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Let C be a closed convex subset of a complete metrizable topological vector space (X ,d)
and T : C → C a mapping that satisfies d(Tx,Ty) ≤ ad(x, y) + bd(x,Tx) + cd(y,Ty) +
ed(y,Tx) + f d(x,Ty) for all x, y ∈ C, where 0 < a < 1, b ≥ 0, c ≥ 0, e ≥ 0, f ≥ 0, and
a + b + c + e + f = 1. Then T has a unique fixed point. The above theorem, which is a
generalization and an extension of the results of several authors, is proved in this paper.
In addition, we use the Mann iteration to approximate the fixed point of T .
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tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Gregus [1] proved the following theorem.

Theorem 1.1. LetC be a closed convex subset of a Banach space X and T : C→ C a mapping
that satisfies ‖Tx−Ty‖ ≤ a‖x− y‖+ b‖x−Tx‖+ c‖y−Ty‖ for all x, y ∈ C, where 0 <
a < 1, b ≥ 0, c ≥ 0, and a+ b+ c = 1. Then T has a unique fixed point.

Several papers have been written on the Gregus fixed point theorem. For example, see
[2, 3]. The theorem has been generalized to the condition when X is a complete metriz-
able toplogical vector space [4].

When a = 1, b = 0, c = 0, T becomes a nonexpansive map. In the past four decades,
several papers have been written on the existence of a fixed point (which may not be
unique) for a nonexpansive map defined on a closed bounded and convex subset C of a
Banach space X . For example, see [5–7]. Recently, the existence of fixed points of T when
the domain of T is unbounded was discussed in [6]. When a = 0, we have the Kannan
maps. Similarly, several papers have been written on the existence of a fixed point for a
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Kannan map defined on a Banach space, for example, see [8, 9]. The fixed point theorem
of Gregus is interesting because it tells what happens if 0 < a < 1.

Chatterjea [10] considered the existence of fixed point for T when T is defined on a
metric space (X ,d), such that for 0 < a < 1/2,

d(Tx,Ty)≤ a
{
d
(
x, f (y)

)
+d
(
y, f (x)

)}
. (1.1)

It is natural to combine this condition with that of Gregus to get the following condition:

d(Tx,Ty)≤ ad(x, y) + bd(x,Tx) + cd(y,Ty) + ed(y,Tx) + f d(x,Ty) (1.2)

for all x, y ∈ C, where 0 < a < 1, b ≥ 0, c ≥ 0, e ≥ 0, f ≥ 0, and a+ b+ c+ e+ f = 1.
Observe that if T satisfies (1.2), then it also satisfies

d(Tx,Ty)≤ ad(x, y) + pd(x,Tx) + pd(y,Ty) + pd(y,Tx) + pd(x,Ty) (1.3)

for all x, y ∈ C, where 0 < a < 1, p ≥ 0, a+ 4p = 1, (p = (1/4)b+ (1/4)c+ (1/4)e+ (1/4) f ).
Thus b, c, e, and f will be used interchangeably as p in the proof of our main theorem.

As observed by Chidume [5, page 119], since the four points {x, y,Tx,Ty} of (1.2)
determine six distances in X , the inequality amounts to say that the image distance d(Tx,
Ty) never exceeds a fixed convex combination of the remaining five distances. Geomet-
rically, this type of condition is quite natural.

In this paper, we extend Gregus result to the condition when T satisfies condition (1.2)
and also generalize it to the condition when X is a complete metrizable topological vector
space, thus answering the question posed in [4]. Complete metrizable topological vector
spaces include uniformly convex Banach spaces, Banach spaces and complete metrizable
locally convex spaces (see [11, 12]).

The following result will be needed for our result.

Theorem 1.2 [13, 14]. A topological vector space X is metrizable if and only if it has a
countable base of neighbourhoods of zero. The topology of a metrizable topological vector
space can always be defined by a real-valued function ‖ · ‖ : X →�, called F-norm such that
for all x, y ∈ X ,

(1) ‖x‖ ≥ 0,
(2) ‖x‖ = 0⇒ x = 0,
(3) ‖x+ y‖ ≤ ‖x‖+‖y‖,
(4) ‖λx‖ ≤ ‖x‖ for all λ∈ K with |λ| ≤ 1,
(5) if λn→ 0, and λn ∈ K , then ‖λnx‖→ 0.

For the same result see Kothe [15, Section 15.11]. Henceforth, unless otherwise in-
dicated, F will denote an F-norm if it is characterizing a metrizable topological vector
space. Observe that an F-norm will be a norm if it is defining a normed space.

