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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . Let
h : C×C→R be an equilibrium bifunction, that is, h(u,u)= 0 for every u∈ C. Then one
can define the equilibrium problem that is to find an element u∈ C such that

EP(h) : h(u,v)≥ 0 ∀v ∈ C. (1.1)

Denote the set of solutions of EP(h) by SEP(h). This problem contains fixed point
problems, optimization problems, variational inequality problems, and Nash equilibrium
problems as special cases, see [1]. Some methods have been proposed to solve the equi-
librium problem, please consult [2–4].

Recently, Combettes and Hirstoaga [2] introduced an iterative scheme of finding the
best approximation to the initial data when SEP(h) �=∅ and proved a strong convergence
theorem. Motivated by the idea of Combettes and Hirstoaga, very recently, Takahashi and
Takahashi [4] introduced a new iterative scheme by the viscosity approximation method
for finding a common element of the set of solutions of an equilibrium problem and the
set of fixed points of a nonexpansive mapping in a Hilbert space. Their results extend and
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improve the corresponding results announced by Combettes and Hirstoaga [2], Moudafi
[5], Wittmann [6], and Tada and Takahashi [7].

In this paper, motivated and inspired by Combettes and Hirstoaga [2] and Takahashi
and Takahashi [4], we introduce an iterative scheme for finding a common element of the
set of solutions of EP(h) and the set of fixed points of infinite nonexpansive mappings in
a Hilbert space. We obtain a strong convergence theorem which improves and extends
the corresponding results of [2, 4].

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·,·〉 and norm ‖·‖. Let C be a nonempty
closed convex subset of H . Then for any x ∈H , there exists a unique nearest point in C,
denoted by PC(x), such that ‖x−PC(x)‖ ≤ ‖x− y‖ for all y ∈ C. Such a PC is called the
metric projection of H onto C. We know that PC is nonexpansive. Further, for x ∈H and
x∗ ∈ C,

x∗ = PC(x)⇐⇒ 〈x− x∗,x∗ − y
〉≥ 0 ∀y ∈ C. (2.1)

Recall that a mapping T : C→H is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for
all x, y ∈ C. Denote the set of fixed points of T by F(T). It is well known that if C is a
bounded closed convex and T : C→C is nonexpansive, then F(T) �=∅; see, for instance,
[8]. We call a mapping f : H→H contractive if there exists a constant α∈ (0,1) such that
‖ f (x)− f (y)‖ ≤ α‖x− y‖ for all x, y ∈H .

For an equilibrium bifunction h : C ×C → R, we call h satisfying condition (A) if h
satisfies the following three conditions:

(i) h is monotone, that is, h(x, y) +h(y,x)≤ 0 for all x, y ∈ C;
(ii) for each x, y, z ∈ C, limt↓0h(tz+ (1− t)x, y)≤ h(x, y);

(iii) for each x ∈ C, y �→ h(x, y) is convex and lower semicontinuous.
If an equilibrium bifunction h : C×C→R satisfies condition (A), then we have the fol-
lowing two important results. You can find the first lemma in [1] and the second one in
[2].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let h be an equilibrium
bifunction of C×C into R, satisfying condition (A). Let r > 0 and x ∈H . Then there exists
y ∈ C such that

h(y,z) +
1
r
〈z− y, y− x〉 ≥ 0 ∀z ∈ C. (2.2)

Lemma 2.2. Assume that h satisfies the same assumptions as Lemma 2.1. For r > 0 and
x ∈H , define a mapping Sr : H→C as follows:

Sr(x)=
{
y ∈ C : h(y,z) +

1
r
〈z− y, y− x〉 ≥ 0, ∀z ∈ C

}
(2.3)

for all y ∈H . Then the following holds:
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(1) Sr is single-valued and Sr is firmly nonexpansive, that is, for any x, y ∈H ,

∥
∥Srx− Sr y

∥
∥2 ≤ 〈Srx− Sr y,x− y

〉
; (2.4)

(2) F(Sr)= SEP(h) and SEP(h) is closed and convex.
We also need the following lemmas for proving our main results.

Lemma 2.3 (see [9]). Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0,1] with 0 < liminfn→∞βn ≤ limsupn→∞βn < 1. Suppose xn+1 =
(1− βn)yn + βnxn for all integers n ≥ 0 and limsupn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) ≤ 0.
Then limn→∞‖yn− xn‖ = 0.

