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can be extended to arbitrary Banach spaces without the strong monotonicity assumption
imposed on the hybrid operator.
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1. Introduction

Let E be a real Banach space. A mapping T : E→E is said to be L-Lipschitzian if there exists
L > 0 such that

∥
∥Tx−Ty

∥
∥≤ L‖x− y‖, ∀x, y ∈ E. (1.1)

T is said to be nonexpansive if L= 1 in (1.1).
Several authors have studied various methods for the iterative approximation of fixed

points of nonexpansive mappings. Recently, Wang [1] studied the following iteration
method in Hilbert spaces.

The hybrid iteration method. LetH be a Hilbert space,T : H→H a nonexpansive mapping
with F(T)= {x ∈H : Tx = x}�=∅, and F : H→H an L-Lipschitzian mapping which is also
η-strongly monotone, where T is η-strongly monotone if there exists η > 0 such that

〈

Tx−Ty,x− y
〉≥ η‖x− y‖2, ∀x, y ∈H. (1.2)
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Let {αn}∞n=1 and {λn}∞n=1 be real sequences in [0,1), and μ > 0, then the sequence {xn}∞n=1

is generated from an arbitrary x1 ∈H by

xn+1 = αnxn +
(

1−αn
)

Tλn+1xn, n≥ 1, (1.3)

where Tλn+1xn := Txn− λn+1μF(Txn), μ > 0. Wang’s work was motivated by earlier results
of Xu and Kim [2] and Yamada [3], in addition to several other related results. Using this
iteration method, Wang proved the following main results.

Lemma 1.1 (see [1, page 3]). Let H be a Hilbert space, T : H→H a nonexpansive map-
ping with F(T) = {x ∈ H : Tx = x} �=∅, and F : H→H an η-strongly monotone and L-
Lipschitzian mapping. Let {xn}∞n=1 be the sequence generated from an arbitrary x1 ∈H by

xn+1 = αnxn +
(

1−αn
)

Tλn+1xn, n≥ 1, (1.4)

where Tλn+1xn := Txn− λn+1μF(Txn), μ > 0, and let {αn}∞n=1 and {λn}∞n=1 be real sequences
in [0,1) satisfying the following conditions:

(i) 0 < α≤ αn ≤ β < 1, for some α,β ∈ (0,1),
(ii)

∑∞
n=1λn <∞,

(iii) 0 < μ < 2η/L2.
Then,

(a) limn→∞‖xn− x∗‖ exists for each x∗ ∈ F(T),
(b) limn→∞‖xn−Txn‖ = 0.

Theorem 1.2 (see [1, page 5]). Let H , T , F(T), F,{Tλn+1}∞n=1,{xn}∞n=1,{αn}∞n=1,{λn}∞n=1,
μ,α, and β be as in Lemma 1.1. Let {xn}∞n=1 be the sequence generated from an arbitrary
x1 ∈H by

xn+1 = αnxn +
(

1−αn
)

Tλn+1xn, n≥ 1. (1.5)

Then,
(a) {xn}∞n=1 converges weakly to a fixed point of T ,
(b) {xn}∞n=1 converges strongly to a fixed point of T if and only if lim inf n→∞d(xn,F(T))

= 0, where d(x,F(T)) := inf {‖x− p‖ : p ∈ F(T)}.
It is our purpose in this paper to extend Lemma 1.1 and Theorem 1.2 from Hilbert

spaces to arbitrary Banach spaces. Our results are much more general and applicable
than the results of Wang [1] because the strong monotonicity condition imposed on F by
Wang is not required in our results.

2. Preliminaries

In the sequel, we will need what follows.
A Banach space E is said to satisfy Opial’s condition (see, e.g., [4]) if for each sequence

{xn}∞n=1 in E which converges weakly to a point x ∈ E, we have

liminf
n→∞

∥
∥xn− x

∥
∥ < liminf

n→∞
∥
∥xn− y

∥
∥, ∀y ∈ E. (2.1)
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Let E be a Banach space. A mappingT with domainD(T) and rangeR(T) in E is said to
be demiclosed at a point p ∈D(T) if, whenever, {xn}∞n=1 is a sequence in E which converges
weakly to a point x ∈ E and {Txn}∞n=1 converges strongly to p, then Tx = p. Furthermore,
T is said to be demicompact if, whenever, {xn}∞n=1 is a bounded sequence in D(T) such
that {xn−Txn}∞n=1 converges strongly, then {xn}∞n=1 has a subsequence which converges
strongly. T is said to satisfy condition (A) if F(T) �=∅ and there exists a nondecreasing
function f : [0,∞)→[0,∞) with f (0) = 0 and f (t) > 0 for all t ∈ (0,∞) such that ‖x−
Tx‖ ≥ f (d(x,F(T))) for all x ∈D(T), where d(x,F(T)) := inf {‖x− p‖ : p ∈ F(T)}.
Lemma 2.1 (see [5]). Let E be a reflexive Banach space satisfying Opial’s condition and let
K be a nonempty closed convex subset of E. Let T : K→E be a nonexpansive mapping. Then,
(I −T) is demiclosed on K , where I is the identity mapping.