We now prove our main theorem. We use the technique in [4] which is due to Gre-
gus [1].
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Theorem 1.3. Let C be a closed convex subset of a complete metrizable space X and T : C→
C a mapping that satisfies F(Tx−Ty) ≤ aF(x− y) + bF(x−Tx) + cF(y−Ty) + eF(y−
Tx) + f F(x−Ty) for all x, y ∈ C, where 0 < a < 1, b ≥ 0, c ≥ 0, e ≥ 0, f ≥ 0, and a+ b+
c+ e+ f = 1. Then T has a unique fixed point.

Proof. Take any point x ∈ C and consider the sequence {Tn(x)}∞n=1,

F
(
Tnx−Tn−1x

)≤ aF
(
Tn−1x−Tn−2x

)
+ bF

(
Tn−1x−Tnx

)

+ cF
(
Tn−2x−Tn−1x

)
+ eF

(
Tn−2x−Tnx

)

+ f F
(
Tn−1x−Tn−1x

)

≤ a+ c+ e

1− b− e
F
(
Tn−1x−Tn−2x

)

≤ a+ 2p
1− 2p

F
(
Tn−1x−Tn−2x

)≤ F(Tx− x).

(1.4)

Thus

F
(
Tnx−Tn−1x

)≤ F(Tx− x). (1.5)

In effect, it means that the distance between two consecutive elements of {Tnx} is less
or equal to the distance between the first and the second element. Now let us consider
the distance between two consecutive elements with odd (resp., even) power of T . It is
sufficient to consider only the distance between Tx and T3x,

F
(
T3x−Tx

)≤ aF
(
T2x− x

)
+ bF

(
T2x−T3x

)
+ cF(Tx− x)

+ eF
(
x−T3x

)
+ f F

(
T2x−Tx

)

≤ aF
(
T2x−Tx

)
+ aF(Tx− x) + bF

(
T2x−T3x

)

+ cF(Tx− x) + eF(x−Tx) + eF
(
Tx−T2x

)

+ eF
(
T2x−T3x

)
+ f F

(
T2x−Tx

)

≤ (2a+ b+ c+ 3e+ f )F(Tx− x)= (a+ 2p+ 1)F(Tx− x).

(1.6)

Hence

F
(
T3x−Tx

)≤ (a+ 2p+ 1)F(Tx− x) ∀x ∈ C. (1.7)

Since C is convex, therefore z = (1/2)T2x + (1/2)T3x is in C, and from the properties of
the F-norm, we have

F(Tz− z)≤ 1
2
F
(
Tz−T2x

)
+

1
2
F
(
Tz−T3x

)

≤ 1
2

{
aF(z−Tx) + bF(Tz− z) + cF

(
Tx−T2x

)

+ eF(Tx−Tz) + f F
(
z−T2x

)}

+
1
2

{
aF
(
z−T2x

)
+ bF(Tz− z) + cF

(
T3x−T2x

)

+ eF
(
T2x−Tz

)
+ f F

(
z−T3x

)}
,
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F(z−Tx)≤ 1
2
F
(
T2x−Tx

)
+

1
2
F
(
T3x−Tx

)

≤ 1
2
F(Tx− x) +

1
2

(a+ 2p+ 1)F(Tx− x)=
(

1 + p+
1
2
a
)
F(Tx− x),

F
(
z−T2x

)≤ 1
2
F
(
T3x−T2x

)≤ 1
2
F(Tx− x).

(1.8)

Similarly,

F
(
z−T3x

)≤ 1
2
F(Tx− x),

F(Tx−Tz)≤ 1
2
F
(
Tx−T3x

)
+

1
2
F
(
Tx−T4x

)

≤ 1
2

(a+ 2p+ 1)F(Tx− x) +
1
2

{
F
(
Tx−T2x

)
+F
(
T2x−T4x

)}

≤ 1
2

(a+ 2p+ 1)F(Tx− x) +
1
2

{
F(Tx− x) + (a+ 2p+ 1)F(Tx− x)

}

≤
(
a+ 2p+

3
2

)
F(Tx− x),

F
(
T2x−Tz

)≤ 1
2
F
(
T2x−T3x

)
+

1
2
F
(
T2x−T4x

)≤
(

1
2
a+ p+ 1

)
F(Tx− x).

