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1. Introduction

Let H be a real Hilbert space and let C be nonempty closed convex subset of H . Recall
that a mapping S of C into itself is called nonexpansive if ‖Sx− Sy‖ ≤ ‖x− y‖ for all
x, y ∈ C. We denote by F(S) the set of fixed points of S. Let B be a bifunction of C×C
into R, where R is the set of real numbers. The equilibrium problem for B : C×C→R is
to find x ∈ C such that

B(x, y)≥ 0 ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP(B). Give a mapping T : C→H , let B(x, y)=
〈Tx, y − x〉 for all x, y ∈ C. Then z ∈ EP(B) if and only if 〈Tz, y − z〉 ≥ 0 for all y ∈
C, that is, z is a solution of the variational inequality. Numerous problems in physics,
optimization, and economics reduce to find a solution of (1.1). Some methods have been
proposed to solve the equilibrium problem; see, for instance, [1, 2]. Recently, Combettes
and Hirstoaga [1] introduced an iterative scheme of finding the best approximation to
the initial data when EP(B) is nonempty and proved a strong convergence theorem. Very
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recently, S. Takahashi and W. Takahashi [3] also introduced a new iterative scheme:

B(yn,u) +
1
rn

〈
u− yn, yn− xn

〉≥ 0, ∀u∈ C,

xn+1 = αn f
(
xn
)

+
(
1−αn

)
Syn,

(1.2)

for approximating a common element of the set of fixed points of a nonself nonexpan-
sive mapping and the set of solutions of the equilibrium problem and obtained a strong
convergence theorem in a real Hilbert space.

Recall that a linear bounded operator A is strongly positive if there is a constant γ > 0
with property 〈Ax,x〉 ≥ γ‖x‖2, ∀x ∈H.

Recently iterative methods for nonexpansive mappings have recently been applied to
solve convex minimization problems; see, for example, [4–7] and the references therein.
A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H :

min
x∈C

1
2

〈
Ax,x

〉− 〈x,b
〉

, (1.3)

where C is the fixed point set of a nonexpansive mapping S and b is a given point in H .
In [6], it is proved that the sequence {xn} defined by the iterative method below, with
the initial guess x0 ∈ H chosen arbitrarily, xn+1 = (I − αnA)Sxn + αnb, n ≥ 0, converges
strongly to the unique solution of the minimization problem (1.3) provided the sequence
{αn} satisfies certain conditions. Recently, Marino and Xu [8] introduced a new iterative
scheme by the viscosity approximation method [9]:

xn+1 =
(
I −αnA

)
Sxn +αnγ f

(
xn
)
, n≥ 0. (1.4)

They proved the sequence {xn} generated by above iterative scheme converges strongly to
the unique solution of the variational inequality 〈(A− γ f )x∗,x− x∗〉 ≥ 0, x ∈ C, which is
the optimality condition for the problem min x∈C(1/2)〈Ax,x〉−h(x), where C is the fixed
point set of a nonexpansive mapping S, h is a potential function for γ f (i.e., h′(x)= γ f (x)
for x ∈H).

In this paper, motivated by Combettes and Hirstoaga [1], Moudafi [9], S. Takahashi
and W. Takahashi [3], Marino and Xu [8], and Wittmann [10], we introduce a general
iterative scheme as following:

B
(
yn,u

)
+

1
rn

〈
u− yn, yn− xn

〉≥ 0, ∀ u∈ C,

xn+1 = αnγ f
(
xn
)

+
(
I −αnA

)
Syn.

(1.5)

We will prove that the sequence {xn} generated by (1.5) converges strongly to a common
element of the set of fixed points of nonexpansive mapping S and the set of solutions
of equilibrium problem (1.1), which is the unique solution of the variational inequality
〈γ f (q)−Aq,q− p〉 ≤ 0,∀p ∈ F, where F = F(S)∩EP(B) and is also the optimality con-
dition for the minimization problem min x∈F(1/2)〈Ax,x〉 − h(x), where h is a potential
function for γ f (i.e., h′(x)= γ f (x) for x ∈H).
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2. Preliminaries

Let H be a real Hilbert space with inner product 〈·,·〉 and norm ‖·‖, respectively. It is
well known that for all x, y ∈H and λ∈ [0,1], there holds

