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1. Introduction and preliminaries

In this paper, we will present two iterative schemes with errors which are proved to be strongly
convergent to a common element of the set of zero points of maximal monotone operators and
the set of fixed points of nonexpansive mappings with respect to the Lyapunov functional in
real uniformly smooth and uniformly convex Banach spaces. Moreover, it is shown that some
results proposed by Martinez-Yanes and Xu in [1] and Solodov and Svaiter in [2] are special
cases of ours. Finally, we will demonstrate the applications of our iterative schemes on both
finding the minimizer of a proper convex and lower semicontinuous function and solving the
variational inequalities.

Let E be a real Banach space with norm ‖·‖ and let E∗ be its dual space. The normalized
duality mapping J : E → 2E

∗
is defined as follows:

Jx =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} ∀x ∈ E, (1.1)
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2 Fixed Point Theory and Applications

where 〈x, x∗〉 denotes the value of x∗ ∈ E∗ at x ∈ E. We use symbols “ s→ ” and “w→ ” to represent
strong and weak convergence in E or in E∗, respectively.

A multivalued operator T : E → 2E
∗
with domain D(T) = {x ∈ E : Tx /=∅} and range

R(T) =
⋃ {Tx : x ∈ D(T)} is said to be monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for all xi ∈ D(T) and

yi ∈ Txi, i = 1, 2. A monotone operator T is said to be a maximal monotone if R(J + rT) = E∗ for
all r > 0. For a monotone operator T , we denote by T−10 = {x ∈ D(T) : 0 ∈ Tx} the set of zero
points of T . For a single-valued mapping S : E → E, we denote by Fix(S) = {x ∈ E : Sx = x}
the set of fixed points of S.

Lemma 1.1 (see [3, 4]). The duality mapping J has the following properties.

(1) If E is a real reflexive and smooth Banach space, then J : E → E∗ is single-valued.

(2) For all x ∈ E and λ ∈ R, J(λx) = λJx.

(3) If E is a real uniformly convex and uniformly smooth Banach space, then J−1 : E∗ → E is also
a duality mapping. Moreover, J : E → E∗ and J−1 : E∗ → E are uniformly continuous on
each bounded subset of E or E∗, respectively.

Lemma 1.2 (see [4]). Let E be a real smooth and uniformly convex Banach space and let T : E → 2E
∗

be a maximal monotone operator. Then T−10 is a closed and convex subset of E and the graph of T ,G(T),
is demiclosed in the following sense: for all {xn} ⊂ D(T) with xn

w→ x in E and for all yn ∈ Txn with
yn

s→ y in E∗, x ∈ D(T) and y ∈ Tx.

Definition 1.3. Let E be a real smooth and uniformly convex Banach space and let T : E → 2E
∗

be a maximal monotone operator. For all r > 0, define the operator QT
r : E → E by QT

r x =
(J + rT)−1Jx for all x ∈ E.

Definition 1.4 (see [5]). Let E be a real smooth Banach space. Then the Lyapunov functional
ϕ : E × E → R+ is defined as follows:

ϕ(x, y) = ‖x‖2 − 2
〈
x, j(y)

〉
+ ‖y‖2 ∀x, y ∈ E, j(y) ∈ Jy. (1.2)

Lemma 1.5 (see [5]). Let E be a real reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed and convex subset of E, and let x ∈ E. Then there exists a unique element x0 ∈ C such
that ϕ(x0, x) = min {ϕ(z, x) : z ∈ C}.

Define the mapping QC of E onto C by QCx = x0 for all x ∈ E. QC is called the general-
ized projection operator from E onto C. It is easy to see that QC is coincident with the metric
projection PC in a Hilbert space.

Lemma 1.6 (see [5]). Let E be a real reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed and convex subset of E, and let x ∈ E. Then, for all y ∈ C,

ϕ
(
y,QCx

)
+ ϕ

(
QCx, x

) ≤ ϕ(y, x). (1.3)

Lemma 1.7 (see [6]). Let E be a real smooth and uniformly convex Banach space and let {xn} and
{yn} be two sequences of E. If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0 as n → ∞, then
xn − yn

s→ 0 as n → ∞.
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Lemma 1.8 (see [7]). Let E be a real reflexive, strictly convex and smooth Banach space and let T :
E → 2E

∗
be a maximal monotone operator with T−10/=∅. Then for all x ∈ E, y ∈ T−10 and r > 0, one

has ϕ(y,QT
r x) + ϕ(QT

r x, x) ≤ ϕ(y, x).

