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1. Introduction

Let K be a nonempty subset of a Hilbert space �, where K is not necessarily closed and
convex. A family Γ= {T(t); t ≥ 0} of mappings T(t) is called a semigroup on K if

(S1) T(t) is a mapping from K into itself for t ≥ 0,

(S2) T(0)x = x and T(t+ s)x = T(t)T(s)x for x ∈ K and t,s≥ 0,

(S3) for each x ∈ K , T(·)x is strongly measurable and bounded on every bounded
subinterval of [0,∞).

Let Γ be a semigroup on K . Then F = {x ∈ K : T(t)x = x, t ≥ 0} is said to be fixed-
points set of Γ. We state a condition introduced by Miyadera [1]. If, for every bounded
set B ⊂ K , v ∈ K , and s≥ 0, there exists a δs(B,v)≥ 0 with lims→∞ δs(B,v)= 0 such that

∥
∥T(s)u−T(s)v

∥
∥≤ ‖u− v‖+ δs(B,v) (1.1)

for u∈ B, then Γ is said to be an asymptotically nonexpansive semigroup.
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Definition 1.1. A function a(·) : [0,∞)→ K is called almost-orbit of Γ if a(·) : [0,∞)→ K
is strongly measurable and bounded on every bounded subinterval of [0,∞) and if

lim
t→∞

sup
s≥0

∥
∥a(s+ t)−Tk(s)a(t)

∥
∥
p = 0. (1.2)

Using these conditions, we prove that every almost-orbit of Γ is weakly and strongly
convergent to its asymptotic center (see [1]). Xu [2] studied strong asymptotic behavior
of almost-orbits of both of nonexpansive and asymptotically nonexpansive semigroups.
Takahashi [3] generalized the nonlinear ergodic theorems for general semigroups of non-
expansive mappings. Kada and Takahashi [4] proved a strong ergodic theorem for general
semigroups of nonexpansive mappings. Oka [5] proved nonlinear ergodic theorems for
commutative semigroups of asymptotically nonexpansive mappings. All of the above-
mentioned authors studied, except Miyadera’s works, K as a closed and convex subset of
a Hilbert space. Miyadera [1] studied almost convergence of almost-orbits of semigroup
of non-Lipschitzian mappings in Hilbert spaces. Miyadera [1] proved the following the-
orem. If Γ is asymptotically nonexpansive in the weak sense and F is nonempty set, then
the following conditions holds:

(a1) a(·) is weakly almost convergent to its asymptotic center y,
(a2) if y is an element of K and if T(t0) : K → K is continuous for some t0 > 0, then y

is a fixed point of Γ, that is, y belongs to F.
There are some conditions in the discrete case in [6–8]. Miyadera [7, 8] showed that

the condition in [6] could be replaced by a weaker condition introduced in [7, 8].
Miyadera [7, 8] and Wittmann [6] proved nonlinear ergodic theorems where the closed-
ness and convexity of K and the asymptotically nonexpansivity of T were not assumed. In
this paper, in the light of these papers we establish weak ergodic theorem for semigroups
of mappings on K satisfying condition (I) given in the statement of Theorem 3.1. We also
establish strong ergodic theorem for semigroups of mappings on K satisfying condition
(II) given before statement of Theorem 4.1. This paper is organized as follows.

In Section 2, we prove the covering lemmas we need for establishing weakly conver-
gence result. In Section 3, we deal with a(·) almost-orbit weakly almost-convergent to its
asymptotic center with respect to condition (I). In the last section, we investigate strong
convergence using condition (II). We establish that every almost-orbit of Γ is strongly
almost-convergent to its asymptotic center.

2. Lemmas

Let a(·) : [0,∞)→� be a function strongly measurable and bounded on every bounded
subinterval of [0,∞) and let ‖a(t)‖ be convergent as t→∞.

Lemma 2.1 [1]. For r,s, t ≥ 0, the following statements are mutually equivalent:
(i) lims→∞ limt→∞ limr→∞[(a(t+ r),a(t))− (a(s+ r),a(s))]≤ 0;

(ii) lims→∞ limt→∞ limr→∞[‖a(t+ r) + a(t)‖2−‖a(s+ r) + a(s)‖2]≤ 0;
(iii) lims→∞ limt→∞ limr→∞[‖a(s+ r)− a(s)‖2−‖a(t+ r)− a(t)‖2]≤ 0.