∥
∥λx+ (1− λ)y

∥
∥2 = λ‖x‖2 + (1− λ)‖y‖2− λ(1− λ)‖x− y‖2. (2.1)

A space X is said to satisfy Opial’s condition [11] if for each sequence {xn}∞n=1 in X
which converges weakly to point x ∈ X , we have

liminf
n→∞

∥
∥xn− x

∥
∥ < liminf

n→∞
∥
∥xn− y

∥
∥, ∀y ∈ X , y �=x. (2.2)

For solving the equilibrium problem for a bifunction B : C×C→R, let us assume that
B satisfies the following conditions:

(A1) B(x,x)= 0 for all x ∈ C;
(A2) B is monotone, that is, B(x, y) +B(y,x)≤ 0 for all x, y ∈ C;
(A3) for each x, y,z ∈ C, lim t↓0B(tz+ (1− t)x, y)≤ B(x, y);.
(A4) for each x ∈ C, y �→ B(x, y) is convex and lower semicontinuous.

Lemma 2.1 [5]. Assume {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1− γn

)
αn + δn, n≥ 0, (2.3)

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that
(i)
∑∞

n=1γn =∞;
(ii) limsupn→∞δn/γn ≤ 0 or

∑∞
n=1|δn| <∞.

Then limn→∞αn = 0.

Lemma 2.2 [12]. Let C be a nonempty closed convex subset of H and let B be a bifunction of
C×C into R satisfying (A1)–(A4). Let r > 0 and x ∈H . Then, there exists z ∈ C such that
B(z, y) + (1/r)〈y− z,z− x〉 ≥ 0, ∀y ∈ C.

Lemma 2.3 [1]. Assume that B : C×C→R satisfies (A1)–(A4). For r > 0 and x ∈H , define
a mapping Tr : H→C as follows:

Tr(x)=
{
z ∈ C : B(z, y) +

1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈ C

}
(2.4)

for all z ∈H . Then, the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, that is, for any x, y ∈H ,

∥
∥Trx−Tr y

∥
∥2 ≤ 〈Trx−Tr y,x− y

〉
; (2.5)

(3) F(Tr)= EP(B);
(4) EP(B) is closed and convex.

Lemma 2.4. In a real Hilbert space H , there holds the the inequality ‖x + y‖2 ≤ ‖x‖2 +
2〈y,x+ y〉, for all x, y ∈H.
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Lemma 2.5 [8]. Assume that A is a strong positive linear bounded operator on a Hilbert
space H with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H . Let B be a
bifunction from C×C to R which satisfies (A1)–(A4) and let S be a nonexpansive mapping
of C into H such that F(S)∩EP(B) �=∅ and a strongly positive linear bounded operator A
with coefficient γ > 0. Assume that 0 < γ < γ/α. Let f be a contraction of H into itself with a
coefficient α (0 < α < 1) and let {xn} and {yn} be sequences generated by x1 ∈H and

B
(
yn,u

)
+

1
rn

〈
u− yn, yn− xn

〉≥ 0, ∀u∈ C,

xn+1 = αnγ f
(
xn
)

+
(
I −αnA

)
Syn

(3.1)

for all n, where {αn} ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy
(C1) limn→∞αn = 0;
(C2)

∑∞
n=1αn =∞;

(C3)
∑∞

n=1|αn+1−αn| <∞ and
∑∞

n=1|rn+1− rn| <∞;
(C4) liminf n→∞rn > 0.

Then, both {xn} and {yn} converge strongly to q∈F(S)∩EP(B), where q=PF(S)∩EP(B)(γ f +
(I −A))(q), which solves some variation inequality:

〈
γ f (q)−Aq,q− p

〉≤ 0, ∀p ∈ F(S)∩EP(B). (3.2)

Proof. Since αn→0 by the condition (C1), we may assume, with no loss of generality, that
αn < ‖A‖−1 for all n. From Lemma 2.5, we know that if 0 < ρ ≤ ‖A‖−1, then ‖I − ρA‖ ≤
1− ργ. We will assume that ‖I −A‖ ≤ 1− γ.