Lemma 2.4 (see [10]). Assume {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1− γn)an + δn, where {γn} is a sequence in (0,1) and {δn} is a sequence such that
∑∞

n=1γn =∞ and limsupn→∞δn/γn ≤ 0. Then limn→∞an = 0.

3. Iterative scheme and strong convergence theorems

In this section, we first introduce our iterative scheme. Consequently, we will establish
strong convergence theorems for this iteration scheme. To be more specific, let T1,T2, . . .
be infinite mappings of C into C and let λ1,λ2, . . . be real numbers such that 0≤ λi ≤ 1 for
every i∈N . For any n∈N , define a mapping Wn of C into C as follows:

Un,n+1 = I ,

Un,n = λnTnUn,n+1 +
(
1− λn

)
I ,

Un,n−1 = λn−1Tn−1Un,n +
(
1− λn−1

)
I ,

...

Un,k = λkTkUn,k+1 +
(
1− λk

)
I ,

...

Un,2 = λ2T2Un,3 +
(
1− λ2

)
I ,

Wn =Un,1 = λ1T1Un,2 +
(
1− λ1

)
I.

(3.1)

Such a mapping Wn is called the W-mapping generated by Tn,Tn−1, . . . ,T1 and λn,
λn−1, . . . ,λ1; see [11].

Now we introduce the following iteration scheme: Let f be a contraction of H into it-
self with coefficient α∈ (0,1) and given x0 ∈H arbitrarily. Suppose the sequences {xn}∞n=1
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and {yn}∞n=1 are generated iteratively by

h
(
yn,x

)
+

1
rn

〈
x− yn, yn− xn

〉≥ 0, ∀x ∈ C,

xn+1 = αn f
(
xn
)

+βnxn + γnWnyn,
(3.2)

where {αn}, {βn}, and {γn} are three sequences in (0,1) such that αn + βn + γn = 1, {rn}
is a real sequence in (0,∞), h is an equilibrium bifunction, and Wn is the W-mapping
defined by (3.1).

We have the following crucial conclusions concerning Wn. You can find them in [12,
13]. Now we only need the following similar version in Hilbert spaces.

Lemma 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H . Let T1,
T2, . . . be nonexpansive mappings of C into C such that

⋂∞
i=1F(Ti) is nonempty, and let

λ1,λ2, . . . be real numbers such that 0 < λi ≤ b < 1 for any i∈ N . Then for every x ∈ C and
k ∈N , the limit limn→∞Un,kx exists.

Remark 3.2. From Lemma 3.1, we have that if C is bounded, then for all ε > 0, there
exists a common positive integer number N0 such that for n > N0, ‖Un,kx−Uk(x)‖ < ε
for all x ∈ C. Indeed, by the similar argument to Lemma 3.2 in [13], let w ∈⋂∞n=1F(Tn).
Since C is bounded, there exists a constant M > 0 such that ‖x−w‖ ≤M for all x ∈ C.
Fix k ∈ N . Then for all x ∈ C and any n ∈ N with n ≥ k, we have ‖Un+1,kx−Un,kx‖ ≤
2(
∏n+1

i=k λi)‖x−w‖ ≤ 2M(
∏n+1

i=k λi).

Let ε > 0. Then there exists n0 ∈ N with n0 ≥ k such that for all x ∈ C, bn0−k+2 <
ε(1− b)/2M. So for all x ∈ C and every m, n with m> n > n0, we have

∥
∥Um,kx−Un,kx

∥
∥

≤
m−1∑

j=n

∥
∥Uj+1,kx−Uj,kx

∥
∥≤

m−1∑

j=n

{

2

( j+1∏

i=k
λi

)

‖x−w‖
}

≤ 2M
m−1∑

j=n
b j−k+2 ≤ 2Mbn−k+2

1− b
< ε.

(3.3)

Remark 3.3. Using Lemma 3.1, one can define a mapping W of C into C as Wx =
limn→∞Wnx = limn→∞Un,1x for every x ∈ C. Such a W is called the W-mapping gen-
erated by T1,T2, . . . and λ1,λ2, . . .. We observe that if {xn} is a bounded sequence in C,
then we have

lim
n→∞

∥
∥Wxn−Wnxn

∥
∥= 0. (3.4)

Indeed, from Remark 3.1, we have: for any ε > 0, there is n0 such that ‖Wx−Wnx‖ ≤
ε for all x ∈ {xn} and for all n ≥ n0. In particular, ‖Wxn −Wnxn‖ ≤ ε for all n ≥ n0.
Consequently, limn→∞‖Wxn−Wnxn‖ = 0, as claimed.