If a(·) satisfies the equivalent conditions (i), (ii), and (iii), then a(·) is weakly almost-
convergent to its asymptotic center y.
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Lemma 2.2 [1]. Let a(·) : [0,∞)→� be a function strongly measurable and bounded on
every bounded subinterval of [0,∞) and let ‖a(t)‖ be convergent as t→∞. Then, one has
that the following statements are mutually equivalent:

(i) lims→∞ limt→∞ supr≥0[(a(t+ r),a(t))− (a(s+ r),a(s))]≤ 0;
(ii) lims→∞ limt→∞ supr≥0[‖a(t+ r) + a(t)‖2−‖a(s+ r) + a(s)‖2]≤ 0;

(iii) lims→∞ limt→∞ supr≥0[‖a(s+ r)− a(s)‖2−‖a(t+ r)− a(t)‖2]≤ 0.
‖a(t)‖ is convergent as t →∞. Moreover, if a(·) satisfies the equivalent conditions (i),

(ii), and (iii), then a(·) is strongly almost-convergent to its asymptotic center y.

Remark 2.3. We can take the following conditions instead of (ii) and (iii) in Lemma 2.2,
for A,C > 0,

(ii′) lims→∞ limt→∞ supr≥0[‖a(t+ r) + a(t)‖2−A‖a(s+ r) + a(s)‖2]≤ 0;
(iii′) lims→∞ limt→∞ supr≥0[‖a(s+ r)− a(s)‖2−A‖a(t+ r)− a(t)‖2]≤ 0.

We can obtain

lim
s→∞

lim
t→∞

sup
r≥0

[∥
∥a(t+ r) + a(t)

∥
∥

2−A
∥
∥a(s+ r) + a(s)

∥
∥

2]

≤ lim
s→∞

lim
t→∞

sup
r≥0

[∥
∥a(t+ r) + a(t)

∥
∥

2−∥∥a(s+ r) + a(s)
∥
∥

2]≤ 0,
(2.1)

and

lim
s→∞

lim
t→∞

sup
r≥0

[∥
∥a(s+ r)− a(s)

∥
∥

2−A
∥
∥a(t+ r)− a(t)

∥
∥

2]

≤ lim
s→∞

lim
t→∞

sup
r≥0

[∥
∥a(s+ r)− a(s)

∥
∥

2−∥∥a(t+ r)− a(t)
∥
∥

2]≤ 0.
(2.2)

Moreover, we can write

lim
s→∞

lim
t→∞

sup
r≥0

[∥
∥a(s+ r)− a(s)

∥
∥

2−A
∥
∥a(t+ r)− a(t)

∥
∥

2−C
]≤ 0. (2.3)

Note that Lemma 2.2 holds for this condition.

3. Weak ergodic theorems

Let � be a Hilbert space with inner product (·,·) and ‖ · ‖ norm, and letK be a nonempty
subset of �, where K is not necessarily closed and convex. Let Γ = {T(t); t ≥ 0} be a
semigroup acting on K .

Theorem 3.1. Suppose that for every bounded set B ⊂ K , v ∈ K , u ∈ B and r ≥ 0, there
exists δr(B,v)≥ 0 with limr→∞ δr(B,v)= 0 such that

∥
∥Tk(r)u−Tk(r)v

∥
∥
p

≤ λr‖u− v‖p + c
[

λr‖u‖p−
∥
∥Tk(r)u

∥
∥
p

+ λr‖v‖p−
∥
∥Tk(r)v

∥
∥
p]

+ δr(B,v),
(I)
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where λr , c are nonnegative constants such that limr→∞ λr = 1, and p ≥ 1. If F 
= ∅ or c > 0,
then a(·) is almost weakly convergent to its asymptotic center, which is y.

Proof. Suppose F 
= ∅ and c = 0 for the semigroup Γ = {T(t); t ∈ R+}. Then for u = x
and f ∈ F, we can take B = {x}. If we write u= x and v = f in (I), then we have

∥
∥Tk(r)x−Tk(r) f

∥
∥
p = ∥∥Tk(r)x− f

∥
∥
p ≤ λr‖x− f ‖p + δr(B, f ). (3.1)

Thus, for every x ∈ K , the sequence {Tk(r)x − f + f } = {Tk(r)x} is bounded. Let
a(·) : [0,∞)→ K be almost-orbit of Γ.