Now, we observe that {xn} is bounded. Indeed, pick p ∈ F(S)∩ EP(B). Since yn =
Trnxn, we have

∥
∥yn− p

∥
∥= ∥∥Trnxn−Trn p

∥
∥≤ ∥∥xn− p

∥
∥. (3.3)

It follows that

∥
∥xn+1− p

∥
∥= ∥∥αn

(
γ f
(
xn
)−Ap

)
+
(
I −αnA

)(
Syn− p

)∥∥

≤ [1− (γ− γα
)
αn
]∥∥xn− p

∥
∥+αn

∥
∥γ f (p)−Ap

∥
∥,

(3.4)

which gives that ‖xn − p‖ ≤ max{‖x0 − p‖,‖γ f (p)−Ap‖/(γ− γα)}, n ≥ 0. Therefore,
we obtain that {xn} is bounded. So is {yn}. Next, we show that

lim
n→∞

∥
∥xn+1− xn

∥
∥= 0. (3.5)



Meijuan Shang et al. 5

Observing that yn = Trnxn and yn+1 = Trn+1xn+1, we have

B
(
yn,u

)
+

1
rn

〈
u− yn, yn− xn

〉≥ 0, ∀ u∈ C, (3.6)

B
(
yn+1,u

)
+

1
rn+1

〈
u− yn+1, yn+1− xn+1

〉≥ 0, ∀ u∈ C. (3.7)

Putting u= yn+1 in (3.6) and u= yn in (3.7), we have

B
(
yn, yn+1

)
+

1
rn

〈
yn+1− yn, yn− xn

〉≥ 0 (3.8)

and B(yn+1, yn) + (1/rn+1)〈yn− yn+1, yn+1− xn+1〉 ≥ 0. It follows from (A2) that

〈
yn+1− yn,

yn− xn
rn

− yn+1− xn+1

rn+1


≥ 0. (3.9)

That is, 〈yn+1 − yn, yn − yn+1 + yn+1 − xn − (rn/rn+1)(yn+1 − xn+1)〉 ≥ 0. Without loss of
generality, let us assume that there exists a real number m such that rn > m > 0 for all n. It
follows that

∥
∥yn+1− yn

∥
∥2 ≤ ∥∥yn+1− yn

∥
∥
(∥
∥xn+1− xn

∥
∥+

∣
∣
∣
∣1− rn

rn+1

∣
∣
∣
∣
∥
∥yn+1− xn+1

∥
∥
)
. (3.10)

It follows that

∥
∥yn+1− yn

∥
∥≤ ∥∥xn+1− xn

∥
∥+M1

∣
∣rn+1− rn

∣
∣, (3.11)

where M1 is an appropriate constant such that M1 ≥ supn≥1‖yn− xn‖. Observe that

∥
∥xn+2− xn+1

∥
∥≤ (1−αn+1γ

)∥∥yn+1− yn
∥
∥+

∣
∣αn+1−αn

∣
∣
∥
∥ASyn

∥
∥

+ γ
[
αn+1α

∥
∥xn+1− xn

∥
∥+

∣
∣αn+1−αn

∣
∣
∥
∥ f
(
xn
)∥∥].

(3.12)

Substitute (3.11) into (3.12) yields that

∥
∥xn+2− xn+1

∥
∥≤ [1− (γ− γα)αn+1

]∥∥xn+1− xn
∥
∥+M2

(
2
∣
∣αn+1−αn

∣
∣+

∣
∣rn+1− rn

∣
∣),
(3.13)

where M2 is an appropriate constant. An application of Lemma 2.1 to (3.13) implies that

lim
n→∞

∥
∥xn+1− xn

∥
∥= 0. (3.14)

Observing (3.11), (3.14), and condition (C3), we have

lim
n→∞

∥
∥yn+1− yn

∥
∥= 0. (3.15)

Since xn = αn−1γ f (xn−1) + (I −αn−1A)Syn−1, we have

∥
∥xn− Syn

∥
∥≤ αn−1

∥
∥γ f (xn)−ASyn−1

∥
∥+

∥
∥yn−1− yn

∥
∥, (3.16)
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which combines with αn→0, and (3.15) gives that

lim
n→∞

∥
∥xn− Syn

∥
∥= 0. (3.17)

