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1. Introduction and preliminaries

Throughout this paper, letH be a real Hilbert space with inner product 〈·,·〉 and ‖ · ‖. We
use xn⇀ x to indicate that the sequence {xn} converges weakly to x. Similarly, xn→ x will
symbolize strong convergence. we denote by N and R+ the sets of nonnegative integers
and nonnegative real numbers, respectively. let C be a closed convex subset of a Hilbert
space H , and Let T : C→ C be a nonexpansive mapping (i.e., ‖Tx−Ty‖ ≤ ‖x− y‖ for
all x, y ∈ C). We use Fix(T) to denote the set of fixed points of T ; that is, Fix(T)= {x ∈
C : x = Tx}. We know that Fix(T) is nonempty if C is bounded, for more details see [1].

In [2], Shioji and Takahashi introduce in a Hilbert space the implicit iteration

xn = αnu+
(
1−αn

) 1
tn

∫ tn

0
T(s)xnds, n∈N, (1.1)

Where {αn} is a sequence in (0,1), {tn} is a sequence of positive real numbers divergent to
∞, for each t ≥ 0 and u∈ C. In 2003, Suzuki [3] is the first to introduce again in a Hilbert
space the following implicit iteration process:

xn = αnu+
(
1−αn

)
T
(
tn
)(
xn
)
, n≥ 1, (1.2)
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for the nonexpansive semigroup case. In 2005, Xu [4] established a Banach space version
of the sequence (1.2) of Suzuki [3], he proved that if E is a uniformly convex Banach space
with a weakly continuous duality map (e.g., lp for 1 < p <∞), if C is a closed convex sub-
set of E, and if {T(t) : t ∈ R+} is a nonexpansive semigroup on a closed convex subset
C such that Fix(T) 
= ∅, then under certain appropriate assumptions made and the se-
quences αn and tn of the parameters, he showed that the sequence xn implicitly defined
by (1.2) for all n≥ 1 converges strongly to a member of F =⋂t≥0 Fix(T(t)).

Recently, Chen and He [5] extend and improve the corresponding results of Suzuki
[3], if E is a reflexive Banach space which admits a weakly sequentially continuous duality
mapping J from E to E∗, suppose C is a nonempty closed convex subset of E. Let {T(t) :
t ∈R+} be a nonexpansive semigroup on C such that F(T) 
= ∅, and f : C→ C is a fixed
contraction on C. Let {αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1,
tn > 0 and limn→∞ tn = limn→∞αn/tn = 0. Define a sequence {xn} in C by

xn = αn f
(
xn
)

+
(
1−αn

)
T
(
tn
)(
xn
)
, n≥ 1. (1.3)

Then {xn} converges strongly to q, as n→∞. q is the element of F, such that q is the
unique solution in F to the following variational inequality:

〈
( f − I)q, j(x− q)

〉≤ 0 ∀x ∈ F(T). (1.4)

Some other results can be seen in [6–8].
Nakajo and Takahashi [9] introduced an iteration procedure for nonexpansive self-

mappings T on C as follows:

x0 = x ∈ C,

yn = αnxn +
(
1−αn

)
Txn,

Cn =
{
z ∈ C;

∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥},

Qn =
{
z ∈ C;

〈
xn− z,x0− xn

〉≥ 0
}

,

xn+1 = PCn∩Qn

(
x0
)

(1.5)

for each n∈N∪{0}, where αn ∈ [0,a] for some a∈ [0,1), and {xn} converges strongly
to PFix(T)x0

Let {T(t) : t ∈ R+} be a nonexpansive semigroup on a closed convex subset C of a
Hilbert space H , that is,

(1) for each t ∈R+, T(t) is a nonexpansive mapping on C;
(2) T(0)x = x for all x ∈ C;
(3) T(s+ t)= T(s)◦T(t) for all s, t ∈R+;
(4) for each x ∈ X , the mapping T(·)x from R+ into C is continuous. We put F =

⋂
t≥0 Fix(T(t)). We know that F is nonempty if C is bounded, see [10].