Throughout this paper, we will assume that 0 < λi ≤ b < 1 for every i∈N .
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Lemma 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H . Let T1,
T2, . . . be nonexpansive mappings of C into C such that

⋂∞
i=1F(Ti) is nonempty, and let

λ1,λ2, . . . be real numbers such that 0 < λi ≤ b < 1 for any i∈N . Then F(W)=⋂∞i=1F(Ti).

Now we state and prove our main results.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H . Let
h : C ×C→R be an equilibrium bifunction satisfying condition (A) and let {Ti}∞i=1 be an
infinite family of nonexpansive mappings of C into C such that

⋂∞
i=1F(Ti)∩SEP(h) �=∅.

Suppose {αn}, {βn}, and {γn} are three sequences in (0,1) such that αn + βn + γn = 1 and
{rn} ⊂ (0,∞). Suppose the following conditions are satisfied:

(i) limn→∞αn = 0 and
∑∞

n=0αn =∞;
(ii) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1;

(iii) liminfn→∞rn > 0 and limn→∞(rn+1− rn)= 0.
Let f be a contraction of H into itself and given x0 ∈H arbitrarily. Then the sequences {xn}
and {yn} generated iteratively by (3.2) converge strongly to x∗ ∈⋂∞i=1F(Ti)∩ SEP(h), where
x∗ = P⋂∞

i=1F(Ti)∩SEP(h) f (x∗).

Proof. Let Q= P⋂∞
i=1 F(Ti)∩SEP(h). Note that f is a contraction mapping with coefficient α∈

(0,1). Then ‖Q f (x)−Q f (y)‖ ≤ ‖ f (x)− f (y)‖ ≤ α‖x− y‖ for all x, y ∈ H . Therefore,
Q f is a contraction of H into itself, which implies that there exists a unique element
x∗ ∈H such that x∗ =Q f (x∗). At the same time, we note that x∗ ∈ C.

Let p ∈⋂∞i=1F(Ti)∩SEP(h). From the definition of Sr , we note that yn = Srnxn. It fol-
lows that ‖yn − p‖ = ‖Srnxn − Srn p‖ ≤ ‖xn − p‖. Next, we prove that {xn} and {yn} are
bounded. From (3.1) and (3.2), we obtain

∥
∥xn+1− p

∥
∥≤ αn

∥
∥ f
(
xn
)− p

∥
∥+βn

∥
∥xn− p

∥
∥+ γn

∥
∥Wnyn− p

∥
∥

≤ αn
(∥∥ f

(
xn
)− f (p)

∥
∥+

∥
∥ f (p)− p

∥
∥)+βn

∥
∥xn− p

∥
∥+ γn

∥
∥yn− p

∥
∥

≤ αn
(
α
∥
∥xn− p

∥
∥+

∥
∥ f (p)− p

∥
∥)+

(
1−αn

)∥∥xn− p
∥
∥

≤max
{∥
∥x0− p

∥
∥,

1
1−α

∥
∥ f (p)− p

∥
∥
}
.

(3.5)

Therefore, {xn} is bounded. We also obtain that {yn}, {Wnxn}, and { f (xn)} are all
bounded. We shall use M to denote the possible different constants appearing in the fol-
lowing reasoning.

Setting xn+1 = βnxn + (1−βn)zn for all n≥ 0, we have that

zn+1− zn = xn+2−βn+1xn+1

1−βn+1
− xn+1−βnxn

1−βn

= αn+1

1−βn+1

(
f
(
xn+1

)− f
(
xn
))

+
(

αn+1

1−βn+1
− αn

1−βn

)
f
(
xn
)

+
γn+1

1−βn+1

(
Wn+1yn+1−Wnyn

)
+
(

γn+1

1−βn+1
− γn

1−βn

)
Wnyn.