Lemma 1.9 (see [5]). Let E be a real smooth Banach space, let C be a convex subset of E, let x ∈ E,
and let x0 ∈ C. Then ϕ(x0, x) = inf {ϕ(z, x) : z ∈ C} if and only if 〈z − x0, Jx0 − Jx〉 ≥ 0 for all
z ∈ C.

Definition 1.10. Let E be a real Banach space. Then S : E → E is said to be nonexpansive with
respect to the Lyapunov functional if ϕ(Sx, Sy) ≤ ϕ(x, y) for all x, y ∈ E.

Remark 1.11. If E is a real Hilbert space H, then S is a nonexpansive mapping in the usual
sense: ‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ H.

Lemma 1.12. Let E be a real smooth and uniformly convex Banach space. If S : E → E is a mapping
which is nonexpansive with respect to the Lyapunov functional, then Fix(S) is a convex and closed
subset of E.

Proof. In fact, we only need to prove the case that Fix(S)/=∅. For all x, y ∈ Fix(S) and t ∈ [0, 1],
let z = tx + (1 − t)y. Then we have

ϕ(z, Sz) = t
(‖x‖2 − 2〈x, JSz〉 + ‖Sz‖2) + (1 − t)

(‖y‖2 − 2〈y, JSz〉 + ‖Sz‖2)

− t‖x‖2 − (1 − t)‖y‖2 + ‖z‖2

= tϕ(x, Sz) + (1 − t)ϕ(y, Sz) − t‖x‖2 − (1 − t)‖y‖2 + ‖z‖2

≤ tϕ(x, z) + (1 − t)ϕ(y, z) − t‖x‖2 − (1 − t)‖y‖2 + ‖z‖2
= ϕ(z, z) = 0.

(1.4)

By using Lemma 1.7, we know that z = Sz, which implies that Fix(S) is a convex subset of E.
For all xn ∈ Fix(S) such that xn

s→ x, it follows that ϕ(Sxn, Sx) ≤ ϕ(xn, x) → 0. Lemma 1.7
implies that Sxn

s→ Sx as n → ∞. So x ∈ Fix(S).

2. Strong convergence theorems

Throughout this section, we assume that E is a real uniformly smooth and uniformly con-
vex Banach space, S : E → E is nonexpansive with respect to the Lyapunov functional
and weakly sequentially continuous and T : E → 2E

∗
is a maximal monotone operator with

T−10
⋂
Fix(S)/=∅.

Theorem 2.1. The sequence {xn} generated by the following scheme:

x0 ∈ E, r0 > 0,

yn = QT
rn

(
xn + en

)
,

Jzn = αnJxn +
(
1 − αn

)
Jyn,

un = Szn,

Hn =
{
v ∈ E : ϕ

(
v, un

) ≤ ϕ
(
v, zn

) ≤ αnϕ
(
v, xn

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)}
,

Wn =
{
z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0

}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0,

(2.1)
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converges strongly to QT−10
⋂
Fix(S)x0 provided

(i) {αn} ⊂ [0, 1) is a sequence such that αn ≤ 1 − δ, for some δ ∈ (0, 1);

(ii) {rn} ⊂ (0,+∞) is a sequence such that inf n≥0rn > 0;

(iii) {en} ⊂ E is a sequence such that ‖en‖ → 0 as n → ∞.

Proof. We split the proof into five steps.
Step 1. Both Hn andWn are closed and convex subsets of E.

Noting the facts that

ϕ
(
v, zn

) ≤ αn ϕ
(
v, xn

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)

⇐⇒ ∥∥zn
∥∥2 − αn

∥∥xn

∥∥2 − (
1 − αn

)∥∥xn + en
∥∥2 ≤ 2

〈
v, Jzn − αn Jxn −

(
1 − αn

)
J
(
xn + en

)〉
,

ϕ
(
v, un

) ≤ ϕ
(
v, zn

) ⇐⇒ ∥∥zn
∥∥2 − ∥∥un

∥∥2 ≥ 2〈v, Jzn − Jun〉,

(2.2)

we can easily know that Hn is a closed and convex subset of E. It is obvious that Wn is also a
closed and convex subset of E.
Step 2. T−10

⋂
Fix(S) ⊂ Hn ∩Wn for each nonnegative integer n.

