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Let E be a real uniformly convex Banach space which admits a weakly sequentially con-
tinuous duality mapping from E to E∗, C a nonempty closed convex subset of E which is
also a sunny nonexpansive retract of E, and T : C→ E a non-expansive nonself-mapping
with F(T) �= ∅. In this paper, we study the strong convergence of two sequences gen-
erated by xn+1 = αnx + (1− αn)(1/n+ 1)

∑n
j=0(PT) jxn and yn+1 = (1/n+ 1)

∑n
j=0P(αny +

(1− αn)(TP) j yn) for all n ≥ 0, where x,x0, y, y0 ∈ C, {αn} is a real sequence in an inter-
val [0,1], and P is a sunny non-expansive retraction of E onto C. We prove that {xn}
and {yn} converge strongly to Qx and Qy, respectively, as n→∞, where Q is a sunny
non-expansive retraction of C onto F(T). The results presented in this paper generalize,
extend, and improve the corresponding results of Matsushita and Kuroiwa (2001) and
many others.

Copyright © 2007 Rabian Wangkeeree. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space E and let T be a nonexpan-
sive mapping from C into itself, that is, ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. In 1997,
Shimizu and Takahashi [1] originally studied the convergence of an iteration process {xn}
for a family of nonexpansive mappings in the framework of a Hilbert space. We restate
the sequence {xn} as follows:

xn+1 = αnx+
(
1−αn

) 1
n+ 1

n∑

j=0

T jxn for n= 0,1,2, . . . , (1.1)
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where x0, x are all elements of C, and {αn} is an appropriate sequence in [0,1]. They
proved that {xn} converges strongly to an element of fixed point of T which is the nearest
to x. Shioji and Takahashi [2] extended the result of Shimizu and Takahashi [1] to a uni-
formly convex Banach space whose norm is uniformly Gâteaux differentiable and proved
that the sequence {xn} converges strongly to a fixed point of T which is the nearest to
x. Very recently, Song and Chen [3] also extended the result of Shimizu and Takahashi
[1] to a uniformly convex Banach space which admits a weakly sequentially continuous
duality mapping. But this approximation method is not suitable for some nonexpansive
nonself-mappings. In 2004, Matsushita and Kuroiwa [4] studied the strong convergence
of the sequences {xn} and {yn} for nonexpansive nonself-mappings in the framework of
a real Hilbert space. We can restate the sequences {xn} and {yn} as follows:

xn+1 = αnx+
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) jxn for n= 0,1,2, . . . , (1.2)

yn+1 = 1
n+ 1

n∑

j=0

P
(
αny +

(
1−αn

)(
TP) j yn

)
for n= 0,1,2, . . . , (1.3)

where x0, x, y0, y are all elements of C, P is the metric projection from H onto C, and T is
a nonexpansive nonself-mapping from C into H . By using the nowhere normal outward
condition for such a mapping T and appropriate conditions on {αn}, they proved that
{xn} generated by (1.2) converges strongly to a fixed point of T which is the nearest to x;
further they proved that {yn} generated by (1.3) converges strongly to a fixed point of T
which is the nearest to y when F(T) is nonempty.

In this paper, our purpose is to establish two strong convergence theorems of the iter-
ative processes {xn} and {yn} defined by (1.2) and (1.3), respectively, for nonexpansive
nonself-mappings in a uniformly convex Banach space which admits a weakly sequen-
tially continuous duality mapping from E to E∗. Our results extend and improve the
results of Matsushita and Kuroiwa [4] to a Banach space setting.