(3.6)
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So we have

∥
∥zn+1− zn

∥
∥≤ ααn+1

1−βn+1

∥
∥xn+1− xn

∥
∥

+
∣
∣
∣
∣

αn+1

1−βn+1
− αn

1−βn

∣
∣
∣
∣
(∥∥ f

(
xn
)∥∥+

∥
∥Wnyn

∥
∥)

+
γn+1

1−βn+1

∥
∥Wn+1yn+1−Wnyn

∥
∥.

(3.7)

Since Ti and Un,i are nonexpansive from (3.1), we have

∥
∥Wn+1yn−Wnyn

∥
∥= ∥∥λ1T1Un+1,2yn− λ1T1Un,2yn

∥
∥

≤ λ1
∥
∥Un+1,2yn−Un,2yn

∥
∥

≤ λ1λ2
∥
∥Un+1,3yn−Un,3yn

∥
∥

≤ ···
≤ λ1λ2 ···λn

∥
∥Un+1,n+1yn−Un,n+1yn

∥
∥

≤M
n∏

i=1

λi,

(3.8)

and hence

∥
∥Wn+1yn+1−Wnyn

∥
∥≤ ∥∥Wn+1yn+1−Wn+1yn

∥
∥+

∥
∥Wn+1yn−Wnyn

∥
∥

≤ ∥∥yn+1− yn
∥
∥+M

n∏

i=1

λi.
(3.9)

Substituting (3.9) into (3.7), we have

∥
∥zn+1− zn

∥
∥≤ ααn+1

1−βn+1

∥
∥xn+1− xn

∥
∥+

∣
∣
∣
∣

αn+1

1−βn+1
− αn

1−βn

∣
∣
∣
∣
(∥∥ f

(
xn
)∥∥+

∥
∥Wnyn

∥
∥)

+
γn+1

1−βn+1

∥
∥yn+1− yn

∥
∥+

Mγn+1

1−βn+1

n∏

i=1

λi.

(3.10)

On the other hand, from yn = Srnxn and yn+1 = Srn+1xn+1, we have

h
(
yn,x

)
+

1
rn

〈
x− yn, yn− xn

〉≥ 0 ∀x ∈ C, (3.11)

h
(
yn+1,x

)
+

1
rn+1

〈
x− yn+1, yn+1− xn+1

〉≥ 0 ∀x ∈ C. (3.12)
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Putting x = yn+1 in (3.11) and x = yn in (3.12), we have

h
(
yn, yn+1

)
+

1
rn

〈
yn+1− yn, yn− xn

〉≥ 0, (3.13)

h
(
yn+1, yn

)
+

1
rn+1

〈
yn− yn+1, yn+1− xn+1

〉≥ 0. (3.14)

From the monotonicity of h, we have

h
(
yn, yn+1

)
+h
(
yn+1, yn

)≤ 0. (3.15)

So from (3.13), we can conclude that
〈
yn+1− yn,

yn− xn
rn

− yn+1− xn+1

rn+1

�
≥ 0, (3.16)

and hence
〈
yn+1− yn, yn− yn+1 + yn+1− xn− rn

rn+1

(
yn+1− xn+1

)
�
≥ 0. (3.17)

Since liminfn→∞rn > 0, without loss of generality, we may assume that there exists a real
number τ such that rn > τ > 0 for all n∈N . Then we have

∥
∥yn+1− yn

∥
∥2 ≤

〈
yn+1− yn,xn+1− xn +

(
1− rn

rn+1

)
(
yn+1− xn+1

)
�

≤ ∥∥yn+1− yn
∥
∥
{∥
∥xn+1− xn

∥
∥+

∣
∣
∣
∣1− rn

rn+1

∣
∣
∣
∣
∥
∥yn+1− xn+1

∥
∥
}

,
(3.18)

and hence

∥
∥yn+1− yn

∥
∥≤ ∥∥xn+1− xn

∥
∥+

M

τ

∣
∣rn+1− rn

∣
∣. (3.19)

Substituting (3.19) into (3.10), we have

∥
∥zn+1− zn

∥
∥≤ ααn+1

1−βn+1

∥
∥xn+1− xn

∥
∥+

∣
∣
∣
∣

αn+1

1−βn+1
− αn

1−βn

∣
∣
∣
∣
(∥∥ f

(
xn
)∥∥+

∥
∥Wnyn

∥
∥)

+
γn+1

1−βn+1

∥
∥xn+1− xn

∥
∥+

γn+1

1−βn+1
× M

τ

∣
∣rn+1− rn

∣
∣+

Mγn+1

1−βn+1

n∏

i=1

λi

≤ ∥∥xn+1− xn
∥
∥+

∣
∣
∣
∣

αn+1

1−βn+1
− αn

1−βn

∣
∣
∣
∣
(∥∥ f

(
xn
)

+
∥
∥Wnyn

∥
∥)

+
γn+1

1−βn+1
× M

τ

∣
∣rn+1− rn

∣
∣+

Mγn+1

1−βn+1

n∏

i=1

λi.

