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Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm. Suppose that every
weakly compact convex subset of E has the fixed point property for nonexpansive mappings. Let C
be a nonempty closed convex subset of E, f : C → C a contractive mapping (or a weakly contractive
mapping), and T : C → C nonexpansive mapping with the fixed point set F(T) /= ∅. Let {xn} be
generated by a new composite iterative scheme: yn = λnf(xn)+(1−λn)Txn, xn+1 = (1−βn)yn+βnTyn,
(n ≥ 0). It is proved that {xn} converges strongly to a point in F(T), which is a solution of
certain variational inequality provided that the sequence {λn} ⊂ (0, 1) satisfies limn→∞λn = 0 and∑∞

n=1λn = ∞, {βn} ⊂ [0, a) for some 0 < a < 1 and the sequence {xn} is asymptotically regular.

Copyright q 2008 Jong Soo Jung. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of E. Recall that a
mapping f : C → C is a contraction on C if there exists a constant k ∈ (0, 1) such that ‖f(x) −
f(y)‖ ≤ k‖x − y‖, x, y ∈ C. We use ΣC to denote the collection of mappings f verifying the
above inequality. That is, ΣC = {f : C → C | f is a contractionwith constant k}. Note that each
f ∈ ΣC has a unique fixed point in C.

Now let T : C → C be a nonexpansive mapping (recall that a mapping T : C → C is
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C) and F(T) denote the set of fixed points of T ; that
is, F(T) = {x ∈ C : x = Tx}.

We consider the iterative scheme: for T nonexpansive mapping, f ∈ ΣC and λn ∈ (0, 1),

xn+1 = λnf
(
xn

)
+
(
1 − λn

)
Txn, n ≥ 0. (1.1)

As a special case of (1.1), the following iterative scheme:

zn+1 = λnu +
(
1 − λn

)
Tzn, n ≥ 0, (1.2)
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where u, z0 ∈ C are arbitrary (but fixed), has been investigated by many authors; see, for
example, Cho et al. [1], Halpern [2], Lions [3], Reich [4, 5], Shioji and Takahashi [6], Wittmann
[7], and Xu [8]. The authors above showed that the sequence {zn} generated by (1.2) converges
strongly to a point in the fixed point set F(T) under appropriate conditions on {λn} in either
Hilbert spaces or certain Banach spaces. Recently, many authors also considered the iterative
scheme (1.2) for finite or countable families of nonexpansive mappings {Ti}i∈{1,2,...,r or∞}; see,
for instance, [9–14].

The viscosity approximation method of selecting a particular fixed point of a given
nonexpansive mapping in a Hilbert space was proposed by Moudafi [15] (see [16] for finding
hierarchically a fixed point). In 2004, Xu [17] extended Theorem 2.2 of Moudafi [15] for the
iterative scheme (1.1) to a Banach space setting using the following conditions on {λn}:

(H1) limn→∞λn = 0;
∑∞

n=0λn = ∞ or, equivalently,
∏∞

n=0(1 − λn) = 0;

(H2)
∑∞

n=0|λn+1 − λn| <∞ or limn→∞(λn/λn+1) = 1.

We also refer to [18–23] for the iterative scheme (1.1) for finite of countable families of
nonexpansive mappings {Ti}i∈{1,2,...,r or ∞}. For the iterative scheme (1.1) with generalized
contractive mappings instead of contractions, see [22, 24]. We can refer to [25] for the general
iteration method for finding a zero of accretive operator.

Recently, Kim and Xu [26] provided a simpler modification of Mann iterative scheme
(1.3) in a uniformly smooth Banach space as follows:

x0 = x ∈ C,
yn = βnxn +

(
1 − βn

)
Txn,

xn+1 = αnu +
(
1 − αn

)
yn,

(1.3)

where u ∈ C is an arbitrary (but fixed) element, and {αn} and {βn} are two sequences in (0, 1).
They proved that {xn} generated by (1.3) converges to a fixed point of T under the control
conditions:

(i) limn→∞αn = 0, limn→∞βn = 0;

(ii)
∑∞

n=0αn = ∞, (or equivalently,
∏∞

n=0(1 − αn) = 0),
∑∞

n=0βn = ∞;

(iii)
∑∞

n=0|αn+1 − αn| <∞,
∑∞

n=0|βn+1 − βn| <∞.

