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different direction using the notion of retraction and show that a stronger form of the often cited
Leggett-Williams theorem is a special case of this extension.
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1. Introduction

The classical Brouwer-Schauder fixed point theorem is an undeniably important tool in the
study of the existence of solutions to mathematical problems (e.g., see [1–3]). In recent years,
another fixed point theorem due to Krasnoselskii [4, 5] and its generalizations have been
successfully applied to obtain existence results for multiple positive solutions of various types
of boundary value problems, notably in the case of ordinary differential equations and their
discrete versions. Krasnoselskii himself [5] has applied his result to study the existence of
periodic solutions of periodic systems of ordinary differential equations. The main impetus
for seeking new cone fixed point theorems is to apply them to obtain better criteria for the
existence of solutions, for whatever problems the authors are currently interested in. The
majority of known proofs of Krasnoselskii’s theorem and its generalizations starts from first
principles, mostly using topological index (degree) theory. Examples of direct proofs without
using degree theory can be found, for example, in Potter [6] and Chaljub-Simon and Volkmann
[7].
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Krasnoselskii’s theorem has two parts (to be described in Section 2). The first part,
called the compressive form, bears resemblance to the Brouwer-Schauder theorem. In fact, in a
recent paper [8], we show that the former is a special case of a generalized Brouwer-Schauder
theorem. The second part, the expansive form, complements the compressive form. At first
sight, it seems to call for a proof different from that of the Brouwer-Schauder theorem. In this
paper, we are going to show that it follows from the compressive form almost trivially.

We believe that one of the reasons why the close relationship between Krasnoselskii’s
theorem and Brouwer-Schauder theorem has been overlooked is that the former is usually
stated in the setting of a cone embedded in a Banach space with a given norm. In this
setting, the norm functional plays a couple of important roles: in defining the region of
points we are interested in, and in stating the properties of the images under the given map.
When attempting to extend Krasnoselskii’s theorem, one naturally focuses on finding similar
functionals to replace the norm while still preserving these roles. On the other hand, the
Brouwer-Schauder theorem is more topological in nature, being free from the concept of a
metric. One can easily be misguided by this fact to think that the Brouwer-Schauder theorem
is not adequate to deal with the metric aspects of cone maps.

The first goal of this paper is to point out that Krasnoselskii’s theorem can indeed be
interpreted in a nonmetric framework. The norm function is more of a convenience rather than
a necessity. There are simpler ways to generalize the theorem without using functionals.

In Section 2, we first state a simplified version of Krasnoselskii’s theorem and discuss
several generalizations, especially the Krasnoselskii-Benjamin theorem. In Section 3, we
discuss the topological nature of the simplified Krasnoselskii theorem and show that it is
equivalent to a fixed point theorem for cylinder maps. We then show how the latter can be
derived in an elementary way from the classical Brouwer-Schauder theorem. We present yet
another proof of the expansive form of Krasnoselskii theorem. This proof makes it clear how
we can formulate a generalized expansive cone result, which incidentally reads more like a
Brouwer-type theorem than a cone theorem.

The second goal of this paper is to show that the boundary conditions in the Kras-
noselskii theorem can be further generalized using the notion of retraction. The general result
we present in Section 4 includes the Krasnoselskii-Benjamin theorem. Finally, in Section 5 we
show how our general result implies the frequently quoted Leggett-Williams theorem as well
as a result of Avery.

A discussion on applications of the new results derived here to boundary value problems
is deferred to a future paper.

2. Krasnoselskii’s theorem

The excellent expository article by Amann [9, Chapter 11] has a discussion and proof of the
Krasnoselskii theorem, with the general boundary conditions (2.7) and (2.6). See also [5, 10].

Let X be a (finite or infinite dimensional) Banach space with a given norm ‖ · ‖, and
K ⊂ X be a closed convex cone defined in the usual way, namely, that K satisfies the following
conditions:

(K1) If x ∈ K, then λx ∈ K for all real numbers λ > 0,

(K2) If x, y ∈ K, then x + y ∈ K,

(K3) If both x and −x ∈ K, then x = 0,

(K4) K is closed.
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Figure 1: (Krasnoselskii’s theorem in R2) Compressive form.
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Figure 2: (Krasnoselskii’s theorem in R2) Expansive form.

For visualization, we can use the special case where X is the three-dimensional space R3

with the Euclidean norm, andK is an infinite circular cone with its vertex at the origin, or, even
more simply, use the case whereX is the two-dimensional plane R2 andK is the wedge-shaped
region AOB in Figures 1 or 2.

A cone map on K is a completely continuous map T : K → K (of K into itself). When X
is finite dimensional, any continuous map is completely continuous. A point x ∈ K is a fixed
point of T if T(x) = x.

Let 0 < a < b be two given numbers. We are interested in conditions which guarantee
that T has a fixed point in the annular region K(a, b) = {x ∈ K : a ≤ ‖x‖ ≤ b}. Note that K(a, b)
is in general not convex, even though K is. We denote by Ka = {x ∈ K : ‖x‖ = a} and Kb =
{x ∈ K : ‖x‖ = b} the inner and outer boundaries, respectively, of K(a, b). We can extend the
notation to define K(0, a) and K(b,∞) in the obvious way. Theorem 2.1 is a simplified version
of Krasnoselskii’s original theorem. An illustration of this result in dimension 2 is depicted in
Figures 1 and 2.

Theorem 2.1 (Krasnoselskii 1960 [4]). Let K(a, b), T , Ka, and Kb be as defined above.