Lemma 2.2 (see [6, page 1184], [7]). Let {an}∞n=1, {bn}∞n=1, and {δn}∞n=1 be sequences of
nonnegative real numbers satisfying the inequality

an+1 ≤
(

1 + δn
)

an + bn, n≥ 1. (2.2)

If
∑∞

n=1δn <∞ and
∑∞

n=1bn <∞, then limn→∞an exists. In particular, if {an}∞n=1 has a sub-
sequence which converges strongly to zero, then limn→∞an = 0.

Lemma 2.3 (see [8, page 770]). Let E be an arbitrary normed space and let {tn}∞n=1 be a real
sequence satisfying the following conditions:

(i) 0≤ tn ≤ t < 1 for all n≥ 1 and for some t ∈ (0,1),
(ii)

∑∞
n=1tn =∞.

Let {un}∞n=1 and {vn}∞n=1 be two sequences in E such that
(iii) un+1 = (1− tn)un + tnvn, n≥ 1,
(iv) limn→∞‖un‖ = d for some d ∈ [0,∞),
(v) lim supn→∞‖vn‖ ≤ d,

(vi) {∑n
j=1t jv j}∞n=1

is bounded.
Then, d = 0.

3. Main results

Theorem 3.1. Let E be an arbitrary real Banach space, T : E→E a nonexpansive mapping
with F(T) �=∅, and F : E→E an L-Lipschitzian mapping. Let {xn}∞n=1 be the sequence gen-
erated from an arbitrary x1 ∈ E by

xn+1 = αnxn +
(

1−αn
)

Tλn+1xn, n≥ 1, (3.1)

where Tλn+1xn := Txn− λn+1μF(Txn), μ > 0, and {αn}∞n=1 and {λn}∞n=2 are real sequences in
[0,1) satisfying the following conditions:

(i) 0 < α≤ αn < 1 for all n≥ 1 and for some α∈ (0,1),
(ii)

∑∞
n=1(1−αn)=∞,

(iii)
∑∞

n=2λn <∞.
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Then,
(a) limn→∞‖xn− x∗‖ exists for each x∗ ∈ F(T),
(b) limn→∞‖xn−Txn‖ = 0,
(c) {xn}∞n=1 converges strongly to a fixed point of T if and only if lim inf n→∞d(xn,F(T))

= 0.

Proof. Let x∗ ∈ F(T) be arbitrary, then,

∥
∥xn+1− x∗

∥
∥= ∥∥αn

(

xn− x∗
)

+
(

1−αn
)(

Txn− x∗
)− (1−αn

)

λn+1μF
(

Txn
)∥
∥

≤ ∥∥αn
(

xn− x∗
)

+
(

1−αn
)(

Txn− x∗
)∥
∥+

(

1−αn
)

λn+1μ
∥
∥F
(

Txn
)∥
∥

≤ αn
∥
∥xn− x∗

∥
∥+

(

1−αn
)∥
∥Txn− x∗

∥
∥+

(

1−αn
)

λn+1μ
∥
∥F
(

Txn
)−F

(

x∗
)∥
∥

+
(

1−αn
)

λn+1μ
∥
∥F
(

x∗
)∥
∥

≤ ∥∥xn− x∗
∥
∥+

(

1−αn
)

λn+1μL
∥
∥xn− x∗

∥
∥+

(

1−αn
)

λn+1μ
∥
∥F
(

x∗
)∥
∥

= [1 + δn
]∥
∥xn− x∗

∥
∥+ σn,

(3.2)

where δn = (1−αn)λn+1μL and σn = (1−αn)λn+1μ‖F(x∗)‖.
Since

∑∞
n=1δn <∞ and

∑∞
n=1σn <∞, it follows from Lemma 2.2 that limn→∞‖xn− x∗‖

exists. This completes the proof of (a).
Since {‖xn− x∗‖}∞n=1 is bounded, there exists M > 0 such that