In this paper, motivated by the above-mentioned results, as the viscosity approximation
method, we consider a new composite iterative scheme for nonexpansive mapping T :

x0 = x ∈ C,
yn = λnf

(
xn

)
+
(
1 − λn

)
Txn,

xn+1 =
(
1 − βn

)
yn + βnTyn,

(IS)

where {βn}, {λn} ⊂ (0, 1). First, we prove the strong convergence of the sequence {xn}
generated by (IS) under the suitable conditions on the control parameters {βn} and {λn}
and the asymptotic regularity on {xn} in reflexive Banach space with a uniformly Gâteaux
differentiable norm together with the assumption that every weakly compact convex subset of
E has the fixed point property for nonexpansive mappings. Moreover, we show that the strong
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limit is a solution of certain variational inequality. Next, we study the viscosity approximation
with the weakly contractive mapping to a fixed point of nonexpansive mapping in the same
Banach space. The main results improve and complement the corresponding results of [1–
8, 15, 17]. In particular, if βn = 0, for all n ≥ 0, then (IS) reduces to (1.1). We point out that the
iterative scheme (IS) is a new one for finding a fixed point of T .

2. Preliminaries and lemmas

Let E be a real Banach space with norm ‖·‖ and let E∗ be its dual. The value of f ∈ E∗ at x ∈ E
will be denoted by 〈x, f〉. When {xn} is a sequence in E, then xn → x (resp., xn ⇀ x) will
denote strong (resp., weak) convergence of the sequence {xn} to x.

The (normalized) duality mapping J from E into the family of nonempty (by Hahn-Banach
theorem) weak-star compact subsets of its dual E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2} (2.1)

for each x ∈ E [27].
The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.2)

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. The norm is said to be uniformly
Gâteaux differentiable if for y ∈ U, the limit is attained uniformly for x ∈ U. The space E is said
to have a uniformly Fréchet differentiable norm (and E is said to be uniformly smooth) if the limit
in (2.2) is attained uniformly for (x, y) ∈ U×U. It is known that E is smooth if and only if each
duality mapping J is single-valued. It is also well known that if E has a uniformly Gâteaux
differentiable norm, J is uniformly norm to weak continuous on each bounded subset of E
[27].

Let C be a nonempty closed convex subset of E. C is said to have the fixed point property
for nonexpansive mappings if every nonexpansive mapping of a bounded closed convex
subset D of C has a fixed point in D.

LetD be a subset of C. Then, a mappingQ : C → D is said to be a retraction from C onto
D ifQx = x for all x ∈ D. A retractionQ : C → D is said to be sunny ifQ(Qx+ t(x−Qx)) = Qx
for all x ∈ C and t ≥ 0 withQx+t(x−Qx) ∈ C. A subsetD ofC is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction of C onto D. In a smooth Banach
space E, it is well known [28, page 48] that Q is a sunny nonexpansive retraction from C onto
D if and only if the following condition holds:

〈
x −Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.3)

We need the following lemmas for the proof of our main results. (Lemma 2.1 was also
given by Jung and Morales [29] and Lemma 2.2 is essentially Lemma 2 of Liu [30] (also see
[8]).)

Lemma 2.1. Let X be a real Banach space and let J be the duality mapping. Then, for any given x, y ∈
X, one has

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉
(2.4)

for all j(x + y) ∈ J(x + y).
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Lemma 2.2. Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − αn)sn + αnγn + δn, n ≥ 0, (2.5)

where {αn}, {γn}, and {δn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1] and
∑∞

n=0αn = ∞ or, equivalently,
∏∞

n=0(1 − αn) = 0,

(ii) lim supn→∞γn ≤ 0 or
∑∞

n=1αnγn <∞,

(iii) δn ≥ 0 (n ≥ 0),
∑∞

n=0δn <∞.

Then, limn→∞sn = 0.

Recall that a mapping A : C → C is said to be weakly contractive if

‖Ax −Ay‖ ≤ ‖x − y‖ − ψ(‖x − y‖), ∀x, y ∈ C, (2.6)

where ψ : [0,+∞) → [0,+∞) is a continuous and strictly increasing function such that ψ is
positive on (0,∞) and ψ(0) = 0. As a special case, if ψ(t) = (1 − k)t for t ∈ [0,+∞), where
k ∈ (0, 1), then the weakly contractive mapping A is a contraction with constant k. Rhoades
[31] obtained the following result for weakly contractive mapping.