(1) (Compressive form) T has a fixed point in K(a, b) if
∥
∥T(x)

∥
∥ ≥ ‖x‖ ∀x ∈ Ka, (2.1)

∥
∥T(x)

∥
∥ ≤ ‖x‖ ∀x ∈ Kb. (2.2)
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(2) (Expansive form) T has a fixed point in K(a, b) if
∥
∥T(x)

∥
∥ ≤ ‖x‖ ∀x ∈ Ka, (2.3)

∥
∥T(x)

∥
∥ ≥ ‖x‖ ∀x ∈ Kb. (2.4)

Note that the conditions (2.1)–(2.4) are imposed only on points on the two curved
boundaries of K(a, b). Interior points and points on the sides of the cone can be moved in any
direction (as long as the image remains inside K). Also it is not stipulated that any particular
image point T(x) must lie inside K(a, b).

The adjectives “compressive” and “expansive” in the names of the two forms of the
theorem are conventional, and they are not meant to correctly describe the behavior of T
under all circumstances. For instance, in the “compressive” case, it may happen that the inner
boundary Ka is pushed by T far beyond the outer boundary Kb, resulting in a much larger
image T(K(a, b)) than K(a, b).

When (2.1) (or (2.2)) holds, we say that T is compressive on Ka (or Kb) with respect to
K(a, b). The phrase “with respect to K(a, b) ” may be omitted if it is obvious from the context.
If the inequality in (2.1) (or (2.2)) is strict, we say that T is strictly compressive on Ka (or Kb).
Likewise when (2.3) (or (2.4)) holds, T is expansive on Ka (or Kb), and T is strictly expansive
if the inequality in (2.3) (or (2.4)) is strict.

The conventional technique to apply the cone fixed point theorem to obtain existence
results for a boundary value problem is to rewrite the problem as an integral equation, usually
via the use of Green’s function. The Banach space is the space of continuous functions with
an appropriate norm, and the positive cone is the set of continuous positive functions or some
suitable subset of it. The integral operator is a completely continuous cone map and if one can
find suitable constants a and b such that the hypotheses of the cone theorem are satisfied, then
the annular region has a fixed point that is equivalent to a positive solution of the boundary
value problem.

Many generalizations of Theorem 2.1 are known. The first direction of extension is
to relax conditions (2.1)–(2.4). Krasnoselskii’s original result is actually stated with weaker
assumptions. In the compressive form, instead of (2.1) and (2.2), it is only required that

x − T(x)/∈K ∀x ∈ Ka,

T(x) − x /∈K ∀x ∈ Kb.
(2.5)

This allows part (but not all) of the inner boundary Ka to be pushed nearer the origin, and part
of the outer boundary Kb to be pushed away from the origin. Similar conditions are used by
Krasnoselskii in place of (2.3) and (2.4) in the expansive form.

In [9], it is shown that these conditions can be further weakened. Amann attributes
this result to Benjamin [11] (also established later independently by Nussbaum [12]). More
precisely, conditions (2.1) and (2.2) can be replaced by

∃p ∈ K \ 0, such that x − T(x)/=λp ∀λ ≥ 0, x ∈ Ka, (2.6)

T(x)/=λx, for any λ > 1, x ∈ Kb, (2.7)

and conditions (2.3) and (2.4) can be replaced by

T(x)/= λx, for any λ > 1, x ∈ Ka, (2.8)

∃p ∈ K \ 0, such that x − T(x)/=λp ∀λ ≥ 0, x ∈ Kb. (2.9)
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In the literature (although not in [9]), condition (2.7) is called the Leray-Schauder condition.
Schaefer [13] used it together with a retract argument and Schauder’s fixed point theorem
to prove the Leray-Schauder fixed point theorem. Petryshyn [14] has also used it to extend
the Brouwer-Schauder theorem and applied it to obtain existence results of boundary value
problems of partial differential equations. Some authors have thus referred to the above result
as the Petryshyn-Krasnoselskii theorem. Following [9], we will refer to it as the Krasnoselskii-
Benjamin theorem. A generalized Leray-Schauder condition is introduced in [8] to further
extend Brouwer’s theorem. In Section 4, we will show how this technique can also be used
to extend the Krasnoselskii theorem.

Geometrically, (2.7) means that no point on Kb is pushed by T away from the origin
“radially”. In other words, pushing a point x on Kb above Kb is allowed as long as the image
point T(x) is not collinear with x and the origin. Geometrically, (2.6) means that no point on
Ka is pushed by T towards the origin in a direction parallel to p; pushing it in the opposite
direction away from the origin is allowed.

There is an apparent asymmetry in the pair of conditions (2.6) and (2.7), when compared
to (2.1) and (2.2), or (2.5). An explanation will be given in Section 4 and the symmetry will be
restored in our generalization of the Krasnoselskii-Benjamin result.

A second direction of extension is to look at regions more general than K(a, b). A result
due to Guo, see [10], replaces K(a, b) in Theorem 2.1 by the more general region

J = K ∩ (

Ω2 \Ω1
)

, (2.10)

where Ω1 and Ω2 are two bounded open sets in X such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and A denotes
the closure of a set A. We will also use ∂A to denote the boundary of A. The conditions (2.1),
(2.2) or (2.3), (2.4) are assumed to hold, but now for points on K ∩∂Ω1 and K ∩∂Ω2, instead of
on Ka and Kb, respectively. The hypotheses that Ω1 and Ω2 are open but otherwise arbitrarily
means that we can apply the result to fairly general regions J . For instance, J may contain
holes. Most applications to differential equations, however, do not require such generalities.
The new results in this paper are formulated for regions more general than K(a, b), but not as
general as in Guo’s theorem.