From Definition 1.1, we have limt→∞ sups≥0[‖a(t+ s)−Tk(s)a(t)‖p]= 0. There is t0 =
t0(ε) > 0 for ε > 0, t ≥ t0, and s≥ 0 such that ‖a(t+ s)−Tk(s)a(t)‖p < ε.

In particular, for s≥ 0, we have ‖a(s+ t0)−Tt0 (s)a(t0)‖p < ε. If we consider both this
inequality and boundness of sequence {Tk(s)x}, we have

∥
∥a
(

s+ t0
)−Tt0 (s)a

(

t0
)

+Tt0 (s)a
(

t0
)∥
∥
p

< 2p−1[
∥
∥a
(

s+ t0
)−Tt0 (s)a

(

t0
)∥
∥
p

+
∥
∥Tt0 (s)a

(

t0
)∥
∥
p]

< 2p−1ε+ 2p−1
∥
∥Tt0 (s)

∥
∥
p∥
∥a
(

t0
)∥
∥
p
,

(3.2)

then {a(s); s∈R+} is bounded.
If we take in (I), B = {a(t); t ∈R+}, and v = f , then we obtain

∥
∥Tk(r)a(t)−Tk(r) f

∥
∥
p ≤ λr

∥
∥a(t)− f

∥
∥
p
. (3.3)

Thus

∥
∥a(r + t)− f

∥
∥
p ≤ ∥∥a(r + t)−Tk(r)a(t) +Tk(r)a(t)− f

∥
∥
p

≤ 2p−1[
∥
∥a(r + t)−Tk(r)a(t)

∥
∥
p

+
∥
∥Tk(r)a(t)− f

∥
∥
p]

< 2p−1(ε+ λr
∥
∥a(t)− f

∥
∥
p)

(3.4)

(since ‖Tk(r)a(t)−Tk(r) f ‖p ≤ λr‖a(t)− f ‖p).
Taking limit as r →∞, because of limr→∞ λr = 1, for arbitrary ε,

lim
r→∞

∥
∥a(r + t)− f

∥
∥
p
< 2p−1 lim

r→∞
∥
∥a(t)− f

∥
∥
p
. (3.5)

Therefore {‖a(t)− f ‖} is convergent.
Let t > s > 0. We know that sequence {Tk(r); r ∈ R+} is bounded. Moreover, since

sequence {a(s);s ∈ R+} is bounded, {Tk(h)a(s); h ∈ R+} is also bounded. Then we can
take B = {Tk(h)a(s); h∈R+} and a(s)∈ K . Taking u= Tk(h)a(s),v = a(s), and r = t− s,
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for h≥ 0, we have

∥
∥Tk(t− s)Tk(h)a(s)−Tk(t− s)a(s)

∥
∥
p ≤ λt−s

∥
∥Tk(h)a(s)− a(s)

∥
∥
p

+ δt−s
(

B,a(s)
)

.
(3.6)

Consequently,

∥
∥a(t+h)− a(t)

∥
∥
p ≤ ∥∥a(t+h)−Tk(t+h− s)a(s) +Tk(t+h− s)a(s)− a(t)

∥
∥
p

≤ 2p−1[
∥
∥a(t+h)−Tk(t+h− s)a(s)

∥
∥
p

+
∥
∥Tk(t+h− s)a(s)− a(t)

∥
∥
p]

= 2p−1[
∥
∥a(t+h)−Tk(t+h− s)a(s)

∥
∥
p

+
∥
∥Tk(t+h− s)a(s) +Tk(t− s)a(s)−Tk(t− s)a(s)− a(t)

∥
∥
p]

≤ 2p−1
∥
∥a
(

(t+h− s) + s
)−Tk(t+h− s)a(s)

∥
∥
p

+ 22(p−1)
∥
∥Tk(t− s)Tk(h)a(s)−Tk(t− s)a(s)

∥
∥
p

+ 22(p−1)
∥
∥Tk(t− s)a(s)− a(t)

