2 ∀n≥ 1. (1.4)

Remark 1.2. (1) It is easy to see that if T is an asymptotically nonexpansive mapping, then
T is a uniformly L-Lipschitzian mapping, where L= supn≥1 kn, and every asymptotically
nonexpansive mapping is asymptotically pseudocontractive, but the inverse is not true,
in general.

(2) The concept of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [1], while the concept of asymptotically pseudocontractive mappings was intro-
duced by Schu [2] who proved the following theorem.

Theorem 1.3 (Schu [2]). Let H be a Hilbert space, let K be a nonempty bounded closed
convex subset of H , and let T : K → K be a completely continuous, uniformly L-Lipschitzian,
and asymptotically pseudocontractive mapping with a sequence {kn} ⊂ [1,∞) satisfying the
following conditions:

(i) kn→ 1 as n→∞;
(ii)

∑∞
n=1 q

2
n− 1 <∞, where qn = 2kn− 1.

Suppose further that {αn} and {βn} are two sequences in [0,1] such that ε < αn < b, for
all n≥ 1, where ε > 0 and b ∈ (0,L−2[(1 + L2)1/2− 1]) are some positive numbers. For any
x1 ∈ K , let {xn} be the iterative sequence defined by

xn+1 =
(
1−αn

)
xn +αnT

nxn ∀n≥ 1. (1.5)

Then, {xn} converges strongly to a fixed point of T in K .

In [3], the first author extended Theorem 1.3 to a real uniformly smooth Banach space
and proved the following theorem.

Theorem 1.4 (Chang [3]). Let E be a uniformly smooth Banach space, let K be a nonempty
bounded closed convex subset of E, and let T : K → K be an asymptotically pseudocontractive
mapping with a sequence {kn} ⊂ [1,∞), kn → 1, and F(T) = ∅, where F(T) is the set of
fixed points of T in K . Let {αn} be a sequence in [0,1] satisfying the following conditions:

(i) αn→ 0;
(ii)

∑∞
n=0αn =∞.

For any x0 ∈ K , let {xn} be the iterative sequence defined by

xn+1 =
(
1−αn

)
xn +αnT

nxn ∀n≥ 0. (1.6)
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If there exists a strict increasing function φ : [0,∞)→ [0,∞) with φ(0)= 0 such that

〈
Tnxn− x∗, j

(
xn− x∗

)〉≤ kn
∥
∥xn− x∗

∥
∥2−φ

(∥∥xn− x∗
∥
∥) ∀n≥ 0, (1.7)

where x∗ ∈ F(T) is some fixed point of T in K , then xn→ x∗ as n→∞.

Very recently, in [4] Ofoedu proved the following theorem.

Theorem 1.5 (Ofoedu [4]). Let E be a real Banach space, letK be a nonempty closed convex
subset of E, and let T : K → K be a uniformly L-Lipschitzian asymptotically pseudocontrac-
tive mapping with a sequence {kn} ⊂ [1,∞), kn → 1, such that x∗ ∈ F(T), where F(T) is
the set of fixed points of T in K . Let {αn} be a sequence in [0,1] satisfying the following
conditions:

(i)
∑∞

n=0αn =∞;
(ii)

∑∞
n=0α

2
n <∞;

(iii)
∑∞

n=0αn(kn− 1) <∞.
For any x0 ∈ K , let {xn} be the iterative sequence defined by

xn+1 =
(
1−αn

)
xn +αnT

nxn ∀n≥ 0. (1.8)

If there exists a strict increasing function φ : [0,∞)→ [0,∞) with φ(0)= 0 such that

〈
Tnx− x∗, j

(
x− x∗

)〉≤ kn
∥
∥x− x∗

∥
∥2−φ

(∥∥x− x∗
∥
∥) ∀x ∈ K , (1.9)

then {xn} converges strongly to x∗.

Remark 1.6. It should be pointed out that although Theorem 1.5 extends Theorem 1.4
from a real uniformly smooth Banach space to an arbitrary real Banach space and re-
moves the boundedness condition imposed on K , but the proof of [4, Theorem 3.1] has
some problems.