The usual technique to obtain multiple solutions to a boundary value problem is to
stack two or more annular regions together and apply the alternative forms of Krasnoselskii’s
theorem to each of the regions to get a fixed point. For example, take three positive numbers
0 < a < b < c, and define the corresponding regions K(a, b) and K(b, c). Let us assume that
(2.1) and (2.2) hold for Ka and Kb, and (2.4) holds for Kc (replace b in (2.4) by c). Then, there
must be one fixed point in K(a, b) and one fixed point in K(b, c). There is a possibility that
these two fixed points are one and the same. If so, it must lie on the common boundary Kb.
In order to exclude this situation, we have to make the stronger assumption that T maps Kb

strictly away fromKb, in other words, T is strictly compressive onKb with respect toK(a, b). In
another example, if we assume that T is strictly expansive on K(a, b), and strictly compressive
on K(b, c), then we get at least three fixed points, one in each of K(0, a), K(a, b), and K(b, c).

Therefore, a third way to extend the cone theorem is to look for more general ways to
construct such stacked-annulus structures. For instance, one may use the same inner and outer
boundaries Ka and Kc as the example above, but replace Kb by a set of points defined by some
given continuous functional. The conditions (2.1)–(2.4) will, of course, have to be adjusted
accordingly. Leggett and Williams [15] use a concave functional for this purpose. Avery [16]
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applies similar ideas to the boundaries Ka and Kc, resulting in a five-functional theorem. In
Section 4, we will see that stronger forms of both of these results are corollaries of our general
result.

3. The topological nature of the fixed point property

Let B denote the closed unit ball in the Banach space X. The Brouwer-Schauder theorem is
often stated in the following form:

Any completely continuous map of B into itself has a fixed point.
However, it is well known that this result can be applied to much more general sets. Let

A be a subset of X that is topologically isomorphic (homeomorphic) to B. There exists a one-
to-one topological map F, such that F(B) = A. If S : A → A is a completely continuous map,
then the composite map F−1SF : B → B is a completely continuous map, so that there is a fixed
point, F−1SF(x) = x. It follows that, F(x) is a fixed point of S.

Suppose K is a bounded closed subset of X with the following star-shaped properties:
there exists an interior point O, which has a neighborhood contained inside K, and for every
point A on the boundary of K, the line segment OA is contained in the interior of K, except the
end-point A. Then, it is obvious that K is homeomorphic to the unit ball, via the topological
map F that scales every line OA radially towards O to be of unit length. Hence, the Brouwer-
Schauder theorem holds for K.

It is obvious that any bounded closed convex set with a nonempty interior satisfies the
above star-shaped property. Therefore, the Brouwer-Schauder theorem holds for any bounded
closed convex set with a nonempty interior. (In fact, it can be shown that this is true for any
bounded closed convex set, but the weaker assertion suffices for our purpose in this paper.) In
particular, this applies to the cylinder C(0, 1) that is used in Theorem 3.2 below. The cylinder
C(0, 1) is defined as the cross product of the unit interval [0, 1] and the unit ball B∗ in the
reduced space of codimension 1, and is therefore convex.

An implication of the above observation is that the role played by the norm of the Banach
space is not really that essential to the fixed point property (other than being used in the
definition of bounded sets in X).

The same arguments can be applied to the Krasnoselskii theorem. We can topologically
deform the coneK and the annular regionK(a, b) in any way and still have a fixed point result.
In the rest of this section we give two applications of this principle.

First let us deform K(a, b) by moving every point on Ka radially (and continuously)
to a new point, while avoiding a neighborhood of the origin 0. Likewise we can move
every point on Kb radially and continuously, while keeping it strictly “greater” than the
corresponding point on the deformed Ka. The set K(a, b) is now transformed to a new set
L, which we can think of as a “finite segment” of the cone K with continuous boundaries. Let
us define this transformation more precisely and apply the above principle to a generalization
of Theorem 2.1.

For every point p on K1, the ray (the half-infinite straight line) coming out from the
origin towards p intersects L in a finite line segment [θ(p)p, φ(p)p], where 0 < θ(p) < φ(p)
are real numbers that depend continuously on p. In addition, we assume that there exists a
positive constant ε such that ε ≤ θ(p) for all p. L is bounded from below by the inner boundary
La = {θ(p)p : p ∈ K1} and from above by the outer boundary Lb = {φ(p)p : p ∈ K1}, and on
the side by the side of K. We keep the subscript a and b in the notation La and Lb to remind us
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that they are analogs of Ka and Kb in Theorem 2.1. They should have been named Lθ and Lφ
instead.

If we take θ to be the constant function θ(p) = a and φ to be the constant function
φ(p) = b, then L, La, and Lb coincide with K(a, b), Ka, and Kb in the classical case, respectively.

Like K(a, b), L is in general not convex, but both of them are “radially convex” in the
sense that if two points in L are collinear with the origin 0, then the line segment joining the
two points is contained in L.

We can extend the functions θ and φ to all p ∈ K, p /= 0, by defining

θ(p) = θ
(

p

‖p‖
)

, φ(p) = φ
(

p

‖p‖
)

. (3.1)

The geometric meaning of these functions are: a point p lies “above” Ka if and only if θ(p) ≤
‖p‖; and it lies “below” Kb if and only if ‖p‖ ≤ φ(p).

Theorem 3.1. Let L, La, Lb, θ, and φ be as described above, and let T : L → K be a completely
continuous map.