(1.9)

Thus

(1− b)F(Tz− z)≤ 1
2

{
a
(

1 + p+
1
2
a
)
F(Tx− x) + cF(Tx− x)

+ e
(
a+ 2p+

3
2

)
F(Tx− x) +

1
2
f F(Tx− x)

}

+
1
2

{
1
2
aF(Tx− x) + cF(Tx− x) +

1
2
e(a+ 2p+ 1)F(Tx− x)

+
1
2
f F(Tx− x)

}
=
(

3
4
a+

1
4
a2 +

5
4
ap+

5
2
p+

3
2
p2
)
F(Tx− x).

(1.10)

Thus

4(1− p)F(z−Tz)≤ (3a+ a2 + 5ap+ 10p+ 6p2)F(Tx− x)

≤ (2p2− 5p+ 4
)
F(Tx− x).

(1.11)

Hence

F(z−Tz)≤ 26− 22a− a2

8(a+ 3)
F(Tx− x),

F(Tz− z)≤ λF(Tx− x),
(1.12)

where λ= (26− 22a− a2)/8(a+ 3). It is clear that 0 < λ < 1.
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Now let i= inf{F(Tx− x) : x ∈ C}. Then there exists a point x ∈ C such that F(Tx−
x) < i+ ε for ε > 0.

Suppose i > 0. Then for 0 < ε < (1− λ)i/λ and F(Tx− x) < i+ ε, we have

F(Tz− z)≤ λF(Tx− x)≤ λ(i+ ε) < i, (1.13)

that is, F(Tz− z) < i, which is a contradiction with the definition of i. Hence inf{F(Tx−
x) : x ∈ C} = 0.

To prove that the infimum is attained is the easy part of the proof. Take the following
system of sets: Kn = {x : F(x−Tx) ≤ 1/2n(q + 1)}; T(Kn) and T(Kn), where n ∈ N , q =
(a+ p)/(1− a), and T(Kn) is the closure of T(Kn). Then for any x, y ∈ Kn,

F(Tx−Ty)≤ qF(Tx− x) + qF(Ty− y)≤ 1
n

,

F(x− y)≤ (q+ 1)F(Tx− x) + (q+ 1)F(Ty− y)≤ 1
n

,
(1.14)

that is, diam(Kn) ≤ 1/n, diam(T(Kn)) ≤ 1/n and therefore, since diam(T(Kn)) =
diam(T(Kn)), we have diam(T(Kn))≤ 1/n. It is clear that {Kn} and {T(Kn)} form mono-
tone sequences of sets and from (1.5) we have T(Kn)⊂ Kn. Suppose y ∈ T(Kn), then there
exists y′ ∈ Kn such that F(y−Ty′) < ε for ε > 0 and

F(y−Ty)≤ F(y−Ty′) +F(Ty′ −Ty)

≤ F(y−Ty′) + aF(y− y′) + bF(y′ −Ty′)

+ cF(Ty− y) + eF(y−Ty′) + f F(y′ −Ty).

(1.15)

Hence

(1− c)
)
F(y−Ty)≤ (1 + a+ e+ f )ε+ (a+ b)F(Ty′ − y′). (1.16)

Since F(y′ −Ty′)≤ 1/2n(q+ 1), then

F(y−Ty)≤ 1 + a+ e+ f

1− c
ε+

a+ b

1− c

1
2n(q+ 1)

. (1.17)

Since ε > 0 is arbitrary and a+ b+ c ≤ 1, then F(y−Ty)≤ 1/2n(q+ 1) and we have y ∈
Kn. Hence T(Kn)⊂ Kn, too.
{T(Kn)} is a decreasing sequence of closed nonempty sets with diam(T(Kn))→ 0 as

n→∞. Hence they have a nonempty intersection {x∗} and T has a unique fixed point
Tx∗= x∗. �

Corollary 1.4. Let C be a closed convex subset of a Banach space X and T : C → C a
mapping that satisfies ‖Tx − Ty‖ ≤ a‖x − y‖ + b‖Tx − x‖ + c‖Ty − y‖ + e‖Tx − y‖ +
f ‖Ty− x‖ for all x, y ∈ C where 0 < a < 1, b ≥ 0, c ≥ 0, e ≥ 0, f ≥ 0, and a+ b + c + e +
f = 1. Then T has a unique fixed point.

Corollary 1.5 [1]. Let C be a closed convex subset of a Banach space X and T : C → C
a mapping that satisfies ‖Tx−Ty‖ ≤ a‖x− y‖+ b‖Tx− x‖+ c‖Ty− y‖ for all x, y ∈ C,
where 0 < a < 1, b ≥ 0, c ≥ 0, and a+ b+ c = 1. Then T has a unique fixed point.
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Corollary 1.6. Let C be a closed convex subset of a complete metrizable topological vector
space X and T : C → C a mapping that satisfies ‖Tx − Ty‖ ≤ a‖x − y‖ + b‖Tx − y‖ +
c‖Ty− x‖ for all x, y ∈ C, where 0 < a < 1, b ≥ 0, c ≥ 0, and a+ b + c = 1. Then T has a
unique fixed point.