∥
∥
p

< 2p−1ε+ 22(p−1)λt−s
∥
∥Tk(h)a(s)− a(s)

∥
∥
p

+ 22(p−1)
∥
∥Tk(t− s)a(s)− a(t− s+ s)

∥
∥
p

+ δt−s
(

B,a(s)
)

< 2p−1ε
(

1 + 2p−1)+ 22(p−1)λt−s
(∥
∥Tk(h)a(s)− a(s+h)

+ a(s+h)− a(s)
∥
∥
p)

+ δt−s
(

B,a(s)
)

< 2p−1ε
(

1 + 2p−1)+ 22(p−1)ελt−s

+ 22(p−1)λt−s
∥
∥a(s+h)− a(s)

∥
∥
p

+ δt−s
(

B,a(s)
)

.
(3.7)

Then

∥
∥a(t+h)−a(t)

∥
∥
p−22(p−1)λt−s

∥
∥a(s+h)−a(s)

∥
∥
p
<2p−1ε

(

1+2p−1+2p−1λt−s
)

+ δt−s
(

B,a(s)
)

.
(3.8)

Taking limit as t,s→∞, for h≥ 0 and arbitrary ε, from the last inequality, we obtain

lim
t→∞

lim
s→∞

sup
h≥0

[∥
∥a(t+h)− a(t)

∥
∥
p− 22(p−1)

∥
∥a(s+h)− a(s)

∥
∥
p]≤ 0. (3.9)

From Remark 2.3, a(·) is weakly almost convergent to its asymptotic center.
Now, we investigate the case F 
= ∅ and c > 0.
For x ∈ K , if we write B = {x} and v = x in (I), then we obtain

0≤ λr0 + c
[

2λr‖x‖p− 2
∥
∥Tk(r)x

∥
∥
p]

+ δr(B,x), (3.10)



6 Fixed Point Theory and Applications

and from this we can write

∥
∥Tk(r)x

∥
∥
p ≤ λr‖x‖p +

δr(B,x)
2c

. (3.11)

Then for every x ∈ K , {Tk(t)x; t ∈R+} is bounded. By Definition 1.1, for ε > 0 taking
t ≥ t0, s ≥ 0, there exists t0 = t0(ε) such that ‖a(t0 + s) − Tk(s)a(t0)‖p < ε. Since
{Tk(t)x; t ∈R+} is bounded,

∥
∥a
(

t0 + s
)−Tk(s)a

(

t0
)

+Tk(s)a
(

t0
)∥
∥
p

≤ 2(p−1)[
∥
∥a
(

t0 + s
)−Tk(s)a

(

t0
)∥
∥
p

+
∥
∥Tk(s)

∥
∥
p∥
∥a
(

t0
)∥
∥
p] (3.12)

{a(t); t ∈R+} is bounded. We can take B = {Tk(h)a(s) : h≥ 0} , if we write v = a(s) and
r = t− s in (I), then we obtain

∥
∥Tk(t− s)Tk(h)a(s)−Tk(t− s)a(s)

∥
∥
p

≤ λt−s
∥
∥Tk(h)a(s)− a(s)

∥
∥
p

+ c
[

λt−s
∥
∥Tk(h)a(s)

∥
∥
p

−∥∥Tk(t− s)Tk(h)a(s)
∥
∥
p

+ λt−s
∥
∥a(s)

∥
∥
p

−∥∥Tk(t− s)a(s)
∥
∥
p]

+ δt−s
(

B,a(s)
)

.

(3.13)

Consequently,

∥
∥a(t+h)− a(t)

∥
∥
p = ∥∥a(t+h)−Tk(t+h− s)a(s) +Tk(t+h− s)a(s)− a(t)

∥
∥
p

≤ 2p−1(
∥
∥a(t+h)−Tk(t+h− s)a(s)

∥
∥
p

+
∥
∥Tk(t+h− s)a(s)− a(t)

∥
∥
p)

≤ 2p−1
∥
∥a(t+h)−Tk(t+h− s)a(s)

∥
∥
p

+ 2p−1
∥
∥Tk(t+h− s)a(s)−Tk(t− s)a(s)

∥
∥
p

+
∥
∥Tk(t− s)a(s)− a(t)