The purpose of this paper is, by using a simple and quite different method, to prove
some strong convergence theorems for a finite family of L-Lipschitzian mappings in stead
of the assumption that T is a uniformly L-Lipschitzian and asymptotically pseudocon-
tractive mapping in a Banach space. Our results not only correct some mistakes appeared
in [4] but also extend and improve some recent results in [2–7].

For this purpose, we first give the following lemmas.

Lemma 1.7 (Change [8]). Let E be a real Banach space and let J : E→ 2E
∗

be the normalized
duality mapping. Then, for any x, y ∈ E,

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉 ∀ j(x+ y)∈ J(x+ y). (1.10)

Lemma 1.8 (Moore and Nnoli [9]). Let {θn} be a sequence of nonnegative real numbers
and let {λn} be a real sequence satisfying the following conditions:

0≤ λn ≤ 1,
∞∑

n=0

λn =∞. (1.11)
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If there exists a strictly increasing function φ : [0,∞)→ [0,∞) such that

θ2
n+1 ≤ θ2

n− λnφ
(
θn+1

)
+ σn ∀n≥ n0, (1.12)

where n0 is some nonnegative integer and {σn} is a sequence of nonnegative number such
that σn = ◦(λn), then θn→ 0 as n→∞.

2. Main results

Definition 2.1. Let E be real Banach space, let K be a nonempty closed convex subset, and
let Ti : K → K , i = 1,2, . . . ,N be a finite family of mappings. {Ti, i = 1,2, . . . ,N} is called
a finite family of uniformly L-Lipschitzian mappings if there exists a positive constant L
(without loss of generality, assume that L≥ 1) such that for all x, y ∈ K ,

∥
∥Tn

i x−Tn
i y
∥
∥≤ L‖x− y‖ ∀n≥ 1, i= 1,2, . . . ,N. (2.1)

The following theorem is the main result in this paper.

Theorem 2.2. Let E be a real Banach space, let K be a nonempty closed convex subset of
E, and let Ti : K → K , i= 1,2, . . . ,N be a finite family of uniformly L-Lipschitzian mappings
with

⋂N
i=1F(Ti) = ∅, where L ≥ 1 is a constant and F(Ti) is the set of fixed points of Ti in

K . Let x∗ be a given point in
⋂N

i=1F(Ti) and let {kn} ⊂ [1,∞) be a sequence with kn → 1.
Let {αn} and {βn} be two sequences in [0,1] satisfying the following conditions:

(i) αn→ 0, βn→ 0 (as n→∞);
(ii)

∑∞
n=0αn =∞.

For any x1 ∈ K , let {xn} be the iterative sequence defined by

xn+1 =
(
1−αn

)
xn +αnT

n
n yn ∀n≥ 1,

yn =
(
1−βn

)
xn +βnT

n
nxn ∀n≥ 1,

(2.2)

where Tn
n = Tn

n(modN). If there exists a strict increasing function φ : [0,∞) → [0,∞) with
φ(0)= 0 such that for any x ∈ K ,

〈
Tn
nx− x∗, j

(
x− x∗

)〉≤ kn
∥
∥x− x∗

∥
∥2−φ

(∥∥x− x∗
∥
∥) ∀n≥ 1, (2.3)

then {xn} converges strongly to x∗ ∈⋂N
i=1F(Ti), if and only if {yn} is bounded.

Proof

Necessity. If the sequence {xn} defined by (2.2) converges strongly to x∗ ∈⋂N
i=1F(Ti),

from (2.2) we have
∥
∥yn− x∗

∥
∥= ∥∥(1−βn

)(
xn− x∗

)
+βn

(
Tn
nxn− x∗

)∥∥

≤ (1−βn
)∥∥xn− x∗

∥
∥+βn

∥
∥Tn

nxn− x∗
∥
∥

≤ (1−βn
)∥∥xn− x∗

∥
∥+βnL

∥
∥xn− x∗

∥
∥

≤ L
∥
∥xn− x∗

∥
∥−→ 0 (as n−→∞).

