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1. Introduction

In 1940, Miranda published the following theorem ([1]).

Theorem 1.1. Let Ω = {x ∈ Rn :
∣
∣xi
∣
∣ ≤ L, i = 1, . . . ,n

}
and let f : Ω→Rn be continuous

satisfying

fi
(
x1,x2, . . . ,xi−1,−L,xi+1, . . . ,xn

)≥ 0,

fi
(
x1,x2, . . . ,xi−1,+L,xi+1, . . . ,xn

)≤ 0,
∀ i{1, . . . ,n}. (1.1)

Then, f (x)= 0 has a solution in Ω.

For n = 1, Theorem 1.1 reduces to the well-known intermediate-value theorem. Mi-
randa proved his theorem using the Brouwer fixed point theorem. Using the Brouwer
degree of a mapping, Vrahatis gave another short proof of Theorem 1.1 (see [2]). Follow-
ing this proof it is easy to see that Theorem 1.1 is also true, if L is dependent of i; that is,
Ω can also be a rectangle and need not to be a cube. Even some Li can be zero. Very often,
the theorem of Miranda is stated as in the following corollary (see also [3, 4]), which is
not the theorem of Miranda in its original form, but a consequence of it.

Corollary 1.2. Let x̂ ∈ Rn, L = (li) ∈ Rn, li ≥ 0, for i = 1, . . . ,n, let Ω be the rectangle
Ω := {x ∈Rn : |xi− x̂i| ≤ li, i= 1, . . . ,n} and let f : Ω→Rn be a continuous function on Ω.
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Also let

F+
i := {x ∈Ω : xi = x̂i + li}, F−i := {x ∈Ω : xi = x̂i− li}, i= 1, . . . ,n, (1.2)

be the pairs of parallel opposite faces of the rectangle Ω. If for all i= 1, . . . ,n

fi(x)· fi(y)≤ 0, ∀x ∈ F+
i , ∀ y ∈ F−i , (1.3)

then there exists some x∗ ∈Ω satisfying f (x∗)= 0.

In principle, Corollary 1.2 says that Theorem 1.1 is also true if the ≤ -sign and the ≥ -
sign are exchanged with each other in (1.1). Corollary 1.2 also says that Theorem 1.1 is
not restricted to a rectangle with 0 as its center.

Many generalizations have been given (see, e.g., [2, 4–6] for the finite-dimensional
case and see [7, 8] for the infinite-dimensional case). In the presented paper we give a
generalization of Corollary 1.2 in the infinite-dimensional Hilbert space l2. Finally, we
prove a fixed point version of Theorem 1.1 in l2.

2. The infinite-dimensional case

Let l2 be the infinite-dimensional Hilbert space of all square summable sequences of real
numbers equipped with the natural order

x ≤ y :⇐⇒ xi ≤ yi, ∀i ∈N, (2.1)

and equipped with the norm ‖x‖ :=
√∑∞

i=1x
2
i .

Theorem 2.1. Let x̂ = {x̂i}∞i=1 ∈ l2, L = {li}∞i=1 ∈ l2, li ≥ 0, for all i ∈ N, Ω := {x ∈ l2 :
|xi− x̂i| ≤ li , f or all i∈N} and let f :Ω→l2 be a continuous function on Ω. Also let

F+
i := {x ∈Ω : xi = x̂i + li}, F−i := {x ∈Ω : xi = x̂i− li}, ∀ i∈N. (2.2)

If for all i∈N it holds that

fi(x)· fi(y)≤ 0, ∀x ∈ F+
i , ∀ y ∈ F−i , (2.3)

then there exists some x∗ ∈Ω satisfying f (x∗)= 0.

Proof. For fixed n∈N, we consider the function h̃(n) :Ω→l2 defined by

h̃(n)(x) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1
(
x1,x2, . . . ,xn−1,xn,xn+1, . . .

)

...
fn
(
x1,x2, . . . ,xn−1,xn,xn+1, . . .

)

0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.4)

Since Ω is compact and since f is continuous, the set f (Ω) is compact. Therefore, for
given ε > 0 there is a finite set of elements v(1), . . . ,v(p) ∈ f (Ω) such that if f (x)∈ f (Ω),
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then there is a v ∈ {v(1), . . . ,v(p)} such that

‖ f (x)− v‖ ≤ ε (2.5)

and there exists n1 = n1(ε)∈ N such that for all n > n1 it holds that

√∑∞
j=n+1

(
vj
)2 ≤ ε, ∀v ∈ {v(1), . . . ,v(p)

}
. (2.6)

So, if n > n1 is valid, then for all f (x)∈ f (Ω) we have some v ∈ {v(1), . . . ,v(p)} such that

∥
∥ f (x)− h̃(n)(x)

∥
∥=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0

fn+1(x)
fn+2(x)

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤ ‖ f (x)− v‖+

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
vn+1

vn+2
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤ 2ε (2.7)

for all x ∈Ω. Now, for fixed n∈ N we define

Ωn :=

⎛

⎜
⎜
⎝

[
x̂1− l1, x̂1 + l1

]

...[
x̂n− ln, x̂n + ln

]

⎞

⎟
⎟
⎠ (2.8)

and h(n) :Ωn→Rn by

h(n)(x) :=

⎛

⎜
⎜
⎝

f1
(
x1,x2, . . . ,xn−1,xn, x̂n+1, x̂n+2, . . .