2. Preliminaries

Throughout this paper, it is assumed that E is a real Banach space with norm ‖ · ‖; let J
denote the normalized duality mapping from E into E∗ given by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖ f ‖2} (2.1)

for each x ∈ E, where E∗ denotes the dual space of E, 〈·,·〉 denotes the generalized duality
pairing, and N denotes the set of all positive integers. In the sequel, we will denote the
single-valued duality mapping by j, and denote F(T) = {x ∈ C : Tx = x}. When {xn}
is a sequence in E, then xn → x (resp., xn⇀ x,xn

∗⇀ x) will denote strong (resp., weak,
weak∗) convergence of the sequence {xn} to x. In a Banach space E, the following result
(the subdifferential inequality) is well known [5, Theorem 4.2.1]: for all x, y ∈ E, for all
j(x+ y)∈ J(x+ y), for all j(x)∈ J(x),

‖x‖2 + 2
〈
y, j(x)

〉≤ ‖x+ y‖2 ≤ ‖x‖2 +
〈
y, j(x+ y)

〉
. (2.2)
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Let E be a real Banach space and T a mapping with domain D(T) and range R(T) in E.
T is called nonexpansive (resp., contractive) if for any x, y ∈D(T),

‖Tx−Ty‖ ≤ ‖x− y‖ (2.3)

(resp., ‖Tx−Ty‖ ≤ β‖x− y‖ for some 0≤ β < 1). A Banach space E is said to be strictly
convex if

‖x‖ = ‖y‖ = 1, x �= y imply
‖x+ y‖

2
< 1. (2.4)

A Banach space E is said to be uniformly convex if for all ε ∈ (0,2], there exits δε > 0 such
that

‖x‖ = ‖y‖ = 1 with ‖x− y‖ ≥ ε imply
‖x+ y‖

2
< 1− δε. (2.5)

Recall that the norm of E is said to be Gâteaux differentiable (and E is said to be smooth)
if the limit

lim
t→0

‖x+ ty‖−‖x‖
t

(2.6)

exists for each x, y on the unit sphere S(E) of E. The following results are well known and
can be found in [5].

(i) A uniformly convex Banach space E is reflexive and strictly convex [5, Theorems
4.1.2 and 4.1.6].

(ii) If C is a nonempty convex subset of a strictly convex Banach space E and T : C→ C
is a nonexpansive mapping, then fixed point set F(T) of T is a closed convex subset of C
[5, Theorem 4.5.3].

If a Banach space E admits a weakly sequentially continuous duality mapping J from
weak topology to weak star topology, from [6, Lemma 1], it follows that the duality
mapping J is single-valued and also E is smooth. In this case, duality mapping J is also
said to be weakly sequentially continuous, that is, for each {xn} ⊂ E with xn ⇀ x, then

J(xn)
∗⇀ J(x) (see [6, 7]).

In the sequel, we also need the following lemma which can be found in [8].

Lemma 2.1 (Browder’s demiclosed principle [8]). LetC be a nonempty closed convex subset
of a uniformly convex Banach space E, and suppose that T : C→ E is nonexpansive. Then,
the mapping I-T is demiclosed at zero, that is, xn⇀ x, xn−Txn→ 0 imply x = Tx.

If C is a nonempty closed convex subset of a Banach space E and D is a nonempty sub-
set of C, then a mapping P : C→D is called a retraction if Px = x for all x ∈D. A mapping
P : C→D is called sunny if

P
(
Px+ t(x−Px)

)= Px, ∀x ∈ C, (2.7)

whenever Px+ t(x−Px)∈ C and t > 0. A subset D of C is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction of C onto D. For more details,
see [5, 6]. The following lemma can be found in [5].
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Lemma 2.2. Let C be a nonempty closed convex subset of a smooth Banach space E, D ⊂ C,
J : E → E∗ the normalized duality mapping of E, and P : C → D a retraction. Then, the
following are equivalent:

(i) 〈x−Px, j(y−Px)〉 ≤ 0, for all x ∈ C, for all y ∈D;
(ii) P is both sunny and nonexpansive.

Let E be a smooth Banach space and let C be a nonempty closed convex subset of E.
Let P be a sunny nonexpansive retraction from E onto C. Then, P is unique. For more
details, see [9]. For a nonself-mapping T from C into E, Matsushita and Takahashi [9]
studied the following condition:

Tx ∈ Scx (2.8)

for all x ∈ C, where Sx = {y ∈ E : y �= x, Py = x} and P is a sunny nonexpansive retraction
from E onto C.