We now proceed to use the Mann iteration scheme [16] to approximate the fixed point
of our mapping under consideration.

Theorem 1.7. LetC be a nonempty closed convex subset of a complete metrizable topological
vector space X and let T : C → C be a mapping that satisfies F(Tx− Ty) ≤ aF(x− y) +
bF(Tx − x) + cF(Ty − y) + eF(Tx − y) + f F(Ty − x) for all x, y ∈ C, where 0 < a < 1,
b ≥ 0, c ≥ 0, e ≥ 0, f ≥ 0, and a + b + c + e + f = 1. Suppose {xn} is a Mann iteration
sequence defined by xn+1 = (1−αn)xn +αnTxn, x0 ∈ C, n≥ 0, where {αn} satisfy 0 < αn ≤ 1
for all n,

∑∞
0 αn =∞. Assume 2c < c+ b, then {xn} converges to the unique fixed point of T.

Proof. The fact that T has a unique fixed point is already shown in Theorem 1.3.
If F(Tx − Ty) ≤ aF(x − y) + bF(Tx − x) + cF(Ty − y) + eF(Tx − y) + f F(Ty − x),

then

F(Tx−Ty)≤ aF(x− y) + bF(Tx− x) + c
{
F(Ty−Tx) +F(Tx− x) +F(x− y)

}

+ e
{
F(Tx− x) +F(x− y)

}
+ f
{
F(Ty−Tx) +F(Tx− x)

}
.

(1.18)

After computation, we have F(Tx−Ty) ≤ ((a+ c+ e)/(1− (c+ f )))F(x− y) + ((b + c +
e+ f )/(1− (c+ f )))F(Tx− x). If δ = (a+ c+ e)/(1− (c+ f )), then

F(Tx−Ty)≤ δF(x− y) +
b+ c+ e+ f

1− (c+ f )
F(Tx− x)

}
. (1.19)

Since by assumption 2c < b+ c, it is clear that δ < 1.
Suppose p is a fixed point of T , then if x = p and y = xn, from (1.19), we obtain

F
(
Txn− p

)≤ δF
(
xn− p

)
,

F
(
xn+1− p

)= F
((

1−αn
)
xn +αnTxn−

(
1−αn +αn

)
p
)

= F
((

1−αn
)(
xn− p

)
+αn

(
Txn− p

))

≤ (1−αn
)
F
(
xn− p

)
+αnF

(
Txn− p

)

≤ (1−αn(1− δ)
)
F
(
xn− p

)
.

(1.20)

Since 1− αn(1− δ) < 1 by the choice of αn in the theorem, then {xn} converges to
p. �

Remarks 1.8. (1) Gregus [1] gave an example in which a = 1, C is closed convex and
bounded but yet T does not have a fixed point. If a= 1, some form of boundedness must
be assumed on C for T to have a fixed point, for example, see [7, 6]. The same is true if
a= 0 (see [8, 9]).

(2) If (X ,d) is a complete metric space and a+ b+ c+ e+ f < 1, it was shown in [17]
that T as defined in (1.2) has a unique fixed point. However, if a+ b+ c+ e+ f = 1, Hardy
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and Rogers [17] assumed that T is continuous and X is compact in order to prove the
existence of fixed point for T as defined in (1.2). Goebel et al. [18] obtained the existence
of fixed point for T as defined by (1.2) when a+ b + c + e + f = 1. In which case, it was
assumed that X is a uniformly convex Banach space, T is continuous and C is bounded,
closed, and convex. In our result, T is not assumed to be continuous, X is assumed to be
neither a compact nor a uniformly convex Banach space, and there is no boundedness
assumption on C.

(3) Berinde [14] showed that the Ishikawa iteration sequence [16] of a class of quasi-
contractive operators, called Zamfirescu operators, defined on a closed convex subset C of
a Banach space X converges to the fixed point of T . The first author [19] showed that if X
is a complete metrizable locally convex space, and C is closed and convex, then the Mann
iteration sequence of the Zamfirescu operator T defined on C converges to the fixed point
of T . In both cases, the sum of the constants is less than 1 while in Theorem 1.7, the sum
is 1. In addition, X is generalized to a complete metrizable topological vector spaces. Can
Theorem 1.7 still be proved without the assumption that 2c < a+ b?
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