To observe this, take p ∈ T−10
⋂
Fix(S). From the definition of the maximal monotone

operator, we know that there exists y0 ∈ E such that y0 = QT
r0(x0+e0). It follows from Lemma 1.8

that ϕ(p, y0) ≤ ϕ(p, x0 + e0). Then

ϕ
(
p, u0

) ≤ ϕ
(
p, z0

) ≤ α0ϕ
(
p, x0

)
+
(
1 − α0

)
ϕ
(
p, y0

) ≤ α0ϕ
(
p, x0

)
+
(
1 − α0

)
ϕ
(
p, x0 + e0

)
,

(2.3)

which implies that p ∈ H0.
On the other hand, it is clear that p ∈ W0 = E. Then p ∈ H0 ∩ W0 and therefore x1 =

QH0∩W0x0 are well defined.
Suppose that p ∈ Hn−1 ∩ Wn−1 and xn is well defined for some n ≥ 1. Then there exists

yn ∈ E such that yn = QT
rn(xn + en). Lemma 1.8 implies that ϕ(p, yn) ≤ ϕ(p, xn + en). Thus

ϕ
(
p, un

) ≤ ϕ
(
p, zn

) ≤ αnϕ
(
p, xn

)
+
(
1 − αn

)
ϕ
(
p, yn

)

≤ ϕ
(
p, zn

)≤αnϕ
(
p, xn

)
+
(
1−αn

)
ϕ
(
p, yn

) (2.4)

which implies that p ∈ Hn. It follows from Lemma 1.9 that

〈p − xn, Jx0 − Jxn〉 = 〈p −QHn−1∩Wn−1x0, Jx0 − JQHn−1∩Wn−1x0〉 ≤ 0, (2.5)

which implies that p ∈ Wn. Hence xn+1 = QHn∩Wn
x0 is well defined. Then, by induction, the

sequence generated by (2.1) is well defined and T−10
⋂
Fix(S) ⊂ Hn ∩Wn for each n ≥ 0.
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Step 3. {xn} is a bounded sequence of E.
In fact, for all p ∈ T−10

⋂
Fix(S) ⊂ Hn ∩Wn, it follows from Lemma 1.6 that

ϕ
(
p,QWn

x0
)
+ ϕ

(
QWn

x0, x0
) ≤ ϕ

(
p, x0

)
. (2.6)

From the definition of Wn and Lemmas 1.5 and 1.9, we know that xn = QWn
x0, which implies

that ϕ(p, xn) + ϕ(xn, x0) ≤ ϕ(p, x0). Therefore, {xn} is bounded.
Step 4. ω(xn) ⊂ T−10

⋂
Fix(S), where ω(xn) denotes the set consisting all of the weak limit

points of {xn}.
From the facts xn = QWn

x0, xn+1 ∈ Wn and Lemma 1.6, we have

ϕ
(
xn+1, xn

)
+ ϕ

(
xn, x0

) ≤ ϕ
(
xn+1, x0

)· (2.7)

Therefore, lim n→∞ϕ(xn, x0) exists. Then ϕ(xn+1, xn) → 0, which implies from Lemma 1.7 that
xn+1 − xn

s→ 0 as n → ∞. Since xn+1 ∈ Hn, we have

ϕ
(
xn+1, un

) ≤ ϕ
(
xn+1, zn

)
, (2.8)

ϕ
(
xn+1, zn

) ≤ αnϕ
(
xn+1, xn

)
+
(
1 − αn

)
ϕ
(
xn+1, xn + en

)· (2.9)

Notice that

ϕ
(
xn+1, xn + en

) − ϕ
(
xn+1, xn

)
=
∥
∥xn + en

∥
∥2 − ∥

∥xn

∥
∥2 + 2

〈
xn+1, Jxn − J

(
xn + en

)〉
. (2.10)