∥
∥xn− x∗

∥
∥≤M, ∀n≥ 1. (3.3)

Observe that

∥
∥xn+1−Txn+1

∥
∥= ∥∥αnxn +

(

1−αn
)

Tλn+1xn−Txn+1
∥
∥

≤ ∥∥αn
(

xn−Txn+1
)

+
(

1−αn
)(

Txn−Txn+1
)∥
∥

+
(

1−αn
)

λn+1μ
∥
∥F
(

Txn
)∥
∥

≤ αn
∥
∥
(

xn−Txn+1
)∥
∥+

(

1−αn
)∥
∥Txn−Txn+1

∥
∥

+
(

1−αn
)

λn+1μ
∥
∥F
(

Txn
)∥
∥

≤ αn
∥
∥xn− xn+1

∥
∥+αn

∥
∥xn+1−Txn+1

∥
∥+

(

1−αn
)∥
∥xn− xn+1

∥
∥

+
(

1−αn
)

λn+1μ
∥
∥F
(

Txn
)∥
∥.

(3.4)

Thus,

∥
∥xn+1−Txn+1

∥
∥≤ 1

1−αn

∥
∥xn− xn+1

∥
∥+ λn+1μ

∥
∥F
(

Txn
)∥
∥

≤ ∥∥xn−Txn
∥
∥+ 2λn+1μ

∥
∥F
(

Txn
)∥
∥.

(3.5)

It follows from (3.3) that

∥
∥F
(

Txn
)∥
∥≤ L

∥
∥xn− x∗

∥
∥+

∥
∥F
(

x∗
)∥
∥≤ LM +

∥
∥F
(

x∗
)∥
∥≤D (3.6)
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for all n≥ 1 and for some D > 0. Using (3.6) in (3.5), we obtain

∥
∥xn+1−Txn+1

∥
∥≤ ∥∥xn−Txn

∥
∥+ 2λn+1μD =

∥
∥xn−Txn

∥
∥+ γn, (3.7)

where γn = 2λn+1μD. Since
∑∞

n=1γn <∞, it follows from Lemma 2.2 that limn→∞‖xn −
Txn‖ exists. Let limn→∞‖xn−Txn‖ = d, and set un = xn−Txn so that

un+1 =
(

1− tn
)

un + tnvn, (3.8)

where tn = 1− αn and vn = (1/(1− αn))(Txn −Txn+1)− λn+1μF(Txn). Observe that 0 <
tn ≤ 1−α= t ∈ (0,1) and

∑∞
n=1tn =∞. Furthermore,

∥
∥vn
∥
∥≤ 1

1−αn

∥
∥Txn−Txn+1

∥
∥+ λn+1μ

∥
∥F
(

Txn
)∥
∥

≤ 1
1−αn

∥
∥xn− xn+1

∥
∥+ λn+1μ

∥
∥F
(

Txn
)∥
∥

≤ ∥∥xn−Txn
∥
∥+ 2λn+1μ

∥
∥F
(

Txn
)∥
∥

≤ ∥∥xn−Txn
∥
∥+ 2λn+1μD.

(3.9)

Thus, lim supn→∞‖vn‖ ≤ d. Also,

∥
∥
∥
∥
∥

n
∑

j=1

t jv j

∥
∥
∥
∥
∥
=
∥
∥
∥
∥
∥

n
∑

j=1

(

1−αj
)

[

1
(

1−αj
)
(

Txj −Txj+1
)− λj+1μF

(

Txj
)

]∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

n
∑

j=1

(

Txj −Txj+1
)

∥
∥
∥
∥
∥

+
n
∑

j=1

(

1−αj
)

λj+1μ
∥
∥F
(

Txj
)∥
∥

<
∥
∥Tx1−Txn+1

∥
∥+μD

n
∑

j=1

λj+1

≤ ∥∥x1− xn+1
∥
∥+μD

n
∑

j=1

λj+1

≤ ∥∥x1− x∗
∥
∥+

∥
∥xn+1− x∗

∥
∥+μD

∞
∑

j=1

λj+1 ≤ K

(3.10)

for all n≥ 1 and for some K > 0. Hence, {∑n
j=1t jv j}∞n=1

is bounded. It now follows from
Lemma 2.3 that limn→∞‖vn‖ = limn→∞‖xn−Txn‖ = 0. This completes the proof of (b).