(1) (Compressive form) T has a fixed point in L if
∥
∥T(x)

∥
∥ ≥ θ(Tx) ∀x ∈ La, (3.2)

∥
∥T(x)

∥
∥ ≤ φ(Tx) ∀x ∈ Lb. (3.3)

(2) (Expansive form) T has a fixed point in L if
∥
∥T(x)

∥
∥ ≤ θ(Tx) ∀x ∈ La, (3.4)

∥
∥T(x)

∥
∥ ≥ φ(Tx) ∀x ∈ Lb. (3.5)

Following the conventions used by some authors, we can also restate the result using
some functionals. Let α : K → [0,∞) and β : K → [0,∞) be two continuous functionals
defined on the cone K, such that

α(x) ≥ β(x) ∀x ∈ K. (3.6)

We also require that they are strictly increasing in the radial direction, namely, that (the same
holds for β):

α(x) > 0 for x /= 0, α(λx) > α(x) if λ > 1. (3.7)

Let 0 < a < b be two real numbers. Then, L = {x ∈ K : α(x) ≥ a, β(x) ≤ b} is a region as in
Theorem 3.1 with boundaries La = {x ∈ K : α(x) = a} and Lb = {x ∈ K : β(x) = b}. Conditions
(3.2)–(3.5) are then replaced by

α
(

T(x)
) ≥ a ∀x ∈ La,

β
(

T(x)
) ≤ b ∀x ∈ Lb,

α
(

T(x)
) ≤ a ∀x ∈ La,

β
(

T(x)
) ≤ b ∀x ∈ Lb.

(3.8)
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In our second application, we deform the annular region K(a, b) into a cylinder

C(0, 1) =
{(

t, x∗) : 0 ≤ t ≤ 1, x∗ ∈ B∗}, (3.9)

where B∗ is the unit ball in the reduced space of codimension 1. To see this, first note that every
point x in K(a, b) has the spherical coordinate (‖x‖, x/‖x‖). Hence, K(a, b) is isomorphic to
[a, b] ×K1. Here K1 is the intersection of the unit sphere of the Banach space with the convex
cone K. It is not the entire unit sphere, but rather, a proper “convex subset” of the unit sphere.
It is “convex” in the sense that given any two points in K1, the spherical “straight line” joining
these two points is contained in K1. We can then map [a, b] linearly onto [0, 1] and deform K1

to B∗. We can easily extend the isomorphism between K(a, b) and C(0, 1) to an isomorphism
between K and the half-infinite cylinder

C =
{(

t, x∗) : −1 ≤ t, x∗ ∈ B∗}. (3.10)

Theorem 2.1 is thus equivalent to the next theorem, which is shown to follow from the
classical Brouwer-Schauder theorem in an elementary way. We thus have a new proof of the
Krasnoselskii theorem.

Theorem 3.2. Let T : C(0, 1) → C be a completely continuous map, with the cylindrical coordinate
representation:

T(x) = (s, y), −1 ≤ s <∞, y ∈ B∗. (3.11)

(1) (Compressive form) T has a fixed point in C(0, 1) if

s ≥ 0 ∀x =
(

0, x∗), (3.12)

s ≤ 1 ∀x =
(

1, x∗). (3.13)

(2) (Expansive form) T has a fixed point in C(0, 1) if

s ≤ 0 ∀x =
(

0, x∗), (3.14)

s ≥ 1 ∀x =
(

1, x∗). (3.15)

Proof

Compressive form

As pointed out in [8], the compressive form is a special case of an extension of the Brouwer-
Schauder theorem, the so-called fixed point theorem with boundary conditions. Since the proof
is not very long, it is repeated here.

Let C0 and C1 denote the bottom and top faces of the cylinder, respectively.
Recall that we have, at the beginning of this section, shown that C(0, 1) has the Brouwer-

Schauder fixed point property.
If T maps C(0, 1) into itself, then the compressive form becomes just the Brouwer-

Schauder theorem. So suppose there are points x ∈ C(0, 1) that are mapped outside C(0, 1),
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that is, T(x) = (s, y) with s < 0 or s > 1. Define

T1(x) =
(

max
(

0,min(1, s)
)

, y
)

. (3.16)

The geometrical meaning of T1 is: if T(x) is in C(0, 1), T1 leaves it intact; if T(x) is above C1,
then T1 projects it vertically down to a point on C1; and if T(x) falls below C0, then T1 projects
it vertically up to a point on C0.

It is easy to see that T1 is completely continuous and maps C(0, 1) into itself. So, by the
Brouwer-Schauder theorem, T1 has a fixed point T1(x0) = x0 = (t0, x∗

0). We claim that this must
be a fixed point of the original map T . Suppose that T(x0) = (s0, y0).

There are three cases.

Case 1 (0 < t0 < 1). In other words, x0 is not on either C0 or C1. If T(x0) were above the upper
face, T1 would have pushed it down to lie on C1. This contradicts the assumption that x0 is
a fixed point, because x0 does not lie on C1 while its image does. Likewise, T(x0) cannot be
below C0. Hence, T(x0) must be strictly between C0 and C1 and so T(x0) = T1(x0) = x0 and x0

is a fixed point of the original map T .

Case 2 (t0 = 0). Now x0 lies on C0. By (3.12), T(x0) is on or above C0. It cannot be above C1,
otherwise T1(x0) will be on C1 and x0 cannot be a fixed point. Hence, T(x0) must be between
C0 and C1 and so again T(x0) = T1(x0) = x0 and x0 is a fixed point of the original map T .

Case 3 (t0 = 1). The proof is similar to Case 2.

Expansive form

Without loss of generality we may assume that T(x) has height s ≤ 2, for all x ∈ C(0, 1). In the
contrary case, we just redefine T(x) = (min(s, 2), y) and any fixed point of this new map is a
fixed point of the original map.