Remark 2.3 [9, Remark 2.1]. If C is a nonempty closed convex subset of a reflexive,
strictly convex, and smooth Banach space E, then for any x ∈ E, there exists a unique
point x0 ∈ C such that

∥
∥x0− x

∥
∥=min

y∈C
‖y− x‖. (2.9)

The mapping Q from E onto C defined by Qx = x0 is called the metric projection. Using
the metric projection Q, Halpern and Bergman [10] studied the following condition:

Tx ∈ {y ∈ E : y �= x,Qy = x}c (2.10)

for all x ∈ C. Such a condition is called the nowhere-normal outward condition. Note that
if E is a Hilbert space, then the condition (2.8) and the nowhere-normal outward condi-
tion are equivalent.

In the sequel, we also need the following lemmas which can be found in [9].

Lemma 2.4 [9, Lemma 3.1]. Let C be a closed convex subset of a smooth Banach space E
and let T be a mapping form C into E. Suppose that C is a sunny nonexpansive retract of
E. If T satisfies the condition (2.8), then F(T) = F(PT), where P is a sunny nonexpansive
retraction from E onto C.

Lemma 2.5 [9, Lemma 3.3]. Let C be a closed convex subset of a strictly convex Banach
space E and let T be a nonexpansive mapping from C into E. Suppose that C is a sunny
nonexpansive retract of E. If F(T) �= ∅, then T satisfies the condition (2.8).

The following theorem was proved by Bruck [11].

Theorem 2.6. Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space E and let T : C→ C be nonexpansive. For each x ∈ C and the Cesàro means
Tnx = 1/n

∑n−1
j=0 T

jx, then limn→∞ supx∈C ‖Tnx−T(Tnx)‖ = 0.



Rabian Wangkeeree 5

3. Main results

In this section, we prove two strong convergence theorems for a nonexpansive nonself-
mapping in a uniformly convex Banach space.

Theorem 3.1. Let E be a uniformly convex Banach space which admits a weakly sequen-
tially continuous duality mapping J from E to E∗ and C a nonempty closed convex subset of
E. Suppose that C is a sunny nonexpansive retract of E. Let P be the sunny nonexpansive re-
traction of E onto C, T a nonexpansive nonself-mapping from C into E with F(T) �= ∅, and
{αn} a sequence of real numbers such that 0≤ αn ≤ 1, limn→∞αn = 0, and

∑∞
n=0αn =∞. Let

the sequence {xn} be defined by (1.2). Then, {xn} converges strongly to Qx ∈ F(T), where Q
is the sunny nonexpansive retraction from C onto F(T).

Proof. Let x ∈ C, z ∈ F(T), and M =max{‖x− z‖,‖x0− z‖}. Then, we have
∥
∥x1− z

∥
∥= ∥∥α0x+

(
1−α0

)
x0− z

∥
∥≤ α0‖x− z‖+

(
1−α0

)∥
∥x0− z

∥
∥≤M. (3.1)

If ‖xn− z‖ ≤M for some n∈N, then we can show that ‖xn+1− z‖ ≤M similarly. There-
fore, by induction on n, we obtain ‖xn− z‖ ≤M for all n∈N, and hence {xn} is bounded,
so is {(1/n+ 1)

∑n
j=0(PT) jxn}. We define Tn := (1/n+ 1)

∑n
j=0(PT) j for all n∈N. Then,

for any p ∈ F(T), we get ‖Tnxn − p‖ ≤ (1/n+ 1)
∑n

j=0‖(PT) jxn − (PT) j p‖ ≤ ‖xn − p‖.
Therefore, {Tnxn} is also bounded. We observe that

∥
∥xn+1−Tnxn

∥
∥=

∥
∥
∥
∥
∥
xn+1− 1

n+ 1

n∑

j=0

(PT) jxn

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
αnx+

(
1−αn

) 1
n+ 1

n∑

j=0

(PT) jxn− 1
n+ 1

n∑

j=0

(PT) jxn

∥
∥
∥
∥
∥

= αn

∥
∥
∥
∥
∥
x− 1

n+ 1

n∑

j=0

(PT) jxn

∥
∥
∥
∥
∥
= αn

∥
∥x−Tnxn

∥
∥.