∥
∥
p ≤ 2p−1

∥
∥a(t+h)−Tk(t+h− s)a(s)

∥
∥
p

+ 22(p−1)[
∥
∥Tk(t− s)Tk(h)a(s)−Tk(t− s)a(s)

∥
∥
p

+
∥
∥Tk(t− s)a(s)− a(t− s+ s)

∥
∥
p]

< 2p−1ε+ 22(p−1)[λt−s
∥
∥Tk(h)a(s)− a(s)

∥
∥
p

+ c
[

λt−s
∥
∥Tk(h)a(s)

∥
∥
p−∥∥Tk(t− s)Tk(h)a(s)

∥
∥
p

+ λt−s
∥
∥a(s)

∥
∥
p−∥∥Tk(t− s)a(s)

∥
∥
p]]

+ δt−s
(

B,a(s)
)

+ ε
(

22(p−1)).
(3.14)
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Taking ‖a(s)‖ ≤M and ‖Tk(h)‖ ≤N ,

< 2p−1ε
(

1 + 2p−1)+ 22(p−1)λt−s
∥
∥Tk(h)a(s)− a(s)

∥
∥
p

+ c
(

λt−sMpN p− (M2N
)p

+ λt−sMp−MpNp
)

+ δt−s
(

B,a(s)
)

< 2p−1ε
(

1 + 2p−1)+ cλt−sMp
(

Np + 1
)− cMpN p

(

Mp− 1
)

+ 22(p−1)λt−s
∥
∥Tk(h)a(s)− a(s+h) + a(s+h)− a(s)

∥
∥
p

+ δt−s
(

B,a(s)
)

< 2p−1ε
(

1 + 2p−1)+ cλt−sMp
(

Np + 1
)− cMpN p

(

Mp− 1
)

+ 22(p−1)λt−s2p−1
∥
∥Tk(h)a(s)− a(s+h)

∥
∥
p

+ 22(p−1)λt−s2p−1
∥
∥a(s+h)− a(s)

∥
∥
p

+ δt−s
(

B,a(s)
)

< 2p−1ε
(

1 + 2p−1)+ cλt−sMp
(

Np + 1
)− cMpN p

(

Mp− 1
)

+ 23(p−1)λt−sε

+ 23(p−1)λt−s
∥
∥a(s+h)− a(s)

∥
∥
p

+ δt−s
(

B,a(s)
)

.

(3.15)

Taking limit as t, s→∞, for h≥ 0,

lim
t→∞

lim
s→∞

sup
h≥0

[∥
∥a(t+h)− a(t)

∥
∥
p− 23(p−1)

∥
∥a(s+h)− a(s)

∥
∥
p]≤ Á. (3.16)

That is,

lim
t→∞

lim
s→∞

sup
h≥0

[∥
∥a(t+h)− a(t)

∥
∥
p− 23(p−1)

∥
∥a(s+h)− a(s)

∥
∥
p]− Á≤ 0. (3.17)

Then from Remark 2.3, a(·) is weakly almost convergent to its asymptotic center. Thus,
the proof is completed. �

4. Strong ergodic theorems

Let Γ= {T(t); t ≥ 0} be semigroup on K . Suppose that for every bounded set B ⊂ K and
integer k ≥ 0, there exists a δr(B,v)≥ 0 with limr→∞ δr(B,v)= 0 such that

∥
∥Tk(r)u+Tk(r)v

∥
∥
p

≤ λr‖u+ v‖p + c
[

λr‖u‖p−
∥
∥Tk(r)u

∥
∥
p

+ λr‖v‖p−
∥
∥Tk(r)v

∥
∥
p]

+ δr(B)
(II)

for u,v ∈ B, where λr , c, and p are nonnegative constants such that limr→∞ λr = 1 and
p ≥ 1.

Theorem 4.1. If Γ= {T(t); t ≥ 0} is a semigroup on K satisfying condition (II), then every
almost-orbit of Γ is strongly almost convergent to its asymptotic center.