Lemma 2.3 (see [31, Theorem 2]). Let (X, d) be a complete metric space, andA a weakly contractive
mapping onX. Then,A has a unique fixed point p inX. Moreover, for x ∈ X, {Anx} converges strongly
to p.

The following lemma was given in [32, 33].

Lemma 2.4. Let {sn} and {γn} be two sequences of nonnegative real numbers and {λn} a sequence of
positive numbers satisfying the conditions

(i)
∑∞

n=0λn = ∞ or, equivalently,
∏∞

n=0(1 − λn) = 0,

(ii) limn→∞(γn/λn) = 0.

Let the recursive inequality

sn+1 ≤ sn − λnψ
(
sn
)
+ γn, n = 0, 1, 2, . . . , (2.7)

be given where ψ(t) is a continuous and strict increasing function on [0,+∞) with ψ(0) = 0. Then,
limn→∞sn = 0.

Finally, the sequence {xn} in E is said to be asymptotically regular if

lim
n→∞

‖xn+1 − xn‖ = 0. (2.8)

3. Main results

First, using the asymptotic regularity, we study a strong convergence theorem for a composite
iterative scheme for the nonexpansive mapping with the contractive mapping.
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For T : C → C nonexpansive and so for any t ∈ (0, 1) and f ∈ ΣC, tf + (1 − t)T : C → C
defines a strict contraction mapping. Thus, by the Banach contraction mapping principle, there
exists a unique fixed point xft satisfying

x
f
t = tf

(
x
f
t

)
+ (1 − t)Txf

t . (R)

For simplicity, we will write xt for x
f
t provided no confusion occurs.

In 2006, the following result was given by Jung [18] (see also Xu [17] for the result in
uniformly smooth Banach spaces).

Theorem J (see Jung [18]). Let E be a reflexive Banach space with a uniformly Gâteaux differentiable
norm. Suppose that every weakly compact convex subset of E has the fixed point property for
nonexpansive mappings. Let C be a nonempty closed convex subset of E and T nonexpansive mapping
from C into itself with F(T) /= ∅. Then, {xt} defined by (R) converges strongly to a point in F(T). If
one defines Q : ΣC → F(T) by

Q(f) := lim
t→0+

xt, f ∈ ΣC, (3.1)

then Q(f) solves a variational inequality
〈
(I − f)(Q(f)

)
, J
(
Q(f) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.2)

Remark 3.1. In Theorem J, if f(x) = u ∈ C is a constant, then (3.2) becomes
〈
Q(u) − u, J(Q(u) − p)〉 ≤ 0, u ∈ C, p ∈ F(T). (3.3)

Hence by (2.3), Q reduces to the sunny nonexpansive retraction from C to F(T). Namely, F(T)
is a sunny nonexpansive retraction of C.

Using Theorem J and the asymptotic regularity on the sequence {xn}, we have the
following result.

Theorem 3.2. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm. Suppose
that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings.
Let C be a nonempty closed convex subset of E and T nonexpansive mappings from C into itself with
F(T) /= ∅. Let {βn} and {λn} be sequences in (0, 1) which satisfies the conditions:

(B1) βn ∈ [0, a) for some 0 < a < 1 for all n ≥ 0,

(C1) limn→∞λn = 0;
∑∞

n=0λn = ∞.

Let f ∈ ΣC and x0 ∈ C be chosen arbitrarily. Let {xn} be the sequence generated by

x0 = x ∈ C,
yn = λnf

(
xn

)
+
(
1 − λn

)
Txn,

xn+1 =
(
1 − βn

)
yn + βnTyn, n ≥ 0.

(IS)

If {xn} is asymptotically regular, then {xn} converges strongly to Q(f) ∈ F(T), where Q(f) is the
unique solution of the variational inequality

〈
(I − f)(Q(f)

)
, J

(
Q(f) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.4)



6 Fixed Point Theory and Applications

Proof. We notice that by Theorem J, there exists a solution Q(f) of a variational inequality

〈
(I − f)(Q(f)

)
, J

(
Q(f) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.5)

Namely, Q(f) = limt→0+xt, where xt is defined by (R). We will show that xn → Q(f).
We proceed with the following steps.