Define a new map

S(x) = S
(

t, x∗) = (2t − s, y). (3.17)

It is easy to verify that S is completely continuous. For a point x on C0, t = 0, and s ≤ 0, so
that 2t − s ≥ 0. In other words, S maps x above C0. Likewise, for a point x on C1, t = 1, and
s ≥ 1, so that 2t − s ≤ 1. In other words, S maps x below C1. The map S, therefore, satisfies the
compressive form that has already been proved above. Hence, S has a fixed point x0 = (t0, x∗

0).
Thus, if T(x0) = (s0, y0), we have

(

t0, x
∗
0
)

= S
(

t0, x
∗
0
)

=
(

2t0 − s0, y0
)

. (3.18)

This implies that

t0 = 2t0 − s0 =⇒ t0 = s0, x∗
0 = y0. (3.19)

Hence, T(x0) = (s0, y0) = (t0, x∗
0) and x0 is a fixed point of T .

The fact that the expansive form can be reduced to the compressive form opens up
another direction of extension. However, we will not pursue this matter further in this paper,
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other than giving the following example. Let A = {x = (xi)i=1,...,n ∈ Rn : 0 ≤ xi ≤ 1} be the unit
cube in Rn. For each i, there are two faces {x ∈ A : xi = 0} and {x ∈ A : xi = 1} and there
is an obvious way to define the concept of a compressive or expansive map on these faces in
the ith direction. Suppose that T : A → Rn is a continuous map that is either compressive or
expansive in each ith direction. Then T has a fixed point. This idea has also been pursued in
Precup [17], in which the product of n annular regions is the analogue of the cube A.

In the special case when A is a square, we have the interesting result: let T : A→ R2 be a
continuous function on a square A such that T maps the upper edge to points above itself, the
lower edge to points below itself, the left edge to points to its left, and the right edge to points
to its right, then T has a fixed point.

Let us give yet another proof of the expansive form of Theorem 3.2. This alternative
proof is more complicated and less elegant than the one given above. However, it has the
advantage of indicating how we can obtain a more general form of a multiple existence result
for completely continuous maps.

Alternative proof of the expansive form

As before, we can assume that all T(x) has height s ≤ 2. We denote by C(−1, 0) = {(t, x∗) : −1 ≤
t ≤ 0, x∗ ∈ B∗} and C(1, 2) = {(t, x∗) : 1 ≤ t ≤ 2, x∗ ∈ B∗} the two cylindrical regions below and
above C(0, 1), respectively.

By assumption, the entire bottom face of the cylinder C0 is mapped to a set E0 inside
C(−1, 0), and the entire top face C1 is mapped to a set E1 inside C(1, 2). We may even assume
a little more, namely, that E0 is strictly inside C(−1, 0) (E0 does not intersect the boundary
of C(−1, 0)), and, likewise, that E1 is strictly inside C(1, 2). If this is not the case, we can
approximate T by a sequence of completely continuous functions Tn, each having the desired
property. Then each Tn has a fixed point. The usual compactness argument then yields a
convergence subsequence of these fixed points, whose limit can be shown to be a fixed point
of T . The same approximation argument also allows us to assume that T maps C(0, 1) strictly
inside the cone C. It is easy to construct a continuous map U : C(−1, 2) → C(−1, 2) such that

(1) U maps C(−1, 0) into itself and it shrinks the set E0 to the single point (−1/2, 0), which
is the center of the cylinder C(−1, 0);

(2) U is the identity on C(0, 1);

(3) U maps C(1, 2) into itself and it shrinks the set E1 to the single point (3/2, 0).

It is also easy to verify that the composite map UT : C(0, 1) → C(0, 1) is completely
continuous and any fixed point of UT is a fixed point of T , and vice versa. But UT has the nice
property that it maps each of C0 and C1 to a single point.

Let us now extend UT to a map S : C(−1, 2) → C(−1, 2), by requiring

S(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪
⎩

(

− 1
2
, 0
)

, x ∈ C(−1, 0),

(
3
2
, 0
)

, x ∈ C(1, 2),
(3.20)

S maps C(−1, 2) strictly into C(−1, 2), C(−1, 0) to the single point (−1/2, 0), and C(1, 2) to the
single point (3/2, 0).
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It is well known that the existence of a fixed point for a map S is implied by the assertion
that the topological index of the map V = (S − id) is nonzero at the point 0, where id denotes
the identity map. We know that V has two fixed points, (−1/2, 0) and (3/2, 0). We claim that
there must be at least one more.

By resorting to topological index theory, we see that the fact that S maps C(−1, 2) strictly
into itself implies that the index of V at 0 is 1 or −1, depending on how the index is defined,
and the index is an odd number in any case. On the other hand, this index is the algebraic sum
of the indices at all the fixed points. From the simple form of V at the two known fixed points,
we can see that the index at each of these points is either 1 or −1. If there are no additional fixed
points, then the algebraic sum of indices will be either 0 or ±2 (an even number in any case),
which is a contradiction. This completes the proof.

It is now obvious how the same arguments can be used to obtain the following
generalization of the expansive cone theorem. It does not read like a cone theorem, but it does
imply the expansive Krasnoselskii theorem.

Theorem 3.3. LetK1,K2, . . .,K2n be a collection of 2n nonoverlapping subsets of another subsetK of
a Banach space. Assume that K and Ki are each isomorphic to the unit ball. Denote by Ko

i the interior
of each Ki, and

L = K \
2n⋃

i=1

Ko
i . (3.21)

Let T : L→ K be a completely continuous map such that

T
(

∂Ki

) ⊂ Ki, for i = 1, . . . , 2n, (3.22)

where ∂Ki denotes the boundary of Ki. Then T has a fixed point in L.