Let C be a nonempty closed convex subset of H and let{T(t) : t ∈ R+} be a nonex-
pansive semigroup on a closed convex subset C of a Hilbert space H such that F 
= ∅,
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Nakajo and Takahashi [9] also introduced an iteration procedure for nonexpansive semi-
group {T(t) : t ∈R+} on C as follows:

x0 = x ∈ C,

yn = αnxn +
(
1−αn

) 1
tn

∫ tn

0
T(s)xnds,

Cn =
{
z ∈ C;

∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥},

Qn =
{
z ∈ C;

〈
xn− z,x0− xn

〉≥ 0
}

,

xn+1 = PCn∩Qn

(
x0
)

(1.6)

for each n ∈ N∪ {0}, where αn ∈ [0,a] for some a ∈ [0,1) and {tn} is a positive real
number divergent sequence, and the sequence {xn} converges strongly to PFx0.

In 2006, Martinez-Yanes and Xu [11] employ Nakajo-Takahashi [9] idea and prove
some strong convergence theorems for nonexpansive mappings and maximal monotone
operators.

In this paper, we consider an iteration procedure for nonexpansive semigroups {T(t) :
t ∈R+} on C as follows:

x0 = x ∈ C,

yn = αnxn +
(
1−αn

)
T
(
tn
)
xn,

Cn =
{
z ∈ C;

∥
∥yn− z

∥
∥≤ ∥∥xn− z

∥
∥},

Qn =
{
z ∈ C;

〈
xn− z,x0− xn

〉≥ 0
}

,

xn+1 = PCn∩Qn

(
x0
)

(1.7)

for each n∈N∪{0}, where αn ∈ [0,a] for some a∈ [0,1) and tn ≥ 0 limn→∞ tn = 0. then
the sequence {xn} converges strongly to PFx0.

In the sequel, we will need the following definitions and results.

Definition 1.1. A Banach space E is said to satisfy Opial’s condition [12] if whenever {xn}
is a sequence in E which converges weakly to x, as n→∞, then

limsup
n→∞

∥
∥xn− x

∥
∥ < limsup

n→∞

∥
∥xn− y

∥
∥, ∀y ∈ E with x 
= y. (1.8)

It is well known that Hilbert space and lp(1 < l <∞) space satisfy Opial’s condition
[13].

Lemma 1.2 [14]. Let C be a nonempty closed convex subset of a Hilbert space H . Given
x ∈H and y ∈ C, then y = PCx if and only if 〈x− y, y− z〉 ≥ 0, is satisfied for all z ∈ C.

Lemma 1.3 [14, 15]. Every Hilbert space H has Radon-Riesz property or Kadets-Klee prop-
erty, that is, for a sequence {xn} ⊂H with xn⇀ x and ‖xn‖→ ‖x‖, then there holds xn→ x.
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2. Main results

Lemma 2.1. Let C be a closed convex subset of a Hilbert space H . Let {T(t) : t ∈ R+} be a
nonexpansive semigroup on C such that F 
= ∅, and the sequence {xn} generated by (1.7),
where αn ∈ [0,a] for some a ∈ [0,1), Then {xn} is well defined and F ⊂ Cn∩Qn for every
n∈N∪{0}.
Proof. It is obvious that Cn is closed and Qn is closed and convex for every n∈N∪{0}.
It follows from that Cn is convex for every n ∈ N∪ {0} because ‖yn − z‖ ≤ ‖xn − z‖ is
equivalent to

∥
∥yn− xn

∥
∥2

+ 2
〈
yn− xn,xn− z

〉≤ 0. (2.1)

So, Cn∩Qn is closed and convex for every n∈N∪{0}. Let u∈ F. Then from

∥
∥yn−u

∥
∥= ∥∥αnxn +

(
1−αn

)
T
(
tn
)
xn−u

∥
∥

≤ αn
∥
∥xn−u

∥
∥+

(
1−αn

)∥∥T
(
tn
)
xn−u

∥
∥

≤ ∥∥xn−u
∥
∥.

(2.2)

we have u∈ Cn for each n∈N∪{0}. So, we have F ⊂ Cn for all n∈N∪{0}.
Next, we show by mathematical induction that {xn} is well defined and F ⊂ Cn ∩Qn

for every n∈N∪{0}. For n= 0, we have x0 = x ∈ C and Q0 = C, and hence F ⊂ C0∩Q0.
Suppose that xk is given and F ⊂ Ck ∩Qk for some k ∈ N∪ {0}.There exists a unique
element xk+1 ∈ Ck ∩Qk such that xk+1 = PCk∩Qk (x0). From xk+1 = PCk∩Qk (x0), it holds
that

〈
xk+1− z,x0− xk+1

〉≥ 0 (2.3)

for each z ∈ Ck ∩Qk. Since F ⊂ Ck ∩Qk, we get F ⊂ Qk+1, therefore we have F ⊂ Ck+1∩
Qk+1.