Step 1. We show that ‖xn−z‖ ≤ max{‖x0−z‖, (1/(1−k))‖f(z)−z‖} for all n ≥ 0 and all z ∈ F(T)
and so {xn}, {yn}, {f(xn)}, {Txn}, and {Tyn} are bounded.

Indeed, let z ∈ F(T). Then, we have
∥
∥yn − z

∥
∥ =

∥
∥λn

(
f
(
xn

) − z) + (
1 − λn

)(
Txn − z

)∥
∥

≤ λn
∥
∥f

(
xn

) − z∥∥ +
(
1 − λn

)∥
∥xn − z

∥
∥

≤ λn
(∥
∥f

(
xn

) − f(z)∥∥ +
∥
∥f(z) − z∥∥) + (

1 − λn
)∥
∥xn − z

∥
∥

≤ λnk
∥
∥xn − z

∥
∥ + λn

∥
∥f(z) − z∥∥ +

(
1 − λn

)∥
∥xn − z

∥
∥

=
(
1 − (

1 − k)λn
)∥
∥xn − z

∥
∥ + λn

∥
∥f(z) − z∥∥

≤ max
{
∥
∥xn − z

∥
∥,

1
1 − k

∥
∥f(z) − z∥∥

}

,

∥
∥xn+1 − z

∥
∥ =

∥
∥
(
1 − βn

)(
yn − z

)
+ βn

(
Tyn − z

)∥
∥

≤ (
1 − βn

)∥
∥yn − z

∥
∥ + βn

∥
∥yn − z

∥
∥

=
∥
∥yn − z

∥
∥ ≤ max

{
∥
∥xn − z

∥
∥,

1
1 − k

∥
∥f(z) − z∥∥

}

.

(3.6)

Using an induction, we obtain

∥
∥xn − z

∥
∥ ≤ max

{
∥
∥x0 − z

∥
∥,

1
1 − k

∥
∥f(z) − z∥∥

}

(3.7)

for all n ≥ 0. Hence, {xn} is bounded, and so are {yn}, {Txn}, {Tyn}, and {f(xn)}. Moreover, it
follows from condition (C1) that

∥
∥yn − Txn

∥
∥ = λn

∥
∥f

(
xn

) − Txn
∥
∥ −→ 0 (as n −→ ∞). (3.8)

Step 2. We show that limn→∞‖xn+1 −yn‖ = 0 and limn→∞‖xn −yn‖ = 0. Indeed, by the condition
(B1)

∥
∥xn+1 − yn

∥
∥ = βn

∥
∥Tyn − yn

∥
∥

≤ βn
(∥
∥Tyn − Txn

∥
∥ +

∥
∥Txn − yn

∥
∥
)

≤ a(∥∥yn − xn
∥
∥ +

∥
∥Txn − yn

∥
∥
)

≤ a(∥∥yn − xn+1
∥
∥ +

∥
∥xn+1 − xn

∥
∥ +

∥
∥Txn − yn

∥
∥
)

(3.9)

which implies that

∥
∥xn+1 − yn

∥
∥ ≤ a

1 − a
(∥
∥xn+1 − xn

∥
∥ +

∥
∥Txn − yn

∥
∥
)
. (3.10)
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So, by asymptotic regularity of {xn} and (3.8), we have ‖xn+1 − yn‖ → 0, and also

∥
∥xn − yn

∥
∥ ≤ ∥

∥xn − xn+1
∥
∥ +

∥
∥xn+1 − yn

∥
∥ −→ 0 (as n −→ ∞). (3.11)

Step 3. We show that limn→∞‖yn − Tyn‖ = 0. By (3.8) and Step 2, we have

∥
∥yn − Tyn

∥
∥ ≤ ∥

∥yn − Txn
∥
∥ +

∥
∥Txn − Tyn

∥
∥

≤ ∥
∥yn − Txn

∥
∥ +

∥
∥xn − yn

∥
∥ −→ 0.