Since J : E → E∗ is uniformly continuous on each bounded subset of E and ‖en‖ → 0, we know
from (2.10) that ϕ(xn+1, xn + en) → 0, which implies that ϕ(xn+1, zn) → 0 by (2.9). Moreover,
(2.8) implies that ϕ(xn+1, un) → 0 as n → ∞. Using Lemma 1.7 , we know that xn+1 − zn

s→ 0,
xn+1 − un

s→ 0 as n → ∞. Since both J : E → E∗ and J−1 : E∗ → E are uniformly continuous on
bounded subsets, we have xn − yn

s→ 0 as n → ∞. From Step 3, we know that ω(xn)/=∅. Then,
for all q ∈ ω(xn), there exists a subsequence of {xn}, for simplicity, we still denote it by {xn}
such that xn

w→ q as n → ∞. Therefore, un
w→ q, zn

w→ q and yn
w→ q as n → ∞. Since S : E → E

is weakly continuous and un = Szn, then q ∈ Fix(S). From the iterative scheme (2.1), we know
that there exists vn ∈ Tyn such that rnvn = J(xn + en)− Jyn. Then vn

s→ 0 as n → ∞. Lemma 1.2
implies that q ∈ T−10.
Step 5. xn

s→ q∗ = QT−10
⋂
Fix(S)x0 as n → ∞.

Let {xni
} be any subsequence of {xn} which is weakly convergent to q ∈ T−10

⋂
Fix(S).

Since xn+1 = QHn∩Wn
x0 and q∗ ∈ T−10

⋂
Fix(S) ⊂ Hn∩Wn, we have ϕ(xn+1, x0) ≤ ϕ(q∗, x0). Then

it follows that

ϕ
(
xn, q

∗) = ϕ
(
xn, x0

)
+ ϕ

(
x0, q

∗) − 2
〈
xn − x0, Jq

∗ − Jx0
〉

≤ ϕ
(
q∗, x0

)
+ ϕ

(
x0, q

∗) − 2
〈
xn − x0, Jq

∗ − Jx0
〉
,

(2.11)
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which yields

lim sup
n→∞

ϕ
(
xni

, q∗
) ≤ ϕ

(
q∗, x0

)
+ ϕ

(
x0, q

∗) − 2〈q − x0, Jq
∗ − Jx0〉

= 2〈q∗ − q, Jq∗ − Jx0〉 ≤ 0.
(2.12)

Hence ϕ(xni
, q∗) → 0 as i → ∞. It follows from Lemma 1.7 that xni

s→ q∗ as i → ∞. This means
that the whole sequence {xn} converges weakly to q∗ and eachweakly convergent subsequence
of {xn} converges strongly to q∗. Therefore, xn

s→ q∗ = QT−10
⋂

Fix(S)x0 as n → ∞.

Remark 2.2. If E is reduced to a real Hilbert space H and S ≡ I, then QT
rn equals to JTrn =

(I + rnT)
−1. So the iterative scheme (2.1) is reduced to the following one introduced by Yanes

and Xu in [1]:

x0 ∈ H chosen arbitrarily,

yn = αnxn + (1 − αn)JTrn(xn + en),

Hn =
{
v ∈ H :

∥∥yn − v
∥∥2 ≤ ∥∥xn − v

∥∥2 + 2(1 − αn)〈xn − v, en〉 +
∥∥en

∥∥2}
,

Wn =
{
z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0

}
,

xn+1 = PHn∩Wn
x0, ∀n ≥ 0.

(2.13)

They proved that, if T−10/=∅, then the sequence {xn} generated by (2.13) converges strongly
to PT−10x0 provided

(i) {αn} ⊂ [0, 1) is a sequence such that αn ≤ 1 − δ for some δ ∈ (0, 1);

(ii) {rn} ⊂ (0,+∞) is a sequence such that infnrn > 0;

(iii) {en} ⊂ E is a sequence such that ‖en‖ → 0.

Remark 2.3. If E is reduced to a real Hilbert space H, αn ≡ 0, en ≡ 0 and S ≡ I, then (2.1)
includes the following iterative scheme introduced by Solodov and Svaiter in [2]:

x0 ∈ H,

0 = vn +
1
rn

(
yn − xn

)
, vn ∈ Tyn,

Hn =
{
z ∈ H : 〈z − yn, vn〉 ≤ 0

}
,

Wn =
{
z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0

}
,

xn+1 = PHn∩Wn
x0, ∀n ≥ 0.