(3.2)

It follows from (3.2) and limn→∞αn = 0 that

lim
n→∞

∥
∥xn+1−Tnxn

∥
∥= 0. (3.3)

Next, we prove that limn→∞‖xn−PTxn‖ = 0. Take w ∈ F(T) and define a subset D of C
by D = {x ∈ C : ‖x−w‖ ≤M}. Then, D is a nonempty closed bounded convex subset of
C, PT(D)⊂D, and {xn} ⊂D. Hence, Theorem 2.6 implies that

lim
n→∞

sup
x∈D

∥
∥Tnx−PT

(
Tnx

)∥
∥= 0. (3.4)

Furthermore,

lim
n→∞

∥
∥Tnxn−PT

(
Tnxn

)∥
∥≤ lim

n→∞
sup
x∈D

∥
∥Tnx−PT

(
Tnx

)∥
∥= 0. (3.5)

Hence,

lim
n→∞

∥
∥Tnxn−PT

(
Tnxn

)∥
∥= 0. (3.6)
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It follows from (3.3) and (3.6) that

∥
∥xn+1−PTxn+1

∥
∥≤ ∥∥xn+1−Tnxn

∥
∥+

∥
∥Tnxn−PT

(
Tnxn

)∥
∥+

∥
∥PT

(
Tnxn

)−PTxn+1
∥
∥

≤ 2
∥
∥xn+1−Tnxn

∥
∥+

∥
∥Tnxn−PT

(
Tnxn

)∥
∥−→ 0 as n−→∞.

(3.7)

That is,

lim
n→∞

∥
∥xn−PTxn

∥
∥= 0. (3.8)

Next, we will show that

limsup
n→∞

〈
Qx− x, j

(
Qx− xn

)〉≤ 0. (3.9)

Let {xnk} be a subsequence of {xn} such that

lim
n→∞

〈
Qx− x, j

(
Qx− xnk

)〉= limsup
n→∞

〈
Qx− x, j

(
Qx− xn

)〉
. (3.10)

It follows from reflexivity of E and boundedness of the sequence {xnk} that there ex-
ists a subsequence {xnki } of {xnk} converging weakly to w ∈ C as i→∞. It follows from
(3.8) and the nonexpansivity of PT that we have w ∈ F(PT) by Lemma 2.1. Since F(T) is
nonempty, it follows from Lemma 2.5 that T satisfies condition (2.8). Applying Lemma
2.4, we obtain that w ∈ F(T). Since the duality map j is single-valued and weakly sequen-
tially continuous from E to E∗, we get that

limsup
n→∞

〈
Qx− x, j

(
Qx− xn

)〉= lim
k→∞

〈
Qx− x, j

(
Qx− xnk

)〉

= lim
i→∞

〈
Qx− x, j

(
Qx− xnki

)〉

= 〈Qx− x, j(Qx−w)
〉≤ 0

(3.11)

by Lemma 2.2 as required. Then, for any ε > 0, there exists m∈N such that

〈
Qx− x, j

(
Qx− xn

)〉≤ ε (3.12)

for all n≥m. On the other hand, from

xn+1−Qx+αn(Qx− x)= αnx+
(
1−αn

) 1
n+ 1

n∑

j=0

(PT) jxn−
(
αnx+

(
1−αn

)
Qx
)

(3.13)