(3.12)

Step 4. We show that lim supn→∞〈Q(f) − f(Q(f)), J(Q(f) − yn)〉 ≤ 0. To prove this, let a
subsequence {ynj} of {yn} be such that

lim sup
n→∞

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − yn

)〉
= lim

j→∞
〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉
(3.13)

and ynj ⇀ p for some p ∈ E. From Step 3, it follows that limj→∞‖ynj − Tynj‖ = 0.
Now let Q(f) = limt→0+xt, where xt = tf(xt) + (1 − t)Txt. Then, we can write

xt − ynj = t
(
f
(
xt
) − ynj

)
+ (1 − t)(Txt − ynj

)
. (3.14)

Putting

aj(t) = (1 − t)2∥∥Tynj − ynj
∥
∥
(
2
∥
∥xt − ynj

∥
∥ +

∥
∥Tynj − ynj

∥
∥
) −→ 0 (j −→ ∞) (3.15)

by Step 3 and using Lemma 2.1, we obtain

‖xt − ynj‖2 ≤ (1 − t)2‖Txt − ynj‖2 + 2t
〈
f
(
xt
) − ynj , J

(
xt − ynj

)〉

≤ (1 − t)2(‖Txt − Tynj‖ + ‖Tynj − ynj‖
)2 + 2t

〈
f
(
xt
) − xt, J

(
xt − ynj

)〉
+ 2t‖xt − ynj‖2

≤ (1 − t)2‖xt − ynj‖2 + aj(t) + 2t
〈
f
(
xt
) − xt, J

(
xt − ynj

)〉
+ 2t‖xt − ynj‖2.

(3.16)

The last inequality implies

〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉 ≤ t

2
‖xt − ynj‖2 +

1
2t
aj(t). (3.17)

It follows that

lim sup
j→∞

〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉 ≤ t

2
M, (3.18)

where M > 0 is a constant such that M ≥ ‖xt − yn‖2 for all n ≥ 0 and t ∈ (0, 1). Taking the
lim sup as t → 0 in (3.18) and noticing the fact that the two limits are interchangeable due to
the fact that J is uniformly continuous on bounded subsets of E from the strong topology of E
to the weak∗ topology of E∗, we have

lim sup
j→∞

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉 ≤ 0. (3.19)
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Indeed, letting t → 0, from (3.18)we have

lim sup
t→0

lim sup
j→∞

〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉 ≤ 0. (3.20)

So, for any ε > 0, there exists a positive number δ1 such that for any t ∈ (0, δ1),

lim sup
j→∞

〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉 ≤ ε

2
. (3.21)

Moreover, since xt → Q(f) as t → 0, the set {xt − ynj} is bounded and the duality mapping J
is norm-to-weak∗ uniformly continuous on bounded subset of E, there exists δ2 > 0 such that,
for any t ∈ (0, δ2),

∣
∣
〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉 − 〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉∣
∣

=
∣
∣
〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

) − J(xt − ynj
)〉

+
〈
Q(f) − f(Q(f)

) − (
xt − f

(
xt
))
, J

(
xt − ynj

)〉∣
∣

≤ ∣
∣
〈
Q(f) − f(Q(f)

)
, J

(
xt − ynj

) − J(Q(f) − ynj
)〉∣
∣

+
∥
∥Q(f) − f(Q(f)

) − (
xt − f

(
xt
))∥
∥
∥
∥xt − ynj

∥
∥ <

ε

2
.

(3.22)

Choose δ = min{δ1, δ2}, we have for all t ∈ (0, δ) and j ∈ N,

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉
<
〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉
+
ε

2
, (3.23)

which implies that

lim sup
j→∞

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉 ≤ lim sup
j→∞

〈
xt − f

(
xt
)
, J

(
xt − ynj

)〉
+
ε

2
. (3.24)

Since lim supj→∞〈xt − f(xt), J(xt − ynj )〉 ≤ ε/2, we have

lim sup
j→∞

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉 ≤ ε. (3.25)

Since ε is arbitrary, we obtain that

lim sup
j→∞

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − ynj

)〉 ≤ 0. (3.26)

Step 5. We show that limn→∞‖xn −Q(f)‖ = 0. By using (IS), we have

∥
∥xn+1 −Q(f)

∥
∥ ≤ ∥

∥yn −Q(f)
∥
∥ =

∥
∥λn

(
f
(
xn

) −Q(f)
)
+
(
1 − λn

)(
Txn −Q(f)

)∥
∥. (3.27)
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Applying Lemma 2.1, we obtain

∥
∥xn+1 −Q(f)