Proof. Let a(·) : [0,∞)→ K be almost-orbit of Γ. For t ≥ 0, we set

ϕ(s)= sup
t≥0

∥
∥a(t+ s)−Tk(t)a(s)

∥
∥. (4.1)

When s→∞, ϕ(s)→ 0 and from condition (II) by taking B = {x} and v = x, we have

∥
∥Tk(r)x

∥
∥
p ≤ λr‖x‖p +

δr
({x})
2p + 2c. (4.2)
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Thus for x ∈ K , {Tk(r)x : r ≥ 0} is bounded. By Definition 1.1, since {Tk(r)x : r ≥ 0} is
bounded, we have

∥
∥a(s+ t)−Tk(s)a(t)

∥
∥
p ≤ ε. (4.3)

Therefore {a(s) : s≥ 0} is bounded. Let r > h≥ 0. Since {Tk(h)x : h≥ 0} and {a(s) : s≥ 0}
are bounded then {Tk(h)a(s) : h≥ 0} is bounded, by using (II) with B = {Tk(h)a(s) : h≥
0}, v = a(s) and r = t− s we have

∥
∥Tk(t− s)Tk(h)a(s) +Tk(t− s)a(s)

∥
∥
p ≤ λt−s

∥
∥Tk(h)a(s) + a(s)

∥
∥
p

+ c
[

λt−s
∥
∥Tk(h)a(s)

∥
∥
p−∥∥Tk(t− s)Tk(h)a(s)

∥
∥
p

+ λt−s
∥
∥a(s)

∥
∥
p−∥∥Tk(t− s)a(s)

∥
∥
p]

+ δt−s(B).
(4.4)

For c = 0, we have

∥
∥Tk(t− s)Tk(h)a(s) +Tk(t− s)a(s)

∥
∥
p ≤ λt−s

∥
∥Tk(h)a(s) + a(s)

∥
∥
p

+ δt−s
(

B,a(s)
)

. (4.5)

Consequently,

∥
∥a(t+h) + a(t)

∥
∥
p ≤ 2p−1(

∥
∥a
(

(t+ r) + s− s
)−Tk(t+h− s)a(s)

∥
∥
p)

+ 22(p−1)(
∥
∥Tk(t+h− s)a(s) +Tk(t− s)a(s)

∥
∥
p

+
∥
∥a(t− s+ s)−Tk(t− s)a(s)

∥
∥
p)

≤ 2p−1ϕp(s) + 22(p−1)[
∥
∥Tk(t− s)Tk(h)a(s) +Tk(t− s)a(s)

∥
∥
p

+ϕp(s)
]

≤ 2p−1ϕp(s) + 22(p−1)[λt−s
∥
∥Tk(h)a(s) + a(s)

∥
∥
p

+ϕp(s)
]

+ δt−s
(

B,a(s)
)

≤ 2p−1ϕp(s) + 22(p−1)λt−sϕp(s)

+ 22(p−1)λt−s
∥
∥Tk(h)a(s) + a(s) + a(h+ s)− a(h+ s)

∥
∥
p

+ δt−s
(

B,a(s)
)

≤ 2p−1ϕp(s)
(

1 + 2p−1λt−s
)

+ 22(p−1)2p−1λt−s
[∥
∥a(h+ s) + a(s)

∥
∥
p

+
∥
∥Tk(h)a(s)− a(h+ s)

∥
∥
p]

+ δt−s
(

B,a(s)
)

.
(4.6)

Taking limit as s, t→∞, for h≥ 0,

lim
t→∞

sup
h≥0

[∥
∥a(t+h) + a(t)

∥
∥
p− 23(p−1)λt−s

∥
∥a(h+ s) + a(s)

∥
∥
p]

≤ 2p−1ϕp(s)
(

1 + 2p−1λt−s + λt−s2p−1).
(4.7)

Since ϕ(s)→ 0, we have

lim
s→∞

lim
t→∞

sup
h≥0

[∥
∥a(t+h) + a(t)

∥
∥
p− 23(p−1)

∥
∥a(h+ s) + a(s)

∥
∥
p]≤ 0, (4.8)
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that is, condition (ii) in Lemma 2.2 is satisfied. Thus, every almost-orbit of Γ is strongly
almost convergent to its asymptotic center. �

Remark 4.2. Our results presented in this paper generalize the results of Miyadera [7, 8]
to the case of F 
= ∅ and c > 0 for semigroups of asymptotically nonexpansive mappings
in Hilbert spaces.
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