(2.4)

This implies that yn→ x∗, as n→∞, and so {yn} is bounded.
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Sufficiency. Let {yn} be a bounded sequence. Denote M = supn≥1‖yn − x∗‖. It follows
from (2.2) that

∥
∥xn+1− x∗

∥
∥= ∥∥(1−αn

)(
xn− x∗

)
+αn

(
Tn
n yn− x∗

)∥∥

≤ (1−αn
)∥∥xn− x∗

∥
∥+αnL

∥
∥yn− x∗

∥
∥

≤ (1−αn
)∥∥xn− x∗

∥
∥+αnML

≤max
{∥∥xn− x∗

∥
∥,ML

}
.

(2.5)

By induction, we can prove that
∥
∥xn+1− x∗

∥
∥≤max

{∥∥x1− x∗
∥
∥,ML

} ∀n≥ 1. (2.6)

This implies that {xn} is bounded, and so {‖Tn
nxn‖} and {‖Tn

n yn‖} both are bounded.
Denote

M1 = sup
n≥1

{∥∥xn− x∗
∥
∥+

∥
∥Tn

nxn− xn
∥
∥+

∥
∥Tn

n yn− xn
∥
∥} <∞. (2.7)

Again from (2.2) and Lemma 1.7, we have

∥
∥xn+1− x∗

∥
∥2 = ∥∥(xn− x∗

)
+αn

(
Tn
n yn− xn

)∥∥2

≤ ∥∥(xn− x∗
)∥∥2

+ 2αn
〈
Tn
n yn− xn, j

(
xn+1− x∗

)〉
.

(2.8)

Now we consider the second term on the right side of (2.8) It follows from (2.2) and (2.3)
that
〈
Tn
n yn− xn, j

(
xn+1− x∗

)〉= 〈Tn
nxn+1− x∗, j

(
xn+1− x∗

)〉

+
〈
Tn
n yn−Tn

nxn+1, j
(
xn+1− x∗

)〉

+
〈
x∗ − xn, j

(
xn+1− x∗

)〉

≤ kn
∥
∥xn+1− x∗

∥
∥2−φ

(∥∥xn+1− x∗
∥
∥)

+L
∥
∥yn− xn+1

∥
∥ ·∥∥xn+1− x∗

∥
∥

+
〈
xn+1− xn, j

(
xn+1− x∗

)〉

− 〈xn+1− x∗, j
(
xn+1− x∗

)〉

≤ kn
∥
∥xn+1− x∗

∥
∥2−φ

(∥∥xn+1− x∗
∥
∥)

+L
∥
∥yn− xn+1

∥
∥ ·∥∥xn+1− x∗

∥
∥

+αn
〈
Tn
n yn− xn, j

(
xn+1− x∗

)〉−∥∥xn+1− x∗
∥
∥2

≤ (kn− 1
)∥∥xn+1− x∗

∥
∥2−φ

(∥∥xn+1− x∗
∥
∥)

+L
∥
∥yn− xn+1

∥
∥ ·∥∥xn+1− x∗

∥
∥+αn

∥
∥Tn

n yn− xn
∥
∥ ·∥∥xn+1− x∗

∥
∥

≤ (kn− 1
)
M2

1 −φ
(∥∥xn+1− x∗

∥
∥)+LM1

∥
∥yn− xn+1

∥
∥+αnM

2
1 .
(2.9)
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Now we consider the third term on the right side of (2.9). From (2.2) we have

∥
∥xn+1− yn

∥
∥= ∥∥(1−αn

)(
xn− yn

)
+αn

(
Tn
n yn− yn

)∥∥

≤ (1−αn
)∥∥xn− yn

∥
∥+αn

∥
∥Tn

n yn− x∗ + x∗ − yn
∥
∥

≤ (1−αn
)∥∥xn− yn

∥
∥+αn(1 +L)

∥
∥yn− x∗

∥
∥

≤ (1−αn
)∥∥xn− yn

∥
∥+αn(1 +L)