∥
∥2 ≤ ∥

∥yn −Q(f)
∥
∥2

≤ (
1 − λn

)2∥∥Txn −Q(f)
∥
∥2 + 2λn

〈
f
(
xn

) −Q(f), J
(
yn −Q(f)

)〉

≤ (
1 − λn

)2‖xn −Q(f)‖2 + 2λn
〈
f
(
xn

) − f(Q(f)
)
, J

(
yn −Q(f)

)〉

+ 2λn
〈
f
(
Q(f)

) −Q(f), J
(
yn −Q(f)

)〉

≤ (
1 − λn

)2∥∥xn −Q(f)
∥
∥2 + 2kλn‖xn −Q(f)

∥
∥
∥
∥yn −Q(f)

∥
∥

+ 2λn
〈
f
(
Q(f)

) −Q(f), J
(
yn −Q(f)

)〉

≤ (
1 − λn

)2∥∥xn −Q(f)
∥
∥2 + 2kλn

∥
∥xn −Q(f)

∥
∥2

+ 2λn
〈
f
(
Q(f)

) −Q(f), J
(
yn −Q(f)

)〉
.

(3.28)

It then follows that

∥
∥xn+1 −Q(f)

∥
∥2 ≤ (

1 − 2(1 − k)λn + λ2n
)∥
∥xn −Q(f)

∥
∥2 + 2λn

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − yn

)〉

≤ (
1 − (2 − k)λn

)∥
∥xn −Q(f)

∥
∥2 + λ2nM

2 + 2λn
〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − yn

)〉
,

(3.29)

whereM = supn≥0‖xn −Q(f)‖. Put

αn = 2(1 − k)λn,

γn =
λn

2(1 − k)M
2 +

1
1 − k

〈
Q(f) − f(Q(f)

)
, J

(
Q(f) − yn

)〉
.

(3.30)

From the condition (C1) and Step 4, it follows that αn → 0,
∑∞

n=0αn = ∞, and lim supn→∞γn ≤ 0.
Since (3.29) reduces to

‖xn+1 −Q(f)‖2 ≤ (1 − αn)‖xn −Q(f)‖2 + αnγn, (3.31)

from Lemma 2.2 with δn = 0, we conclude that limn→∞‖xn − Q(f)‖ = 0. This completes the
proof.

Corollary 3.3. Let E be a uniformly smooth Banach space. Let C, T, f, {βn}, {λn}, f, x0, and {xn} be
the same as in Theorem 3.2. Then, the conclusion of Theorem 3.2 still holds.

Proof. Since E is a uniformly smooth Banach space, E is reflexive and the norm is uniformly
Gâteaux differentiable norm and its every nonempty weakly compact convex subset of E has
the fixed point property for nonexpansive mappings. Thus, the conclusion of Corollary 3.3
follows from Theorem 3.2 immediately.
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Remark 3.4. (1) If {βn} and {λn} in Theorem 3.2 satisfy the conditions

(B2)
∑∞

n=0|βn+1 − βn| <∞,

(C1) limn→∞λn = 0,
∑∞

n=0λn = ∞,

(C2)
∑∞

n=0|λn+1 − λn| <∞, or

(C3) limn→∞(λn/λn+1) = 1, or

(C4) |λn+1 − λn| ≤ ◦(λn+1) + σn,
∑∞

n=0σn <∞ (the perturbed control condition),

then the sequence {xn} generated by (IS) is asymptotically regular. Now, we only give the
proof in case when {βn} and {λn} satisfy the conditions (B2), (C1), and (C4). Indeed, from (IS),
we have for every n ≥ 1,

yn = λnf
(
xn

)
+
(
1 − λn

)
Txn,

yn−1 = λn−1f
(
xn−1

)
+
(
1 − λn−1

)
Txn−1,

(3.32)

and so, for every n ≥ 1, we have
∥
∥yn − yn−1

∥
∥ =

∥
∥
(
1 − λn

)(
Txn − Txn−1

)
+ λn

(
f
(
xn

) − f(xn−1
))

+
(
λn − λn−1

)(
f
(
xn−1

) − Txn−1
)∥
∥

≤ (
1 − λn

)∥
∥xn − xn−1

∥
∥ + L

∣
∣λn − λn−1

∣
∣ + kλn

∥
∥xn − xn−1

∥
∥

=
(
1 − (1 − k)λn

)∥
∥xn − xn−1

∥
∥ + L

∣
∣λn − λn−1

∣
∣,

(3.33)

where L = sup{‖f(xn) − Txn‖ : n ≥ 0}.