(2.14)

They proved that, if T−10/=∅ and lim inf n→∞rn > 0, then the sequence generated by (2.14)

converges strongly to PT−10x0.
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Corollary 2.4. Suppose that E and S are the same as those in Theorem 2.1. For i = 1, 2, . . . , m, let
Ti : E → 2E

∗
be maximal monotone operators. Denote D: =

⋂m
i=1T

−1
i 0

⋂
Fix(S) and suppose that

D/=∅. Then the sequence {xn} generated by

x0 ∈ E, r0, i > 0, i = 1, 2, . . . , m,

yn,i = QTi
rn,i

(
xn + en

)
, i = 1, 2, . . . , m,

Jzn,i = αn,iJxn +
(
1 − αn,i

)
Jyn,i, i = 1, 2, . . . , m,

un,i = Szn,i, i = 1, 2, . . . , m,

Hn,i =
{
v ∈ E : ϕ

(
v, un,i

) ≤ ϕ
(
v, zn,i

) ≤ αn,iϕ
(
v, xn

)
+
(
1 − αn,i

)
ϕ
(
v, xn + en

)}
, i = 1, 2, . . . , m,

Hn :=
m⋂

i=1

Hn,i,

Wn =
{
z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0

}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0,

(2.15)

converges strongly to QDx0 provided

(i) {αn,i} ⊂ [0, 1) is a sequence such that αn,i ≤ 1 − δ, for some δ ∈ (0, 1), i = 1, 2, . . . , m and
n ≥ 0; 1, 2, . . . ,

(ii) {rn,i} ⊂ (0,+∞) is a sequence such that inf n≥0rn,i > 0 for i = 1, 2, . . . , m;

(iii) {e} ⊂ E is a sequence such that ‖en‖ → 0 as n → ∞.

Similar to the proof of Theorem 2.1, we have the following result.

Theorem 2.5. The sequence {xn} generated by

x0 ∈ E, r0 > 0,

yn = QT
rn

(
xn + en

)
,

Jzn = αnJx0 +
(
1 − αn

)
Jyn,

un = Szn,

Hn =
{
v ∈ E : ϕ

(
v, un

) ≤ ϕ
(
v, zn

) ≤ αnϕ
(
v, x0

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)}
,

Wn =
{
z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0

}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0,

(2.16)

converges strongly to QT−10
⋂

Fix(S)x0 provided

(i) {αn} ⊂ [0, 1) is a sequence such that αn → 0 as n → ∞;

(ii) {rn} ⊂ (0,+∞) is a sequence such that inf n≥0rn > 0;

(iii) {en} ⊂ E is a sequence such that ‖en‖ → 0 as n → ∞.
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Remark 2.6. If E is reduced to a real Hilbert spaceH and S ≡ I, then the iterative scheme (2.16)
is reduced to the following one, which is similar to that in [1]:

x0 ∈ H chosen arbitrarily,

yn = αnx0 + (1 − αn)JTrn(xn + en),

Hn =
{
v ∈ H :

∥∥yn − v
∥∥2 ≤ ∥∥xn − v

∥∥2 + αn

(∥∥x0
∥∥2 + 2

〈
xn − x0, v

〉)

+2
(
1 − αn

)〈
xn − v, en

〉
+
(
1 − αn

)∥∥en
∥
∥2 − αn

∥
∥xn

∥
∥2}

,

Wn =
{
z ∈ H :

〈
z − xn, x0 − xn

〉 ≤ 0
}
,

xn+1 = PHn∩Wn
x0 ∀n ≥ 0.