(3.20)

This together with αn→0 and rn+1 − rn→0 imply that limsupn→∞(‖zn+1 − zn‖− ‖xn+1 −
xn‖)≤ 0. Hence by Lemma 2.3, we obtain ‖zn− xn‖→0 as n→∞. Consequently,

lim
n→∞

∥
∥xn+1− xn

∥
∥= lim

n→∞
(
1−βn

)∥∥zn− xn
∥
∥= 0. (3.21)
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From (3.19) and limn→∞(rn+1 − rn) = 0, we have limn→∞‖yn+1 − yn‖ = 0. Since xn+1 =
αn f (xn) +βnxn + γnWnyn, we have

∥
∥xn−Wnyn

∥
∥≤ ∥∥xn− xn+1

∥
∥+

∥
∥xn+1−Wnyn

∥
∥

≤ ∥∥xn− xn+1
∥
∥+αn

∥
∥ f
(
xn
)−Wnyn

∥
∥+βn

∥
∥xn−Wnyn

∥
∥,

(3.22)

that is,

∥
∥xn−Wnyn

∥
∥≤ 1

1−βn

∥
∥xn− xn+1

∥
∥+

αn
1−βn

∥
∥ f
(
xn
)−Wnyn

∥
∥. (3.23)

Hence we have limn→∞‖xn −Wnyn‖ = 0. For p ∈ ⋂∞i=1F(Ti)∩SEP(h), note that Sr is
firmly nonexpansive. Then we have

∥
∥yn− p

∥
∥2 = ∥∥Srnxn− Srn p

∥
∥2

≤ 〈Srnxn− Srn p,xn− p
〉

= 〈yn− p,xn− p
〉

= 1
2

(∥
∥yn− p

∥
∥2

+
∥
∥xn− p

∥
∥2−∥∥xn− yn

∥
∥2
)

,

(3.24)

and hence
∥
∥yn− p

∥
∥2 ≤ ∥∥xn− p

∥
∥2−∥∥xn− yn

∥
∥2
. (3.25)

Therefore, we have
∥
∥xn+1− p

∥
∥2 ≤ αn

∥
∥ f
(
xn
)− p

∥
∥2

+βn
∥
∥xn− p

∥
∥2

+ γn
∥
∥Wnyn− p

∥
∥2

≤ αn
∥
∥ f
(
xn
)− p

∥
∥2

+βn
∥
∥xn− p

∥
∥2

+ γn
∥
∥yn− p

∥
∥2

≤ αn
∥
∥ f
(
xn
)− p

∥
∥2

+βn
∥
∥xn− p

∥
∥2

+ γn
(∥
∥xn− p

∥
∥2−∥∥xn− yn

∥
∥2
)

≤ αn
∥
∥ f
(
xn
)− p

∥
∥2

+
∥
∥xn− p

∥
∥2− γn

∥
∥xn− yn

∥
∥2
.

(3.26)

Then we have

γn
∥
∥xn− yn

∥
∥2 ≤ αn

∥
∥ f
(
xn
)− p

∥
∥2

+
(∥∥xn− p

∥
∥+

∥
∥xn+1− p

∥
∥)

× (∥∥xn− p
∥
∥−∥∥xn+1− p

∥
∥)

≤ αn
∥
∥ f
(
xn
)− p

∥
∥2

+
∥
∥xn− xn+1

∥
∥(
∥
∥xn− p

∥
∥+

∥
∥xn+1− p

∥
∥).