For p ∈ F(S)∩EP(B), we have

∥
∥yn− p

∥
∥2 = ∥∥Trnxn−Trn p

∥
∥2 ≤ 〈Trnxn−Trn p,xn− p

〉= 〈yn− p,xn− p
〉

= 1
2

(∥
∥yn− p

∥
∥2

+
∥
∥xn− p

∥
∥2−∥∥xn− yn

∥
∥2
)

,
(3.18)

and hence ‖yn− p‖2 ≤ ‖xn− p‖2−‖xn− yn‖2. It follows that

∥
∥xn+1− p

∥
∥2 = ∥∥αn

(
γ f
(
xn
)−Ap

)
+
(
I −αnA

)(
Syn− p

)∥∥2

≤ αn
∥
∥γ f

(
xn
)−Ap

∥
∥2

+
∥
∥xn− p

∥
∥2− (1−αnγ

)∥∥xn− yn
∥
∥2

+ 2αn
(
1−αnγ

)∥∥γ f
(
xn
)−Ap

∥
∥
∥
∥yn− p

∥
∥.

(3.19)

That is,

(
1−αnγ

)∥∥xn− yn
∥
∥2 ≤ αn

∥
∥γ f

(
xn
)−Ap

∥
∥2

+
(∥∥xn− p

∥
∥+

∥
∥xn+1− p

∥
∥)
∥
∥xn− xn+1

∥
∥

+ 2αn
(
1−αnγ

)∥∥γ f
(
xn
)−Ap

∥
∥
∥
∥yn− p

∥
∥.

(3.20)

It follows from limn→∞αn = 0 that

lim
n→∞

∥
∥xn− yn

∥
∥= 0. (3.21)

Observe from ‖Syn − yn‖ ≤ ‖Syn − xn‖ + ‖xn − yn‖, which combines with (3.17) and
(3.21), that

lim
n→∞

∥
∥Syn− yn

∥
∥= 0. (3.22)

On the other hand, we have

∥
∥xn− Sxn

∥
∥= ∥∥Sxn− Syn

∥
∥+

∥
∥Syn− xn

∥
∥≤ ∥∥xn− yn

∥
∥+

∥
∥Syn− xn

∥
∥. (3.23)

It follows from (3.17) and (3.21) that limn→∞‖Sxn−xn‖=0. Observe that PF(S)∩EP(B)(γ f +
(I −A)) is a contraction. Indeed,∀x, y ∈H , we have

∥
∥PF(S)∩EP(B)

(
γ f + (I −A)

)
(x)−PF(S)∩EP(B)

(
γ f + (I −A)

)
(y)
∥
∥

≤ γ
∥
∥ f (x)− f (y)

∥
∥+‖I −A‖‖x− y‖

≤ γα‖x− y‖+ (1− γ)‖x− y‖ < ‖x− y‖.
(3.24)
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Banach’s contraction mapping principle guarantees that PF(S)∩EP(B)(γ f + (I −A)) has a
unique fixed point, say q ∈ H . That is, q = PF(S)∩EP(B)(γ f + (I −A))(q). Next, we show
that

limsup
n→∞

〈
γ f (q)−Aq,xn− q

〉≤ 0. (3.25)

To see this, we choose a subsequence {xni} of {xn} such that

limsup
n→∞

〈
γ f (q)−Aq,xn− q

〉= lim
i→∞
〈
γ f (q)−Aq,xni − q

〉
. (3.26)

Correspondingly, there exists a subsequence {yni} of {yn}. Since {yni} is bounded, there
exists a subsequence {ynij } of {yni} which converges weakly to w. Without loss of gener-
ality, we can assume that ynihar poonupw. From (3.22), we obtain Synihar poonupw.