On the other hand, by (IS), we also have for every n ≥ 1,

xn+1 =
(
1 − βn

)
yn + βnTyn,

xn =
(
1 − βn−1

)
yn−1 + βn−1Tyn−1.

(3.34)

Simple calculations show that

xn+1 − xn =
(
1 − βn

)(
yn − yn−1

)
+ βn

(
Tyn − Tyn−1

)
+
(
βn − βn−1

)(
Tyn−1 − yn−1

)
, (3.35)

then it follows that

∥
∥xn+1 − xn

∥
∥ ≤ (

1 − βn
)∥
∥yn − yn−1

∥
∥ + βn

∥
∥yn − yn−1

∥
∥ +

∣
∣βn − βn−1

∣
∣
∥
∥Tyn−1 − yn−1

∥
∥. (3.36)

Substituting (3.33) into (3.36) and using the condition (C4), we derive
∥
∥xn+1 − xn

∥
∥ ≤ (

1 − (1 − k)λn
)∥
∥xn − xn−1

∥
∥ + L

∣
∣λn − λn−1

∣
∣ +M

∣
∣βn − βn−1

∣
∣

≤ (
1 − (1 − k)λn

)∥
∥xn − xn−1

∥
∥ + L

( ◦ (λn
)
+ σn−1

)
+M

∣
∣βn − βn−1

∣
∣,

(3.37)

whereM = sup{‖Tyn−yn‖ : n ≥ 0}. By taking sn+1 = ‖xn+1−xn‖, αn = (1−k)λn, αnγn = L◦ (λn),
and δn = Lσn−1 +M|βn − βn−1|, we have

sn+1 ≤
(
1 − αn

)
sn + αnγn + δn. (3.38)
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Hence, by the conditions (B2), (C1), and (C4) and Lemma 2.2, limn→∞‖xn+1−xn‖ = 0.Moreover,
from (3.33) and the condition (C4), it follows that limn→∞‖yn − yn−1‖ = 0.

(2) The control conditions (C2) and (C3) are not comparable (coupled with condition
(C1)), that is, neither of them implies the others. For this fact, see [13, 34]. We also refer to [13]
for the examples which satisfy condition (C1) and the perturbed control condition (C4) but fail
to satisfy both conditions (C2) and (C3). See also [1].

From these facts in Remark 3.4, we have the following.

Corollary 3.5. Let E, C, and T be the same as in Theorem 3.2. Let {βn} and {λn} be sequences in (0, 1)
which satisfy the conditions (B1), (B2), (C1), and (C4) (or the conditions (B1), (B2), (C1), and (C2), or
the conditions (B1), (B2), (C1), and (C3)), with f ∈ ΣC and x0 ∈ C chosen arbitrarily. Let {xn} be the
sequence generated by

x0 = x ∈ C,
yn = λnf

(
xn

)
+
(
1 − λn

)
Txn,

xn+1 =
(
1 − βn

)
yn + βnTyn, n ≥ 0.

(3.39)

Then {xn} converges strongly to Q(f) ∈ F(T), where Q(f) is the unique solution of the variational
inequality

〈
(I − f)(Q(f)

)
, J

(
Q(f) − p)〉 ≤ 0, f ∈ ΣC, p ∈ F(T). (3.40)

Remark 3.6. (1) Theorem 3.2 and Corollary 3.5 extend and improve the corresponding results
by Moudafi [15] and Xu [17]. In particular, if βn = 0 in (IS), then Corollary 3.5 with the
conditions (C1) and (C2) (or the conditions (C1) and (C3)) reduces Theorem 4.2 in the paper
of Xu [17].

(2) Even βn = 0 in (IS), Corollary 3.5 generalizes the corresponding results by Halpern
[2], Lions [3], Reich [4, 5], Shioji and Takahashi [6], Wittmann [7], and Xu [8] to the viscosity
methods along with the perturb control condition (C4).

Next, we consider the viscosity approximation method with the weakly contractive
mapping for the nonexpansive mapping.