A simple example will be the unit ball B with an even number of spherical holes inside
it. Note that the result is false if there are only an odd number of holes.

4. A cone theorem with generalized boundary conditions

As mentioned in Section 2, we can extend Theorem 2.1 by discretely allowing parts of the
boundaries Ka or Kb to be mapped to locations not allowed by (2.1) and (2.2), or by (2.3)
and (2.4). The same can be said about Theorem 3.2. Let us explore this idea using the setting
of the latter. We only discuss the compressive form in detail since the expansive form can be
reduced to the compressive form by using the map S (defined in the proof of Theorem 3.2)
instead of T .

Suppose condition (3.12) is not true, namely, that part of the bottom face C0 is mapped
below itself. We want to be able to salvage the existence of a fixed point for T . By going through
the proof of the compressive form of Theorem 3.2 carefully, we can see that the proofs for Cases
1 and 3 work exactly as before. Let us look at Case 2. Recall that x0 is a fixed point of T1, and we
need to show that x0 is also a fixed point of T , or else there is a contradiction. If T(x0) happens
to lie on or above C0, the same proof still works. Therefore the only situation left to be dealt
with is when T(x0) is below C0. It is here that we need a condition to replace (3.12) with. The
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desired condition is to require that y /=x∗
0, or equivalently, T does not map x0 directly under x0.

This condition rules out the possibility that T1 pushes T(x0) back to its original position to get
a fixed point. The proof of the existence of a fixed point for T is thus complete.

In a similar way, if we know that T does not map any point on the top face directly
above itself, then the conclusion of the expansive form of Theorem 3.2 still holds. We have thus
proved that the compressive form of Theorem 3.2 remains true if (3.12) and (3.13) are replaced
by

either s ≥ 0 or y /=x∗ ∀x =
(

0, x∗), (4.1)

either s ≤ 1 or y /=x∗ ∀x =
(

1, x∗). (4.2)

If we translate these arguments back to the setting of the Krasnoselskii Theorem 2.1, (4.2)
corresponds to requiring that T does not move any point on Kb radially away from the origin,
and this is precisely the Leray-Schauder condition (2.7).

How about condition (4.1)? Why does it not translate into a similar Leray-Schauder-like
condition for points on the inner boundary Ka? Why does there appear to be an asymmetry
in the use of condition (2.7) for Kb but condition (2.6) for Ka? It is true that conditions (4.1)
and (4.2) are symmetric for the two boundaries ofC(0, 1), but there is a little technical difficulty
that precludes a perfect translation from the cylindrical framework back to the cone framework
owing to the presence of the cone vertex (the origin O). During the deformation of the cone
to the cylinder, points very near to the vertex have to be moved in a different way than those
points far away from the vertex. That is also why the cylindrical setting involves a half-infinite
cylinder, from t = −1 to t = ∞. The asymmetry is inherent in the cone setting. As a consequence,
there is no simple way to translate (4.1) into the Krasnoselskii setting if we have to deal with
points near the plane t = −1, or equivalently points near the cone vertex.

Now that we know the trouble maker is the cone vertex, it is not hard to convince
ourselves that as long as we know that, in the cone setting, the image of the inner boundary Ka

avoids a neighborhood of the origin, then an analogous Leray-Schauder condition will work
for Ka:

T(x)/=λx, for any 0 ≤ λ < 1, x ∈ Ka. (4.3)

In the special case when the Banach spaceX is finite dimensional, (4.3) alone is sufficient,
because the preliminary requirement that T(Ka) is disjoint from a neighborhood of 0 follows
from (4.3). To see this, first notice that (4.3) implies that 0 is not in the image T(Ka). Being the
image of a compact set Ka (because X is finite dimensional), T(Ka) is also compact and so is
closed. Thus, there must be a neighborhood of 0 that does not intersect T(Ka).

Let us examine the proof used to establish (4.1) and (4.2) more closely to see what
arguments can be further extended. A crucial step is the devising of a “retraction” map that
pushes the part of the image T(C(0, 1)) that lies outside C(0, 1) continuously onto C0 or C1.
In our case, it is the vertical projection of the image point either up to C0 or down to C1. The
analog in the cone setting is the radial projection of an image point either outwardly towards
Ka (if points in a neighborhood of 0 are not involved) or inwardly towards Kb.

As noticed in [8], in general, there exist a multitude of equally usable retractions for this
purpose. Each retraction yields a generalized Leray-Schauder condition that can be used to
extend the fixed point theorem (one merely repeats the above proof verbatim). This simple
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observation allows us to state a general result, given below as Theorems 4.1 and 4.2. They are
formulated as an extension of Theorem 3.1 which includes the classical Theorem 2.1. Note that
Theorem 3.3 can also be extended in a similar way, but we omit the details.

Going back to the case of trying to extend (2.1) and (2.4) for Theorem 2.1. If there is no
way to avoid having image points near the origin, then the Leray-Schauder condition will not
work. Instead we need to use conditions (2.6) and (2.9), which correspond to the retraction
that pushes every point in K(0, a) or K(0, b) in the direction parallel to p onto a point in Ka

or Kb. The Krasnoselskii-Benjamin theorem is thus a special case of the general result in this
section.

To be more precise, a retraction of a topological space Y onto a subset Z ⊂ Y is a
continuous map f : Y → Z, such that its restriction to Z is the identity map.

In addition to the notations of Theorem 3.1, we extend the analogy between L and K, La
and Ka, and so forth, to define

L(0, a) =
{

x ∈ K : ‖x‖ ≤ θ(x)},
L(a,∞) =

{

x ∈ K : ‖x‖ ≥ θ(x)},
L(0, b) =

{

x ∈ K : ‖x‖ ≤ φ(x)},
L(b,∞) =

{

x ∈ K : ‖x‖ ≥ φ(x)}.