{∥∥yn− xn
∥
∥+

∥
∥xn− x∗

∥
∥}

= (1 +Lαn
)∥∥xn− yn

∥
∥+αn(1 +L)

∥
∥xn− x∗

∥
∥

= (1 +Lαn
){
βn
∥
∥xn−Tn

nx
n
∥
∥}+αn(1 +L)

∥
∥xn− x∗

∥
∥

≤ (1 +Lαn
)
βn(1 +L)

∥
∥xn− x∗

∥
∥+αn(1 +L)

∥
∥xn− x∗

∥
∥≤ dnM1,

(2.10)

where

dn = (1 +L)
{(

1 +Lαn
)
βn +αn

}−→ 0, as n−→∞. (2.11)

Substituting (2.10) into (2.9) and then substituting the results into (2.8) and simplifying
it, we have

∥
∥xn+1− x∗

∥
∥2 ≤ ∥∥xn− x∗

∥
∥2− 2αnφ

(∥∥xn+1− x∗
∥
∥)

+ 2αn
{(
kn− 1

)
+Ldn +αn

}
M2

1 .
(2.12)

Taking θn = ‖xn − x∗‖, λn = 2αn, and σn = 2αn{(kn − 1) + Ldn + αn}M2
1 , then (2.12) can

be written as

θ2
n+1 ≤ θ2

n− λnφ
(
θn+1

)
+ σn ∀n≥ n0. (2.13)

By the conditions (i)-(ii), we know that all the conditions in Lemma 1.8 are satisfied.
Therefore, it follows that

∥
∥xn− x∗

∥
∥−→ 0, (2.14)

that is, xn→ x∗ as n→∞. This completes the proof. �

Remark 2.3. (1) Theorem 2.2 extends and improves the corresponding results in Chang
[3], Cho et al. [5], Ofoedu [4], Schu [2], and Zeng [6, 7].

(2) The method given in the proof of Theorem 2.2 is quite different from the method
given in Ofoedu [4].

(3) Theorem 2.2 also corrects some mistakes appeared in the proof of [4, Theorem
3.1].
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(4) Under suitable conditions, the sequence {xn} defined by (2.2) in Theorem 2.2 also
can be generalized to the iterative sequences with errors. Because the proof is straightfor-
ward, we omit it here.

The following theorem can be obtained from Theorem 2.2 immediately.

Theorem 2.4. Let E be a real Banach space, let K be a nonempty closed convex subset of
E, and let Ti : K → K , i= 1,2, . . . ,N be a finite family of uniformly L-Lipschitzian mappings
with

⋂N
i=1F(Ti) = ∅, where L ≥ 1 is a constant and F(Ti) is the set of fixed points of Ti in

K . Let x∗ be a given point in
⋂N

i=1F(Ti) and let {kn} ⊂ [1,∞) be a sequence with kn → 1.
Let {αn} be a sequence in [0,1] satisfying the following conditions:

(i) αn→ 0 (as n→∞);
(ii)

∑∞
n=0αn =∞.

For any x1 ∈ K , let {xn} be the iterative sequence defined by

xn+1 =
(
1−αn

)
xn +αnT

n
nxn ∀n≥ 1, (2.15)

where Tn
n = Tn

n(modN). If there exists a strict increasing function φ : [0,∞) → [0,∞) with
φ(0)= 0 such that for any x ∈ K

〈
Tn
nx− x∗, j

(
x− x∗

)〉≤ kn
∥
∥x− x∗

∥
∥2−φ

(∥∥x− x∗
∥
∥) ∀n≥ 1, (2.16)

then {xn} converges strongly to x∗ ∈⋂N
i=1F(Ti) if and only if {xn} is bounded.

Proof. Taking βn = 0 in Theorem 2.2, we know that yn = xn for all n≥ 1. Hence the con-
clusion of Theorem 2.4 can be obtained from Theorem 2.2 immediately. �

Remark 2.5. Theorem 2.4 is also a generalization and improvement of Ofoedu [4, Theo-
rem 3.2].
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