The proof is completed. �

Lemma 2.2. Let C be a closed convex subset of a Hilbert space H . Let {T(t) : t ∈ R+} be a
nonexpansive semigroup on C such that F 
= ∅, and the sequence {xn} generated by (1.7),
where αn ∈ [0,a] for some a∈ [0,1), Then limn→∞‖xn+1− xn‖ = 0.

Proof. At first, we show that F is a closed convex subset of C. Since T(t) : C→ C, t > 0 is
nonexpansive, we claim that F is closed. In fact, if pn ⊂ F =⋂t≥0 Fix(T(t)), n ≥ 1, such
that limn→∞ pn = p, then we have

T(t)p = lim
n→∞T(t)pn = lim

n→∞ pn = p ∀t ∈R+. (2.4)

Thus p ∈ F.
Next, we show that F is convex, we will use the following identity in Hilbert space:

∥
∥tx+ (1− t)y

∥
∥2 = t‖x‖2 + (1− t)‖y‖2− t(1− t)‖x− y‖2, (2.5)
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which holds for all x, y ∈H and for all t ∈ [0,1] indeed,

∥
∥tx+ (1− t)y

∥
∥2 = t2‖x‖2 + (1− t)2‖y‖2 + 2t(1− t)〈x, y〉
= t‖x‖2 + (1− t)‖y‖2 + 2t(1− t)〈x, y〉
− t(1− t)‖x‖2− t(1− t)‖y‖2

= t‖x‖2 + (1− t)‖y‖2− t(1− t)
(‖x‖2 +‖y‖2− 2〈x, y〉)

= t‖x‖2 + (1− t)‖y‖2− t(1− t)‖x− y‖2.

(2.6)

Let p1, p2 ∈ F and for all t ∈ [0,1], p = tp1 + (1− t)p2, then

p− p1 = (1− t)
(
p2− p1

)
, p− p2 = (1− t)

(
p1− p2

)
. (2.7)

From (2.5) and (2.7), we have

∥
∥p−T(t)p

∥
∥2 = ∥∥t(p1−T(t)p

)
+ (1− t)

(
p2−T(t)p

)∥∥2

= t
∥
∥p1−T(t)p

∥
∥2

+ (1− t)
∥
∥p2−T(t)p

∥
∥2− t(1− t)

∥
∥p1− p2

∥
∥2

≤ t
∥
∥p1− p

∥
∥2

+ (1− t)
∥
∥p2− p

∥
∥2− t(1− t)

∥
∥p1− p2

∥
∥2

= t(1− t)2
∥
∥p1− p2

∥
∥2

+ t2(1− t)
∥
∥p1− p2

∥
∥2− t(1− t)

∥
∥p1− p2

∥
∥2

= t(1− t)(1− t+ t− 1)
∥
∥p1− p2

∥
∥2 = 0.

(2.8)

Thus p = T(t)p, for all t > 0, that is, p ∈ F.
Secondly, we show that {xn} is bounded. Since F is a nonempty closed convex subset

of C, there exists a unique element z0 ∈ F such that z0 = PF(x0). From xn+1 = PCn∩Qn(x0),
we have

∥
∥xn+1− x0

∥
∥≤ ∥∥z− x0

∥
∥ ∀z ∈ Cn∩Qn. (2.9)

It follows from Lemma 2.1 that F ⊂ Cn∩Qn for every n∈N∪{0}, together with z0 ∈
F(T), we have

∥
∥xn+1− x0

∥
∥≤ ∥∥z0− x0

∥
∥ ∀n∈N∪{0}. (2.10)

This implies that {xn} is bounded, so {T(t)xn} is also bounded, and moreover so is
{yn} since ‖yn‖ ≤ αn‖xn‖+ (1−αn)‖T(t)xn‖.