Rabian Wangkeeree 7

and the inequality (2.2), we have

∥
∥xn+1−Qx

∥
∥2

= ∥∥xn+1−Qx+αn(Qx− x)−αn(Qx− x)
∥
∥2

≤ ∥∥xn+1−Qx+αn(Qx− x)
∥
∥2− 2αn

〈
Qx− x, j

(
xn+1−Qx

)〉

=
{∥
∥
∥
∥
∥

(
1−αn

) 1
n+ 1

n∑

j=0

(
(PT) jxn−Qx

)
∥
∥
∥
∥
∥

}2

− 2αn
〈
Qx− x, j

(
xn+1−Qx

)〉

≤
{
(
1−αn

) 1
n+ 1

n∑

j=0

∥
∥(PT) jxn−Qx

∥
∥

}2

− 2αn
〈
Qx− x, j

(
xn+1−Qx

)〉

≤ (1−αn
)2‖xn−Qx‖2 + 2αn

〈
x−Qx, j

(
xn+1−Qx

)〉

≤ (1−αn
)∥
∥xn−Qx

∥
∥2

+ 2αnε

= 2ε
(
1− (1−αn

))
+
(
1−αn

)∥
∥xn−Qx

∥
∥2

≤ 2ε
(
1− (1−αn

))
+
(
1−αn

)(
2ε
(
1− (1−αn−1

))
+
(
1−αn−1

)∥
∥xn−1−Qx

∥
∥2

= 2ε
(
1− (1−αn

)(
1−αn−1

))
+
(
1−αn

)(
1−αn−1

)∥
∥xn−1−Qx

∥
∥2

(3.14)

for all n≥m. By induction, we obtain

∥
∥xn+1−Qx

∥
∥2 ≤ 2ε

(

1−
n∏

k=m

(
1−αk

)
)

+
n∏

k=m

(
1−αk

)∥
∥xm−Qx

∥
∥2
. (3.15)

Therefore, from
∑∞

n=0αn =∞, we have

limsup
n→∞

∥
∥xn+1−Qx

∥
∥≤ 2ε. (3.16)

By arbitrarity of ε, we conclude that {xn} converges strongly to Qx in F(T). This com-
pletes the proof. �

If in Theorem 3.1, T is self-mapping and {αn} ⊂ (0,1), then the requirement that C is
a sunny nonexpansive retract of E is not necessary. Furthermore, we have PT = T , then
the iteration (1.2) reduces to the iteration (1.1). In fact, the following corollary can be
obtained from Theorem 3.1 immediately.

Corollary 3.2 [3, Corollary 4.2]. Let E be a uniformly convex Banach space which admits
a weakly sequentially continuous duality mapping J from E to E∗ and C a nonempty closed
convex subset of E. Suppose that T : C → C is a nonexpansive mapping with F(T) �= ∅,
and {xn} is defined by (1.1), where {αn} is a sequence of real numbers in (0,1) satisfying
limn→∞αn = 0 and

∑∞
n=0αn =∞. Then, as n→∞,{xn} converges strongly to Qx ∈ F(T),

where Q is the sunny nonexpansive retraction from C onto F(T).
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If in Theorem 3.1 E =H is a real Hilbert space, then the requirement that C is a sunny
nonexpansive retract of E is not necessary. In fact, we have the following corollary due to
Matsushita and Kuroiwa [4].

Corollary 3.3 [4, Theorem 1]. Let H be a real Hilbert space, C a closed convex subset
of H , P the metric projection of H onto C, T a nonexpansive nonself-mapping from C into
H such that F(T) is nonempty, and {αn} a sequence of real numbers in [0,1] satisfying
limn→∞αn = 0 and

∑∞
n=0αn = ∞. Then, {xn} defined by (1.2) converges strongly to Qx,

where Q is the metric projection from C onto F(T).

Theorem 3.4. Let E be a uniformly convex Banach space which admits a weakly sequen-
tially continuous duality mapping J from E to E∗ and C a nonempty closed convex subset of
E. Suppose that C is a sunny nonexpansive retract of E. Let P be the sunny nonexpansive re-
traction of E onto C, T a nonexpansive nonself-mapping from C into E with F(T) �= ∅, and
{αn} a sequence of real numbers such that 0≤ αn ≤ 1, limn→∞αn = 0, and

∑∞
n=0αn =∞. Let

the sequence {yn} be defined by (1.3). Then, {yn} converges strongly to Qy ∈ F(T), where
Q is the sunny nonexpansive retraction from C onto F(T).