)

...
fn
(
x1,x2, . . . ,xn−1,xn, x̂n+1, x̂n+2, . . .

)

⎞

⎟
⎟
⎠ . (2.9)

Due to (2.3) and Corollary 1.2 there exists x(n) ∈ Ωn with

h(n)(x(n))= 0. (2.10)

Setting

x̃(n) :=

⎛

⎜
⎜
⎜
⎜
⎝

x(n)

x̂n+1

x̂n+2
...

⎞

⎟
⎟
⎟
⎟
⎠

, (2.11)

it holds that

x̃(n) ∈Ω, h̃(n)(x̃(n))= 0. (2.12)



4 Fixed Point Theory and Applications

Now, let n > n1. Then,
∥
∥ f
(
x̃(n))∥∥= ∥∥ f (x̃(n))− h̃(n)(x̃(n))∥∥≤ 2ε. (2.13)

Hence, limn→∞ f (x̃(n)) = 0. Since Ω is compact, the sequence x̃(n) has an accumulation
point in Ω, say x∗. Without loss of generality, we assume that limn→∞x̃(n) = x∗ holds. On

the one hand, it follows that limn→∞ f (x̃(n))= f (x∗), since f is continuous. On the other

hand, it follows that f (x∗)= 0, since the limit is unique. �

Next, we prove the fixed point version of Theorem 1.1 in l2.

Theorem 2.2. Let L= {li}∞i=1 ∈ l2, li ≥ 0, for all i∈N. Let Ω= {x ∈ l2 : |xi| ≤ li,∀i∈N}
and suppose that the mapping g :Ω→l2 is continuous satisfying

gi(x1,x2, . . . ,xi−1,−li,xi+1, . . .)≥ 0,

gi(x1,x2, . . . ,xi−1,+li,xi+1, . . .)≤ 0,
∀ i∈N. (2.14)

Then, g(x)= x has a solution in Ω .

Proof. We consider the continuous function

f (x) := g(x)− x, x ∈Ω. (2.15)

Since for all i∈N
fi
(
x1, . . . ,xi−1,−li,xi+1, . . .

)= gi
(
x1, . . . ,xi−1,−li,xi+1, . . .

)
+ li ≥ 0,

fi
(
x1, . . . ,xi−1,+li,xi+1, . . .

)= gi
(
x1, . . . ,xi−1,+li,xi+1, . . .

)− li ≤ 0,
(2.16)

due to Theorem 2.1 there exists x ∈Ω satisfying f (x)= 0; that is, g(x)= x. �

Example 2.3. Let b ∈ l2 and A= (aik) satisfying
∑∞

i,k=1|aik|2 <∞. Then, the mapping

g(x) :=
(

b1−
∞∑

k=1

a1kxk,b2−
∞∑

k=1

a2kxk, . . .

)

(2.17)

is (even) a compact mapping from l2 to l2. Now, if A is some kind of diagonally dominant
in the sense that there exists some L= {li}∞i=1 ∈ l2such that for all i∈N

aii·li ≥
∣
∣bi
∣
∣+

∞∑

k=1, k �=i

∣
∣aik

∣
∣·lk, (2.18)

then by Theorem 2.1 there exists some ξ ∈Ω = {x ∈ l2 : |xi| ≤ li,∀i ∈ N} with Aξ = b.
By Theorem 2.2 it follows that there exists η ∈Ω satisfying η = b−Aη.

Remark 2.4. Note that in Theorem 2.2 it is not necessary that g is a self-mapping as it is
assumed in many other fixed point theorems.

Remark 2.5. Theorem 2.2 is also valid inRn of course. Note, however, that the conditions
(2.14) cannot be changed analogously as the conditions (1.1) have been changed to (1.3).
We demonstrate this in Figure 2.1 for n= 1.
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y

L L x

(a)

y

x̂− L x̂+L xx̂

(b)

Figure 2.1. In both pictures the thick line is the graph of a function y = g(x), x ∈Ω. In the left pic-
ture, Ω= [−L,L] and g(−L) < 0, g(L) > 0. According to Corollary 1.2 g(x) has a zero in Ω. However,
g(x) has no fixed point in Ω, which is no contradiction to Theorem (2.2), since g(−L)≥ 0, g(L)≤ 0
is not valid, here. In the right picture, Ω= [x̂− L, x̂ + L] and g(x̂− L) > 0, g(x̂ + L) < 0. According to
Corollary 1.2, g(x) has a zero in Ω. However, g(x) has no fixed point in Ω.
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