(4.4)

Given a completely continuous map T : L→ K, letHa be a subset of L(0, a) that contains
the union of L(0, a) ∩ T(L) and La, and let Hb be a subset of L(b,∞) that contains the union of
L(b,∞) ∩ T(L) and Lb. For the expansive form, we need two similar sets. Let Ga be a subset of
L(a,∞) that contains the union of L(a,∞) ∩ T(L) and La, and let Gb be a subset of L(0, b) that
contains the union of L(0, b) ∩ T(L) and Lb.

Theorem 4.1 (compressive form). Suppose there exist two retractions fa : Ha → La and fb : Hb →
Lb, and T : L→ K satisfies

either
∥
∥T(x)

∥
∥ ≥ θ(Tx) or fa(x)/=x ∀x ∈ La, (4.5)

either
∥
∥T(x)

∥
∥ ≤ φ(Tx) or fb(x)/=x ∀x ∈ Lb. (4.6)

Then, T has a fixed point.

Theorem 4.2 (expansive form). Suppose there exist two retractions ga : Ga → La and gb : Gb → Lb,
and T : L→ K satisfies

either
∥
∥T(x)

∥
∥ ≤ θ(Tx) or ga(x)/=x ∀x ∈ La,

either
∥
∥T(x)

∥
∥ ≥ φ(Tx) or gb(x)/=x ∀x ∈ Lb.

(4.7)

Then, T has a fixed point.

For convenience, we call (4.5) and (4.6) the generalized compressive condition and (4.7)
the generalized expansive condition.

Let us give a simple example of an application of Theorem 4.1. Figure 3 depicts a
continuous map T of a two-dimensional cone similar to the one shown in Figure 1. T is
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Figure 3: An example of the cone theorem with generalized boundary conditions.

compressive on the outer boundary Kb, but not on the inner boundary Ka. We require that
T(Ka) intersects Ka at a single point x, and that ‖T(x)‖ ≥ a. Then, T has a fixed point.

The dashed curve represents the image of Ka, T(Ka). The point X represents x, where
T(Ka) intersects Ka. Note that as x traverses the arc Ka from one end to the other, the image
T(x) may cross Ka multiple times (but every time at the same point x). To prove the assertion,
we have to construct the required retraction. Suppose we can draw two straight lines MX and
NX as shown so that the part of the image T(Ka) is contained in the quadrilateral OMXN. The
desired retraction can be defined as follows: every point in OMXN is sent to X, every point
above the line MX is pushed in a direction parallel to MX to a point on Ka, and every point
at the right of NX is pushed in a direction parallel to NX to a point on Ka. Theorem 4.1 now
gives us a fixed point. In general, if the curve T(Ka) is somewhat tangential to Ka at the point
X, we may not be able to draw the lines MX and NX as shown. In such situations, we need to
first deform T(Ka) isomorphically until we are able to draw those lines. That should not be too
hard to do.

The above example is a special case of the following more general situation. Let the arc
Ka be divided into three subarcs x0x1, x1x2, and x2x3. x0 is where Ka intersects the line OA; x3

is where Ka intersects OB; and x1 and x2 are points on Ka. Suppose that T(Ka) only crosses Ka

at points on the subarc x1x2, and ‖Tx‖ ≥ ‖x‖ for all points on the subarc x1x2. Then, T has a
fixed point in K(a, b).

Note that if the part of the image T(Ka) that lies in the region OMXN touches the two
sides of the cone as shown in Figure 3, then condition (2.6) is not satisfied. Therefore, Theorems
4.1 and 4.2 represent a true extension of the Krasnoselskii-Benjamin theorem.

Other examples of generalized Leray-Schauder conditions that are independent of the
classical condition have been given in [8].

5. The Leggett-Williams theorem as a special case

A frequently cited extension of Krasnoselskii’s theorem in the study of multiple solutions of
boundary value problems is due to Leggett and Williams [15]. We will show that it is a special
case of our general result in Section 4.

Let α : K → [0,∞) be a nonnegative continuous concave functional, and α(x) ≤ ‖x‖,
at least for those x we are interested in. Let 0 < a < b < d ≤ c be given positive numbers.
Define Kα(b, d) = {x ∈ K : b ≤ α(x), ‖x‖ ≤ d}. Assume that T : K(0, c) → K(0, c) is completely
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Figure 4: The Leggett-Williams theorem.

continuous and satisfies

(1) {x ∈ Kα(b, d) : α(x) > b}/=∅ and α(Tx) > b, for x ∈ Kα(b, d),

(2) ‖Tx‖ < a, for ‖x‖ ≤ a, and

(3) α(Tx) > b, for x ∈ Kα(b, c) with ‖Tx‖ > d.

Then, T has at least three fixed points.
Recall the technique of stacked annulus discussed at the end of Section 2. In the Leggett-

Williams result, the functional α is used in place of the norm in defining the middle boundary
Kb. Leggett and Williams use the same Ka and Kc as in the classical case. It is obvious how the
more general notions of L, La, and Lb of Theorem 3.1 can also be exploited for this purpose.

It is useful to draw a picture to visualize the various sets involved. Figure 4 illustrates
one possible situation. In the picture, the nonitalic letters from M to T are labels of points, while
the italic Ka, Kb, Kc, and Kd are names of curves. There are, of course, other possibilities. For
instance, the curve QPR (or Kb) may intersect the curves Kd and Kc again near the bottom side
of the cone. But Figure 4 suffices for our purposes.