Proof. Let y ∈ C, z ∈ F(T), and M =max{‖y− z‖,‖y0− z‖}. Then, we have

∥
∥y1− z

∥
∥= ∥∥P(α0y +

(
1−α0

)
y0
)− z

∥
∥≤ α0‖y− z‖+

(
1−α0

)∥
∥y0− z

∥
∥≤M. (3.17)

If ‖yn− z‖ ≤M for some n∈N, then we can show that ‖yn+1− z‖ ≤M similarly. There-
fore, by induction, we obtain ‖yn− z‖ ≤M for all n∈N and hence {yn} is bounded, so
is {(1/n+ 1)

∑n
j=0(PT) j yn}. We observe that

∥
∥
∥
∥
∥
yn+1− 1

n+ 1

n∑

j=0

(PT) j yn

∥
∥
∥
∥
∥
=
∥
∥
∥
∥
∥

1
n+ 1

n∑

j=0

P
(
αny +

(
1−αn

)(
TP) j yn

)− 1
n+ 1

n∑

j=0

(PT) j yn

∥
∥
∥
∥
∥

≤ 1
n+ 1

n∑

j=0

∥
∥P
(
αny +

(
1−αn

)
(TP) j yn

)− (PT) j yn
∥
∥

≤ 1
n+ 1

n∑

j=0

∥
∥αny +

(
1−αn

)
(TP) j yn− (TP) j yn

∥
∥

= αn
1

n+ 1

n∑

j=0

∥
∥y− (PT) j yn

∥
∥.

(3.18)

We define Tn := (1/n+ 1)
∑n

j=0(PT) j for all n ∈ N. It follows from limn→∞αn = 0 and
(3.18) that

lim
n→∞

∥
∥yn+1−Tnyn

∥
∥= 0. (3.19)

Next, we prove that limn→∞‖yn−PTyn‖ = 0. Take w ∈ F(T) and define a subset D of C
by D = {y ∈ C : ‖y −w‖ ≤M}. Then, clearly D is a nonempty closed bounded convex
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subset of C and TP(D)⊂D and {yn} ⊂D. Since PT(D)⊂D, Theorem 2.6 implies that

lim
n→∞

sup
y∈D

∥
∥Tny−PT

(
Tny

)∥
∥= 0. (3.20)

Furthermore,

lim
n→∞

∥
∥Tnyn−PT

(
Tny

)∥
∥≤ lim

n→∞sup
y∈D

∥
∥Tny−PT

(
Tny

)∥
∥= 0. (3.21)

Hence, using limn→∞‖Tnyn−PT(Tny)‖ = 0 along with (3.19), we obtain that
∥
∥yn+1−PTyn+1

∥
∥≤ ∥∥yn+1−Tnyn

∥
∥+

∥
∥Tnyn−PT

(
Tnyn

)∥
∥+

∥
∥PT

(
Tnyn

)−PTyn+1
∥
∥

≤ 2
∥
∥yn+1−Tnyn

∥
∥+

∥
∥Tnyn−PT

(
Tnyn

)∥
∥−→ 0 as n−→∞.

(3.22)

That is,

lim
n→∞

∥
∥yn−PTyn

∥
∥= 0. (3.23)

Next, we will show that

limsup
n→∞

〈
Qy− y, j

(
Qy− yn

)〉≤ 0. (3.24)

Let {ynk} be a subsequence of {yn} such that

lim
n→∞

〈
Qy− y, j

(
Qy− ynk

)〉= limsup
n→∞

〈
Qy− y, j

(
Qy− yn

)〉
. (3.25)

If follows from reflexivity of E and boundedness of sequence {ynk} that there exists a sub-
sequence {ynki } of {ynk} converging weakly to w ∈ C as i→∞. Then, from (3.23) and the
nonexpansivity of PT , we obtain that w ∈ F(PT) by Lemma 2.1. Since F(T) is nonempty,
it follows from Lemma 2.5 that T satisfies condition (2.8). Applying Lemma 2.4, we ob-
tain that w ∈ F(T). By the assumption that the duality map J is single-valued and weakly
sequentially continuous from E to E∗, Lemma 2.2 gives that

limsup
n→∞

〈
Qy− y, j

(
Qy− yn

)〉= lim
k→∞

〈
Qy− y, j

(
Qy− ynk

)〉

= lim
i→∞

〈
Qy− y, j

(
Qy− ynki

)〉

= 〈Qy− y, j(Qy−w)
〉≤ 0

(3.26)

as required. Then for any ε > 0, there exists m∈N such that
〈
Qy− y, j

(
Qy− yn

)〉≤ ε (3.27)

for all n≥m. On the other hand, from

yn+1−Qy +αn(Qy− y)= 1
n+ 1

n∑

j=0

P
(
αny +

(
1−αn

)
(TP) j yn

)−P
(
αny +

(
1−αn

)
Qy
)