(3.27)

It is easily seen that liminfn→∞γn > 0. So we have

lim
n→∞

∥
∥xn− yn

∥
∥= 0. (3.28)

From ‖Wnyn − yn‖ ≤ ‖Wnyn − xn‖+ ‖xn − yn‖, we also have ‖Wnyn − yn‖→0. At that
same time, we note that

∥
∥Wyn− yn

∥
∥≤ ∥∥Wyn−Wnyn

∥
∥+

∥
∥Wnyn− yn

∥
∥. (3.29)
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It follows from (3.29) and Remark 3.2 that limn→∞‖Wyn− yn‖ = 0. Next, we show that

limsup
n→∞

〈
f
(
x∗
)− x∗,xn− x∗

〉≤ 0, (3.30)

where x∗ = PF(W)∩SEP(h) f (x∗). First, we can choose a subsequence {ynj} of {yn} such
that

lim
j→∞

〈
f
(
x∗
)− x∗, ynj − x∗

〉= limsup
n→∞

〈
f
(
x∗
)− x∗, yn− x∗

〉
. (3.31)

Since {ynj} is bounded, there exists a subsequence {ynji} of {ynj}, which converges weakly
tow. Without loss of generality, we can assume that ynj→w weakly. From ‖Wyn− yn‖→0,
we obtain Wynj→w weakly. Now we show w ∈ SEP(h).

By yn = Srnxn, we have h(yn,x) + (1/rn)〈x− yn, yn − xn〉 ≥ 0 for all x ∈ C. From the
monotonicity of h, we have (1/rn)〈x− yn, yn− xn〉 ≥ −h(yn,x)≥ h(x, yn), and hence

〈
x− ynj ,

ynj − xnj

rnj

�
≥ h
(
x, ynj

)
. (3.32)

Since (ynj − xnj )/rnj→0 and ynj→w weakly, from the lower semicontinuity of h(x, y) on
the second variable y, we have h(x,w) ≤ 0 for all x ∈ C. For t with 0 < t ≤ 1 and x ∈ C,
let xt = tx + (1− t)w. Since x ∈ C and w ∈ C, we have xt ∈ C, and hence h(xt,w)≤ 0. So
from the convexity of equilibrium bifunction h(x, y) on the second variable y, we have

0= h
(
xt,xt

)≤ th
(
xt,x

)
+ (1− t)h

(
xt,w

)≤ th
(
xt,x

)
. (3.33)

Hence h(xt,x)≥ 0. Therefore, we have h(w,x)≥ 0 for all x ∈ C, and hence w ∈ SEP(h).
We will show w ∈ F(W). Assume w �∈ F(W). Since ynj→w weakly and w �=Ww, from

Opial’s condition, we have

liminf
j→∞

∥
∥ynj −w

∥
∥ < liminf

j→∞
∥
∥ynj −Ww

∥
∥

≤ liminf
j→∞

(∥∥ynj −Wynj

∥
∥+

∥
∥Wynj −Ww

∥
∥)

≤ liminf
j→∞

∥
∥ynj −w

∥
∥.

(3.34)

This is a contradiction. So we get w ∈ F(W) =⋂∞i=1F(Ti). Therefore, w ∈⋂∞i=1F(Ti)∩
SEP(h). Since x∗ = P⋂∞

i=1F(Ti)∩SEP(h) f (x∗), we have

limsup
n→∞

〈
f
(
x∗
)− x∗,xn− x∗

〉= lim
j→∞

〈
f
(
x∗
)− x∗,xnj − x∗

〉

= lim
j→∞

〈
f
(
x∗
)− x∗, ynj − x∗

〉

= 〈 f (x∗)− x∗,w− x∗
〉≤ 0.

(3.35)
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First, we prove that {xn} converges strongly to x∗ ∈⋂∞i=1F(Ti)∩SEP(h). From (3.2),
we have

∥
∥xn+1− x∗

∥
∥2 ≤ ∥∥βn

(
xn− x∗

)
+ γn

(
Wnyn− x∗

)∥∥2
+ 2αn

〈
f
(
xn
)− x∗,xn+1− x∗

〉

≤ {βn
∥
∥xn− x∗

∥
∥+ γn

∥
∥Wnyn− x∗

)∥∥}2
+ 2αn

〈
f
(
x∗
)− x∗,xn+1− x∗

〉

+ 2αn
〈
f
(
xn
)− f

(
x
∗)