Theorem 3.7. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm. Suppose
that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings.
Let C be a nonempty closed convex subset of E and T nonexpansive mappings from C into itself with
F(T) /= ∅. Let {βn} and {λn} be sequences in (0, 1) which satisfy the conditions (B1), (B2), (C1), and
(C4) (or the conditions (B1), (B2), (C1), and (C2), or the conditions (B1), (B2), (C1), and (C3)). Let
A : C → C be a weakly contractive mapping and x0 ∈ C chosen arbitrarily. Let {xn} be the sequence
generated by

x0 = x ∈ C,
yn = λnAxn +

(
1 − λn

)
Txn,

xn+1 =
(
1 − βn

)
yn + βnTyn, n ≥ 0.

(3.41)

Then, {xn} converges strongly to Q(Ax∗) = x∗ ∈ F(T), where Q is a sunny nonexpansive retraction
from C onto F(T).
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Proof. It follows from Remark 3.1 that F(T) is the sunny nonexpansive retract of C. Denote by
Q the sunny nonexpansive retraction of C onto F. Then, QA is a weakly contractive mapping
of C into itself. Indeed,

∥
∥Q(Ax) −Q(Ay)

∥
∥ ≤ ‖Ax −Ay‖ ≤ ‖x − y‖ − ψ(‖x − y‖), ∀x, y ∈ C. (3.42)

Lemma 2.3 assures that there exists a unique element x∗ ∈ C such that x∗ = Q(Ax∗). Such an
x∗ ∈ C is an element of F(T).

Now we define an iterative scheme as follows:

zn = λnAx∗ +
(
1 − λn

)
Twn,

wn+1 =
(
1 − βn

)
zn + βnTzn, n ≥ 0.

(3.43)

Let {wn} be the sequence generated by (3.43). Then, Corollary 3.5 with f = Ax∗ a constant
assures that {wn} converges strongly to Q(Ax∗) = x∗ as n → ∞. For any n, we have

∥
∥xn+1 −wn+1

∥
∥ ≤ (

1 − βn
)∥
∥yn − zn

∥
∥ + βn

∥
∥Tyn − Tzn

∥
∥

≤ ∥
∥yn − zn

∥
∥

≤ λn
∥
∥Axn −Ax∗∥∥ +

(
1 − λn

)∥
∥Txn − Twn

∥
∥

≤ λn
(∥
∥Axn −Awn

∥
∥ +

∥
∥Awn −Ax∗∥∥) +

(
1 − λn

)∥
∥xn −wn

∥
∥

≤ ∥
∥xn − yn

∥
∥ − λnψ

(∥
∥xn −wn

∥
∥
)
+ λn

(∥
∥wn − x∗∥∥ − ψ(∥∥wn − x∗∥∥))

≤ ∥
∥xn −wn

∥
∥ − λnψ

(∥
∥xn −wn

∥
∥
)
+ λn

∥
∥wn − x∗∥∥.

(3.44)

Thus, we obtain for sn = ‖xn −wn‖ the following recursive inequality:

sn+1 ≤ sn − λnψ
(
sn
)
+ λn‖wn − x∗‖. (3.45)

Since ‖wn − x∗‖ → 0, it follows from Lemma 2.4 that limn→∞‖xn −wn‖ = 0. Hence,

lim
n→∞

∥
∥xn − x∗∥∥ ≤ lim

n→∞
(∥
∥xn −wn

∥
∥ +

∥
∥wn − x∗∥∥) = 0. (3.46)

This completes the proof.

Corollary 3.8. Let E be a uniformly smooth Banach space. Let C, T, A, x0, {βn}, {λn}, and {xn} be
the same as in Theorem 3.7. Then, the conclusion of Theorem 3.7 still holds.

Remark 3.9. (1) Theorem 3.7 (as well as Corollary 3.8) develops and complements the
corresponding results by Cho et al. [1], Halpern [2], Lions [3], Moudafi [15], Reich [4, 5],
Shioji and Takahashi [6], Wittmann [7], and Xu [8, 17].

(2) Even βn = 0 in Theorem 3.7, Theorem 3.7 appears to be independent of Theorem
5.6 of Wong et al. [24] in which the control conditions (C1) and (C3) were utilized. In fact, it
appears to be unknown whether a reflexive and strictly convex space satisfies the fixed point
property for nonexpansive mappings.
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