(3.28)
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and the inequality (2.2), we have

∥
∥yn+1−Qy

∥
∥2

= ∥∥yn+1−Qy +αn(Qy− y)−αn(Qy− y)
∥
∥2

≤ ∥∥yn+1−Qy +αn(Qy− y)
∥
∥2− 2αn

〈
Qy− y, j

(
yn+1−Qy

)〉

≤
∥
∥
∥
∥
∥

1
n+ 1

n∑

j=0

P
(
αny +

(
1−αn

)
(TP) j yn

)−P
(
αny +

(
1−αn

)
Qy
)
∥
∥
∥
∥
∥

2

− 2αn
〈
Qy− y, j

(
yn+1−Qy

)〉

=
{

1
n+ 1

n∑

j=0

∥
∥P
(
αny +

(
1−αn

)
(TP) j yn

)−P
(
αny +

(
1−αn

)
Qy
)∥
∥

}2

− 2αn
〈
Qy− y, j

(
yn+1−Qy

)〉

≤
{
(
1−αn

) 1
n+ 1

n∑

j=0

∥
∥(TP) j yn−Qy

∥
∥

}2

− 2αn
〈
Qy− y, j

(
yn+1−Qy

)〉

≤ (1−αn
)2∥∥yn−Qy

∥
∥2

+ 2αn
〈
y−Qy, j

(
yn+1−Qy

)〉

≤ (1−αn
)∥
∥yn−Qy

∥
∥2

+ 2αnε

= 2ε
(
1− (1−αn

))
+
(
1−αn

)∥
∥yn−Qy

∥
∥2

≤ 2ε
(
1− (1−αn

))
+
(
1−αn

)(
2ε
(
1− (1−αn−1

))
+
(
1−αn−1

)∥
∥yn−1−Qy

∥
∥2

= 2ε
(
1− (1−αn

)(
1−αn−1

)
) +
(
1−αn

)(
1−αn−1

)∥
∥yn−1−Qy

∥
∥2

(3.29)

for all n≥m. By induction, we obtain

∥
∥yn+1−Qy

∥
∥2 ≤ 2ε

(

1−
n∏

k=m

(
1−αk

)
)

+
n∏

k=m

(
1−αk

)∥
∥ym−Qy

∥
∥2
. (3.30)

It follows from
∑∞

n=0αn =∞ that

limsup
n→∞

∥
∥yn+1−Qy

∥
∥≤ 2ε. (3.31)

By arbitrarity of ε, we conclude that {yn} converges strongly to Qy in F(T). This com-
pletes the proof. �

If in Theorem 3.4, E =H is a real Hilbert space, then the requirement that C is a sunny
nonexpansive retract of E is not necessary. In fact, we have the following corollary due to
Matsushita and Kuroiwa [4].

Corollary 3.5 [4, Theorem 2]. Let H be a real Hilbert space, C a closed convex subset
of H , P the metric projection of H onto C, T a nonexpansive nonself-mapping from C into
H such that F(T) is nonempty, and {αn} a sequence of real numbers in [0,1] satisfying
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limn→∞αn = 0 and
∑∞

n=0αn = ∞. Then, {yn} defined by (1.3) converges strongly to Qy,
where Q is the metric projection from C onto F(T).

Acknowledgments

The author would like to thank The Thailand Research Fund, Grant MRG5080375/2550,
for financial support and the referees for reading this paper carefully, providing valuable
suggestions and comments, and pointing out a major error in the original version of this
paper.

References

[1] T. Shimizu and W. Takahashi, “Strong convergence to common fixed points of families of nonex-
pansive mappings,” Journal of Mathematical Analysis and Applications, vol. 211, no. 1, pp. 71–83,
1997.

[2] N. Shioji and W. Takahashi, “Strong convergence of approximated sequences for nonexpansive
mappings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 125, no. 12,
pp. 3641–3645, 1997.

[3] Y. Song and R. Chen, “Viscosity approximative methods to Cesàro means for non-expansive
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