Next, we show w ∈ F(S)∩ EP(B). First, we prove w ∈ EP(B). Since yn = Trnxn, we
have B(yn,u) + (1/rn)〈u− yn, yn − xn〉 ≥ 0 for all u ∈ C. It follows from (A2) that 〈u−
yn, (yn − xn)/rn〉 ≥ B(u, yn). Since (yni − xni)/rni→0, ynihar poonupw, and (A4), we have
B(u,w) ≤ 0 for all u ∈ C. For t with 0 < t ≤ 1 and u ∈ C, let ut = tu + (1− t)w. Since
u ∈ C and w ∈ C, we have ut ∈ C and hence B(ut,w) ≤ 0. So, from (A1) and (A4), we
have 0= B(ut,ut)≤ tB(ut,u) + (1− t)B(ut,w)≤ tB(ut,u). That is, B(ut,u)≥ 0. It follows
from (A3) that B(w,u) ≥ 0 for all u ∈ C and hence w ∈ EP(B). Since Hilbert spaces are
Opial’s spaces, from (3.22), we have

liminf
n→∞

∥
∥yni −w

∥
∥≤ liminf

n→∞
∥
∥Syni − Sw

∥
∥≤ liminf

n→∞
∥
∥yni −w

∥
∥ < liminf

n→∞
∥
∥yni − Sw

∥
∥,

(3.27)

which derives a contradiction. Thus, we have w ∈ F(S). That is, w ∈ F(S)∩EP(B). Since
q = PF(S)∩EP(B) f (q), we have

limsup
n→∞

〈
γ f (q)−Aq,xn− q

〉= lim
i→∞
〈
γ f (q)−Aq,xni − q

〉= 〈γ f (q)−Aq,w− q
〉≤ 0.

(3.28)

That is, (3.25) holds. Next, it follows Lemma 2.4 that

∥
∥xn+1− q

∥
∥2

≤ (1−αnγ
)2∥∥xn− q

∥
∥2

+αnγα
(∥
∥xn− q

∥
∥2

+
∥
∥xn+1− q

∥
∥2
)

+ 2αn
〈
γ f (q)−Aq,xn+1− q

〉
,

(3.29)

which implies that

∥
∥xn+1− q

∥
∥2 ≤

[
1− 2αn(γ−αγ)

1−αnγα

]∥
∥xn− q

∥
∥2

+
2αn(γ−αγ)

1−αnγα

[
1

γ−αγ

〈
γ f (q)−Aq,xn+1− q

〉
+

αnγ
2

2(γ−αγ)
M3

]
,

(3.30)
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where M3 is an appropriate constant such that M3 = supn→∞‖xn − q‖ for all n. Put
ln = 2αn(γ− αnγ)/(1− αnαγ) and tn = (1/(γ− αγ))〈γ f (q)−Aq,xn+1 − q〉+ (αnγ2/2(γ−
αγ))M3. That is,

∥
∥xn+1− q

∥
∥2 ≤ (1− ln

)∥∥xn− q
∥
∥+ lntn. (3.31)

It follows from condition (C1), (C2), and (3.25) that limn→∞ln = 0,
∑∞

n=1ln = ∞, and
limsupn→∞tn ≤ 0. Apply Lemma 2.1 to (3.31) to conclude xn→q. �

4. Applications

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H . and let S be
a nonexpansive mapping of C into H such that F(S) �=∅. Let A be a strongly positive linear
bounded operator with coefficient γ > 0. Assume that 0 < γ < γ/α. Let f be a contraction of
H into itself with a coefficient α (0 < α < 1) and let {xn} be a sequence generated by x1 ∈H
and

xn+1 = αnγ f
(
xn
)

+
(
I −αnA

)
SPCxn (4.1)

for all n, where αn ⊂ [0,1] and {rn} ⊂ (0,∞) satisfy
(C1) limn→∞αn = 0;
(C2)

∑∞
n=1αn =∞;

(C3)
∑∞

n=1|αn+1−αn| <∞.
Then {xn} converges strongly to q ∈ F(S), where q = PF(S)(γ f + (I −A))(q).

Proof. Put B(x, y)= 0 for all x, y ∈ C and {rn} = 1 for all n in Theorem 3.1. Then we have
yn = PCxn. So, the sequence {xn} converges strongly to q ∈ F(S), where q = PF(S)(γ f +
(I −A))(q). �

Remark 4.2. It is very clear that our algorithm with a variational regularization parameter
{rn} has certain advantages over the algorithm with a fixed regularization parameter r.
In some setting, when the regularization parameter {rn} depends on the iterative step n,
the algorithm may converge to some solution Q-superlinearly, that is, the algorithm has
a faster convergence rate when the regularization parameter {rn} depends on n, see [13]
and the references therein for more information.
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