(2.17)

Corollary 2.7. Suppose that E, S, Ti, and D are the same as those in Corollary 2.4. If D/=∅, then the
sequence {xn} generated by

x0 ∈ E, r0,i > 0,

yn,i = QTi
rn,i

(
xn + en

)
,

Jzn,i = αn,iJx0 +
(
1 − αn,i

)
Jyn,i,

un,i = Szn,i,

Hn,i =
{
v ∈ E : ϕ

(
v, un,i

) ≤ ϕ
(
v, zn,i

) ≤ αn,iϕ
(
v, x0

)
+
(
1 − αn,i

)
ϕ
(
v, xn + en

)}
,

Hn :=
m⋂

i=1

Hn,i, i = 1, 2, . . . , m,

Wn =
{
z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0

}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0,

(2.18)

converges strongly to QDx0 provided

(i) {αn,i} ⊂ [0, 1) is a sequence such that αn,i → 0 as n → ∞ for i = 1, 2, . . . , m;

(ii) {rn,i} ⊂ (0,+∞) is a sequence such that inf n≥0rn,i > 0 for i = 1, 2, . . . , m;

(iii) {en} ⊂ E is a sequence such that ‖en‖ → 0 as n → ∞.

3. Applications to minimization problem

Definition 3.1. Let f :E → (−∞,+∞] be a proper convex and lower semicontinuous function.
Then the subdifferential ∂f of f is defined by

∂f
(
z
)
=
{
v ∈ E∗: f

(
y
) ≥ f

(
z
)
+
〈
y − z, v

〉
, ∀y ∈ E

} ∀z ∈ E· (3.1)
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Theorem 3.2. Let E, S, {αn}, {rn}, and {en} be the same as those in Theorem 2.1. Let f : E →
(−∞,+∞] be a proper convex and lower semicontinuous function. Let {xn} be the sequence generated
by

x0 ∈ E, r0 > 0,

yn = arg min
z∈E

{
f(z) +

1
2rn

∥
∥zn

∥
∥2 − 1

rn

〈
z,J

(
xn + en

)〉
}
,

Jzn = αnJxn +
(
1 − αn

)
Jyn,

un = Szn,

Hn =
{
v ∈ E : ϕ

(
v, un

) ≤ ϕ
(
v, zn

) ≤ αnϕ
(
v, xn

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)}
,

Wn =
{
z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0

}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0.

(3.2)

If (∂f)−10
⋂

Fix(S)/=∅, then {xn} converges strongly to Q(∂f)−10
⋂
Fix(S)x0.

Proof. Since f :E → (−∞,+∞] is a proper convex and lower semicontinuous function, the sub-
differential ∂f of f is a maximal monotone operator from E into E∗. We also know that

yn = arg min
z∈E

{
f(z) +

1
2rn

∥∥zn
∥∥2 − 1

rn

〈
z, J

(
xn + en

)〉
}

(3.3)

is equivalent to

0 ∈ ∂f
(
yn

)
+

1
rn
Jyn − 1

rn
J
(
xn + en

)· (3.4)

Thus we have yn = Q
∂f
rn (xn + en) and so Theorem 2.1 implies that {xn} converges strongly to

Q(∂f)−10
⋂

Fix(S)x0 as n → ∞.

Similarly, we have the following theorem.

Theorem 3.3. Let E, S, {αn}, {rn}, and {en} be the same as those in Theorem 2.5. Let f :E →
(−∞,+∞] be a proper convex and lower semicontinuous function. Let {xn} be the sequence generated
by

x0 ∈ E, r0 > 0,

yn = arg min
z∈E

{
f(z) +

1
2rn

∥∥zn
∥∥2 − 1

rn

〈
z, J

(
xn + en

)〉
}
,

Jzn = αnJx0 +
(
1 − αn

)
Jyn,

un = Szn,

Hn =
{
v ∈ E : ϕ

(
v, un

) ≤ ϕ
(
v, zn

) ≤ αnϕ
(
v, x0

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)}
,

Wn =
{
z ∈ E : 〈z − xn, Jx0 − Jxn〉 ≤ 0

}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0.

(3.5)

If (∂f)−10
⋂

Fix(S)/=∅, then {xn} converges strongly to Q(∂f)−10
⋂
Fix(S)x0.
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4. Applications on solving the variational inequalities

Definition 4.1 (see [4]). Let E be a real Banach space. A single-valued operator A : E → E∗ is
said to be hemicontinuous if it is continuous along each line segment in E with respect to the
weak∗ topology of E∗.