Thirdly, we show that ‖xn+1− xn‖→ 0 as n→∞. SinceQn = {z ∈ C; 〈xn− z,x0− xn〉 ≥
0}, xn = PQn(x0). As xn+1 ∈ Cn∩Qn ⊂Qn, we obtain

∥
∥xn+1− x0

∥
∥≥ ∥∥xn− x0

∥
∥, ∀z ∈ Cn∩Qn. (2.11)
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Therefore the sequence {‖xn− x0‖} is bounded and nondecreasing. So

lim
n→∞

∥
∥xn− x0

∥
∥ exists. (2.12)

On the other hand, from xn+1 ∈Qn, we get 〈xn− xn+1,x0− xn〉 ≥ 0, and hence

∥
∥xn− xn+1

∥
∥2 = ∥∥(xn− x0

)− (xn+1− x0
)∥∥2

= ∥∥xn− x0
∥
∥2− 2

〈
xn− x0,xn+1− x0

〉
+
∥
∥xn+1− x0

∥
∥2

= ∥∥xn− x0
∥
∥2

+
∥
∥xn+1− x0

∥
∥2

− 2
〈
xn− x0,xn+1− xn + xn− x0

〉

= ∥∥xn+1− x0
∥
∥2−∥∥xn− x0

∥
∥2− 2

〈
xn− xn+1,x0− xn

〉

≤ ∥∥xn+1− x0
∥
∥2−∥∥xn− x0

∥
∥2 −→ 0 (n−→∞).

(2.13)

So

lim
n→∞

∥
∥xn+1− xn

∥
∥= 0. (2.14)

This proof is completed. �

Theorem 2.3. Let C be a closed convex subset of a Hilbert space H . Let {T(t) : t ∈ R+}
be a nonexpansive semigroup on C such that F 
= ∅, and the sequence {xn} generated by
(1.7), where αn ∈ [0,a] for some a ∈ [0,1), and tn ≥ 0 limn→∞ tn = 0. then the sequence
{xn} converges strongly to PFx0.

Proof. It follows from xn+1 ∈ Cn that

∥
∥T
(
tn
)
xn− xn

∥
∥= 1

1−αn

∥
∥yn− xn

∥
∥

≤ 1
1−αn

(∥∥yn− xn+1
∥
∥+

∥
∥xn+1− xn

∥
∥)

≤ 2
1−αn

∥
∥xn+1− xn

∥
∥

(2.15)

for every n∈N∪{0}. By Lemma 2.2, we get ‖T(tn)xn− xn‖→ 0.
We claim that {xn} is relatively sequentially compact. Indeed, there exists a weakly

convergence subsequence {xnj} ⊆ {xn} by reflexivity of H and boundedness of the se-
quence {xn}, now we suppose xnj ⇀ x ∈ C( j →∞). Now we show that x ∈ F. Put xj = xnj ,
βj = αnj , and s j = tnj for j ∈N, let s j ≥ 0 be such that

s j −→ 0,

∥
∥T
(
s j
)
xj − xj

∥
∥

s j
−→ 0, j −→∞. (2.16)
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Fix t > 0, from

∥
∥xj −T(t)x

∥
∥≤

[t/s j]−1∑

k=0

∥
∥T
(
(k+ 1)s j

)
xj −T

(
ksj
)
xj
∥
∥

+
∥
∥T
([

t

s j

]
s j

)
xj −T

([
t

s j

]
s j

)
x
∥
∥+

∥
∥T
([
t/s j
]
s j
)
x−T(t)x

∥
∥

≤
[
t

s j

]∥
∥T
(
s j
)
xj − xj

∥
∥+

∥
∥xj − x

∥
∥+

∥
∥
∥
∥T
(
t−
[
t

s j

]
s j

)
x− x

∥
∥
∥
∥

≤ t

∥
∥T
(
s j
)
xj − xj

∥
∥

s j
+
∥
∥xj − x

∥
∥+ max

{∥∥T(s)x− x
∥
∥ : 0≤ s≤ s j

}
.

(2.17)

For all j ∈N∪{0}, as every Hilbert space satisfies Opial’s condition, then we have

limsup
j→∞

∥
∥xj −T(t)x

∥
∥≤ limsup

j→∞

∥
∥xj − x

∥
∥. (2.18)

This implies that T(t)x = x. Therefore,

x ∈ F. (2.19)

If z0 = PF(x0), it follows from (2.10), (2.19), and the lower semicontinuity of the norm
that

∥
∥x0− z0

∥
∥≤ ∥∥x0− x

∥
∥≤ liminf

j→∞
∥
∥x0− xnj

∥
∥≤ limsup

j→∞

∥
∥x0− xnj

∥
∥≤ ∥∥x0− z0

∥
∥. (2.20)

Thus, we obtain

lim
j→∞

∥
∥xnj − x0

∥
∥= ∥∥x0− x

∥
∥= ∥∥x0− z0

∥
∥. (2.21)

This implies that

xnj −→ x = z0. (2.22)

This shows that {xn} is relatively sequentially compact. Therefore, we have xn→ z0.
The proof is completed. �
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