,xn+1− x∗
〉

≤ {βn
∥
∥xn− x∗

∥
∥+ γn

∥
∥yn− x∗

∥
∥}2

+ 2ααn
∥
∥xn− x∗

∥
∥
∥
∥xn+1− x∗

∥
∥

+ 2αn
〈
f
(
x∗
)− x∗,xn+1− x∗

〉

≤ (1−αn
)2∥∥xn− x∗

∥
∥2

+ααn
(∥∥xn+1− x∗

∥
∥2

+
∥
∥xn− x∗

∥
∥2)

+ 2αn
〈
f
(
x∗
)− x∗,xn+1− x∗

〉
,

(3.36)

which implies that

∥
∥xn+1− x∗

∥
∥2 ≤

(
1−αn

)2
+ααn

1−ααn

∥
∥xn− x∗

∥
∥2

+
2αn

1−ααn

〈
f
(
x∗
)− x∗,xn+1− x∗

〉

= 1− 2αn +ααn
1−ααn

∥
∥xn− x∗

∥
∥2

+
α2
n

1−ααn

∥
∥xn− x∗

∥
∥2

+
2αn

1−ααn

〈
f
(
x∗
)− x∗,xn+1− x∗

〉

≤
{

1− 2(1−α)αn
1−ααn

}∥
∥xn− x∗

∥
∥2

+
2(1−α)αn

1−ααn

×
{

Mαn
2(1−α)

+
1

1−α

〈
f
(
x∗
)− x∗,xn+1− x∗

〉
}

= (1−ϕn

)∥∥xn− x∗
∥
∥2

+φnϕn,

(3.37)

where ϕn = 2(1−α)αn/(1−ααn) and φn =Mαn/2(1−α) + 1/(1−α)〈 f (x∗)− x∗,xn+1 −
x∗〉. It is easily seen that

∑∞
n=0ϕn =∞ and limsupn→∞φn ≤ 0. Now applying Lemma 2.4

and (3.35) to (3.37), we conclude that xn→x∗ (n→∞). Consequently, from (3.28), we
have yn→x∗ (n→∞). This completes the proof. �

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H . Let
h : C×C→R be an equilibrium bifunction satisfying condition (A) such that SEP(h) �=∅.
Let {αn}, {βn}, and {γn} be three sequences in (0,1) such that αn + βn + γn = 1 and {rn} ⊂
(0,∞) is a real sequence. Suppose the following conditions are satisfied:

(i) limn→∞αn = 0 and
∑∞

n=0αn =∞;
(ii) 0 < liminf n→∞βn ≤ limsupn→∞βn < 1;

(iii) liminf n→∞rn > 0 and limn→∞(rn+1− rn)= 0.
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Let f be a contraction of H into itself and given x0 ∈ H arbitrarily. Let {xn} and {yn} be
sequences generated iteratively by

h
(
yn,x

)
+

1
rn

〈
x− yn, yn− xn

〉≥ 0, ∀x ∈ C,

xn+1 = αn f
(
xn
)

+βnxn + γnyn.
(3.38)

Then the sequences {xn} and {yn} generated by (3.38) converge strongly to x∗ ∈ SEP(h),
where x∗ = PSEP(h) f (x∗).

Proof. Take Tix = x for all i = 1,2, . . . and for all x ∈ C in (3.1). Then Wnx = x for all
x ∈ C. The conclusion follows from Theorem 3.1. This completes the proof. �

Corollary 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Ti}∞i=1 be an infinite family of nonexpansive mappings of C into C such that

⋂∞
i=1F(Ti) �=∅.

Let {αn}, {βn}, and {γn} be three sequences in (0,1) such that αn +βn + γn = 1. Suppose the
following conditions are satisfied:

(i) limn→∞αn = 0 and
∑∞

n=0αn =∞;
(ii) 0 < liminf n→∞βn ≤ limsupn→∞βn < 1.

Let f be a contraction of H into itself and given x0 ∈H arbitrarily. Let {xn} be a sequence
generated iteratively by

xn+1 = αn f
(
xn
)

+βnxn + γnWnPCxn. (3.39)

Then the sequence {xn} converges strongly to x∗ = P⋂∞
i=1F(Ti) f (x∗).

Proof. Set h(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N . Then we have yn = PCxn.
From (3.2), we have

xn+1 = αn f
(
xn
)

+βnxn + γnWnPCxn. (3.40)

Then the conclusion follows from Theorem 3.5. This completes the proof. �
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