From (3.2), we obtain

∥
∥xn+1− x∗

∥
∥≤ [1 + δn

]∥
∥xn− x∗

∥
∥+ σn ≤

∥
∥xn− x∗

∥
∥+Mδn + σn =

∥
∥xn− x∗

∥
∥+βn,

(3.11)

where βn =Mδn + σn. Hence, d(xn+1,F(T))≤ d(xn,F(T)) +βn. Since
∑∞

n=1βn <∞, it fol-
lows from Lemma 2.2 that limn→∞d(xn,F(T)) exists.
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If {xn}∞n=1 converges strongly to a fixed point p of T , then limn→∞‖xn− p‖ = 0. Since

0≤ d
(

xn,F(T)
)≤ ∥∥xn− p

∥
∥, (3.12)

we have lim inf n→∞d(xn,F(T))= 0.
Conversely, suppose lim inf n→∞d(xn,F(T))= 0, then we have limn→∞d(xn,F(T))= 0.

Thus for arbitrary ε > 0, there exists a positive integer N1 such that d(xn,F(T)) < ε/4 for
all n≥N1. Furthermore,

∑∞
n=1βn <∞ implies that there exists a positive integer N2 such

that
∑∞

j=nβ j < ε/4 for all n≥N2. Choose N =max{N1,N2}, then d(xN ,F(T)) < ε/4 and
∑∞

j=Nβj < ε/4. It follows from (3.11) that for all n,m≥N and for all p ∈ F(T), we have

∥
∥xn− xm

∥
∥≤ ∥∥xn− p

∥
∥+

∥
∥xm− p

∥
∥

≤ ∥∥xN − p
∥
∥+

n
∑

j=N+1

βj +
∥
∥xN − p

∥
∥+

m
∑

j=N+1

βj

≤ 2
∥
∥xN − p

∥
∥+ 2

∞
∑

j=N
βj .

(3.13)

Taking infimum over all p ∈ F(T), we obtain

∥
∥xn− xm

∥
∥≤ 2d

(

xN ,F(T)
)

+ 2
∞
∑

j=N
βj < ε, ∀n,m≥N. (3.14)

Thus, {xn}∞n=1 is Cauchy. Suppose limn→∞xn = u, then since limn→∞‖xn −Txn‖ = 0, we
have u∈ F(T). This completes the proof of (c). �

Theorem 3.2. Let E be a real reflexive Banach space satisfying Opial’s condition, T : E→E a
nonexpansive mapping with F(T) �=∅, and F : E→E an L-Lipschitzian mapping. Let {xn}∞n=1

be the sequence generated from an arbitrary x1 ∈H by

xn+1 = αnxn +
(

1−αn
)

Tλn+1xn, n≥ 1, (3.15)

where Tλn+1xn := Txn− λn+1μF(Txn), μ > 0, and {αn}∞n=1 and {λn}∞n=2 are real sequences in
[0,1) satisfying the following conditions:

(i) 0 < α≤ αn < 1 for all n≥ 1 and for some α∈ (0,1),
(ii)

∑∞
n=1(1−αn)=∞,

(iii)
∑∞

n=2λn <∞.
Then, {xn}∞n=1 converges weakly to a fixed point of T .

Proof. From Lemma 2.1, (I −T) is demiclosed at zero, and since limn→∞‖xn−Txn‖ = 0
and E satisfies Opial’s condition, it follows from standard argument that {xn}∞n=1 con-
verges weakly to a fixed point of T . �

Remark 3.3. It follows from Lemma 2.2 and Theorem 3.1 that under the hypothesis of
Theorem 3.1, {xn}∞n=1 converges strongly to a fixed point p of T if and only if {xn}∞n=1

has a subsequence {xnj}∞j=1
which converges strongly to p. Thus, under the hypothesis
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of Theorem 3.1, if T is in addition completely continuous or demicompact, then {xn}∞n=1

converges strongly to a fixed point of T .
Furthermore, if T satisfies condition (A), then lim inf n→∞d(xn,F(T)) = 0; so under

the conditions of Theorem 3.1, if T satisfies condition (A), then {xn}∞n=1 converges
strongly to a fixed point of T .

Remark 3.4. Theorems 3.1 and 3.2 and Remark 3.3 extend the results of [1] from Hilbert
spaces to much more general Banach spaces as considered here. Furthermore, the strong
monotonicity condition imposed on F in [1] is not required in our results.

Prototypes of our real sequences {αn}∞n=1 and {λn}∞n=1 are αn = n/(n + 1),n ≥ 1 and
λn = 1/(n+ 1)2,n≥ 1.
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