Definition 4.2. Let E be a real Banach space and let C be a nonempty closed and convex subset
of E. Let A : C → E∗ be a single-valued monotone operator which is hemicontinuous. Then a
point u ∈ C is said to be a solution of the variational inequality for A if

〈
y − u,Au

〉 ≥ 0, ∀y ∈ C. (4.1)

We denote by VI(C,A) the set of all solutions of the variational inequality for A.

Definition 4.3. Let E be a real Banach space and let C be a nonempty closed and convex subset
of E. We denote by NC(x) the normal cone for C at a point x ∈ C, that is,

NC(x) =
{
x∗ ∈ E∗ :

〈
y − x, x∗〉 ≤ 0, y ∈ C

}
. (4.2)

In [8], it is proven that the operator T : E → 2E
∗
defined by

Tx =

⎧
⎨

⎩

Ax +NC(x), x ∈ C,

∅, x /∈C,
(4.3)

is a maximal monotone operator. It is easy to verify that T−1(0) = VI(C,A).

Theorem 4.4. Let E, S be the same as those in Theorem 2.1 and let C be a nonempty closed and convex
subset of E. Let A : C → E∗ be a single-valued monotone operator which is hemicontinuous. Let {xn}
be a sequence generated by

x0 ∈ E, r0 > 0,

yn = VI
(
C,A +

1
rn

(
J − J

(
xn + en

))
)
,

Jzn = αnJxn +
(
1 − αn

)
Jyn,

un = Szn,

Hn =
{
v ∈ E : ϕ

(
v, un

) ≤ ϕ
(
v, zn

) ≤ αnϕ
(
v, xn

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)}
,

Wn =
{
z ∈ E :

〈
z − xn, Jx0 − Jxn

〉 ≤ 0
}
,

xn+1 = QHn∩Wn
x0 ∀n ≥ 0,

(4.4)

which converges strongly to QVI(C,A)
⋂

Fix(S)x0 provided

(i) {αn} ⊂ [0, 1) is a sequence such that αn ≤ 1 − δ, for some δ ∈ (0, 1);

(ii) {rn} ⊂ (0,+∞) is a sequence such that inf n≥0rn > 0;

(iii) {en} ⊂ E is a sequence such that ‖en‖ → 0 as n → ∞.
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Proof. Note that

yn = VI
(
C,A +

1
rn

(
J − J

(
xn + en

))
)

⇐⇒
〈
y − yn,Ayn +

1
rn

(
Jyn − J

(
xn + en

))
〉

≥ 0 ∀y ∈ C

⇐⇒ J
(
xn + en

) ∈ rnTyn + Jyn

⇐⇒ yn =
(
J + rnT

)−1
J
(
xn + en

)
= QT

rn

(
xn + en

)
,

(4.5)

where T is the same as that in Definition 4.3. Then the result follows from Theorem 2.1.

Similarly, we have the following result.

Theorem 4.5. Let E, C, S andA be the same as those in Theorem 4.4. Let {xn} be a sequence generated
by

x0 ∈ E, r0 > 0,

yn = VI
(
C,A +

1
rn

(
J − J

(
xn + en

))
)
,

Jzn = αnJx0 +
(
1 − αn

)
Jyn,

un = Szn,

Hn =
{
v ∈ E : ϕ

(
v, un

) ≤ ϕ
(
v, zn

)} ≤ αnϕ
(
v, x0

)
+
(
1 − αn

)
ϕ
(
v, xn + en

)}
,

Wn =
{
z ∈ E :

〈
z − xn, Jx0 − Jxn

〉 ≤ 0
}
,

xn+1 = QHn
⋂
Wn

x0 ∀n ≥ 0,

(4.6)

which converges strongly to QVI(C,A)
⋂

Fix(S)x0 provided

(i) {αn} ⊂ [0, 1) is a sequence such that αn → 0 as n → ∞;

(ii) {rn} ⊂ (0,+∞) is a sequence such that inf n≥0rn > 0;

(iii) {en} ⊂ E is a sequence such that ‖en‖ → 0 as n → ∞.

Remark 4.6. It will be interesting to consider similar problems when a single mapping ”S” is
replaced by an amenable semigroup S of mappings that are nonexpansive with respect to
the Lyapunov functional and to combine the iterative scheme for the fixed point set deter-
mined by a left regular sequence of means as demonstrated in the recent work [9] with that of
Theorem 2.1.
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