Figure 4 is a flat representation of a higher-dimensional (even infinite dimensional)
geometric object. So, we have to use a bit of imagination. When we see a curve, such as Ka,
it is in fact a surface of codimension one, and a point of intersection, such as P is a surface of
codimension two, and so on. For the sake of simplicity, in the discussion below, we stick to the
two-dimensional terminologies of point and curve, and so on.

The curve Kb represents the set of points {x ∈ K(0, c) : α(x) = b}. In general if the
functional α is not strictly concave, this set may not be a “thin curve.” The set Kα(b, d) is
the area bounded by the curves PR, PS, and the straight line RS. The concavity of α and the
convexity of the norm functional imply that this set is convex. The set Kα(b, c) is the area
RPQTSR, which is also convex.

One obvious difference between Figure 4 and Figures 1 or 2 is the convexity of the curve
Kb, because Leggett and Williams have replaced the norm functional, which is convex, by
the concave functional α in the definition of Kα(b, d). As a consequence, the Leggett-Williams
result is not a true extension of Krasnoselskii’s theorem because it does not include the latter
as a special case.

For the time being, let us ignore the curve Kd. The subset K(0, c) is divided into three
regions:K(0, a),Kα(b, c) (the area RPQTSR), and the rest. The circumstance here is reminiscent
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of that in the alternative proof of the expansive form of Theorem 3.2 (in which we have three
cylinders C(−1, 0), C(1, 2), and C(0, 1)).

Condition 2 above implies that T is strictly compressive on the first region, K(0, a), and
so it has a fixed point in the interior of K(0, a). Notice that to arrive at this conclusion, we only
need condition 2 to hold for all ‖x‖ = a, instead of for all ‖x‖ ≤ a.

Now suppose we can show that T is also strictly compressive on the region Kα(b, c).
Then Kα(b, c) also has an interior fixed point. We can get a third fixed point by either using
Theorem 3.3 or by using the fact that T is expansive on the third region.

In general, under the hypotheses of the Leggett-Williams theorem, T is not strictly
compressive on Kα(b, c) in the simple sense, but we can show that it is strictly compressive in
the generalized sense of Theorem 4.1. Hence, it becomes strictly expansive on the third region
in the generalized sense. By applying Theorems 4.1 and 4.2, we will get two distinct fixed
points, one in each of Kα(b, c) and the third region.

The region Kα(b, c) has two boundaries, the outer boundary is the part of Kc between
Q and T. The hypotheses that T maps K(0, c) into itself implies that T is compressive on this
outer boundary QT.

The inner boundary is the curve QPR, which is cut by the curve Kd into two parts, the
curve segments RP and PQ.

Condition 1 has two subconditions. The first implies that the set Kα(b, d) or RPSR has
nonempty interior points. This subcondition is stronger than necessary; we need only to know
that the curve segment RP is nonempty. The second subcondition means that T pushes the
area RPSR strictly to the right of the curve Kb and this implies that T is strictly compressive on
RP. It remains to show that T is compressive in the general sense on the other part PQ of the
boundary. This is where condition 3 comes in.

Condition 3 concerns Ka(b, c), the entire region RPQTSR, but what we need to know
to arrive at the desired result is only the information on the curve segment PQ. Let us restate
condition 3: for x on PQ, either α(Tx) > b or ‖Tx‖ ≤ d. Geometrically, this means that points on
PW are mapped either to the right of Kb or to the left of Kd. Those points that are mapped to
the right of Kb are being strictly compressed by T and so we do not have to worry about them.
It remains to show that those points that are mapped to the left of Kb and Kd (those image
points that fall inside the region OMPR) are compressed by T in the generalized sense.

To this end, we need to construct a retraction f of the region OMNQPRO onto the curve
QPR, such that the subregion OMPRO is collapsed onto PR. After this is done, take any x on
PQ. If T(x) falls in OMPRO, then f(T(x)) lies on PR, and so f(T(x))/=x, and the generalized
compressive condition (4.5) is satisfied.

There are many ways to construct the required retraction. For instance, we can take a
point A inside the region RPSR and project every point in OMNQPRO radially onto QPR using
A as the center. We have thus completed the proof of a stronger Leggett-Williams result, with
conditions from 1 to 3 replaced by

(1‘) Kα(b, d)/=∅ and α(Tx) > b, for x ∈ Kα(b, d) ∩Kb,

(2‘) ‖Tx‖ < a, for‖x‖ = a, and

(3‘) α(Tx) > b, for x ∈ K(c, d) ∩Kb with ‖Tx‖ > d.

As a matter of fact, the way we treat Kb in Figure 4 is reminiscent of how we treat Ka in
Figure 3.
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Since Leggett and Williams use the same boundaries Ka and Kc as in the classical
case, that leaves some room for further generalization. In [16], Avery proves a five-functional
theorem. His first idea is to define the curves Ka, Kc, and Kd in a more general way using three
distinct convex functionals instead of the norm functional. Then there is the same concave
functional α as in Leggett-Williams. A fifth functional is used to define an additional curve that
cuts Ka into two parts, analogous to how Kd cuts Kb into two parts in the Leggett-Williams
result (for this extension, condition 2 has to be extended to guarantee that T when restricted
to K(0, a) is compressive on Ka in the generalized sense). The geometrical configuration
of the various sets is now a little more complicated than the Leggett-Williams setting. The
curves Kc and Kd are still concave outwards, but since they are defined by two distinct
functionals, they may not be disjoint as shown in Figure 4. In addition, there is a fifth curve that
intersects Ka. Nevertheless, a careful repetition of the arguments in our proof of the Leggett-
Williams theorem can be used to show that the five-functional theorem is likewise a corollary
of Theorems 4.1 and 4.2.
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