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1. Introduction

During the sixties, the notion of 2-metric space introduced by Gähler (see [1, 2]) as a
generalization of usual notion ofmetric space (X, d). But different authors proved that there is
no relation between these two functions, for instance, Ha et al. in [3] show that 2-metric need
not be continuous function, further there is no easy relationship between results obtained in
the two settings.

In 1992, Bapure Dhage in his Ph.D. thesis introduce a new class of generalized metric
space called D-metric spaces ([4, 5]).

In a subsequent series of papers, Dhage attempted to develop topological structures
in such spaces (see [5–7]). He claimed that D-metrics provide a generalization of ordinary
metric functions and went on to present several fixed point results.

But in 2003 in collaboration with Brailey Sims, we demonstrated in [8] that most of the
claims concerning the fundamental topological structure of D-metric space are incorrect, so,
we introduced more appropriate notion of generalized metric space as follows.

Definition 1.1 (see [9]). Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y); for all x, y ∈ X,with x /= y;
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(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X,with z /= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X, (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically, a G-metric on X, and
the pair (X,G) is called a G-metric space.

Definition 1.2 (see [9]). Let (X,G) be a G-metric space, and let (xn) be sequence of points of
X, a point x ∈ X is said to be the limit of the sequence (xn), if limn,m→∞G(x, xn, xm) = 0, and
one says that the sequence (xn) is G-convergent to x.

Thus, that if xn → x in a G-metric space (X,G), then for any ε > 0, there exists N ∈ N
such that G(x, xn, xm) < ε, for all n,m ≥ N.

Proposition 1.3 (see [9]). Let (X,G) be a G-metric space, then the following are equivalent.

(1) (xn) is G-convergent to x.

(2) G(xn, xn, x) → 0, as n → ∞.

(3) G(xn, x, x) → 0, as n → ∞.

(4) G(xm, xn, x) → 0, as m,n → ∞.

Definition 1.4 (see [9]). Let (X,G) be a G-metric space, a sequence (xn) is called G-Cauchy
if for every ε > 0, there is N ∈ N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N; that is, if
G(xn, xmxl) → 0 as n,m, l → ∞.

Proposition 1.5 (see [8]). If (X,G) is a G-metric space, then the following are equivalent.

(1) The sequence (xn) is G-Cauchy.

(2) For every ε > 0, there existsN ∈ N such that G(xn, xm, xm) < ε, for all n,m ≥ N.

Definition 1.6 (see [9]). Let (X,G) and (X′, G′) be two G-metric spaces, and let f : (X,G) →
(X′, G′) be a function, then f is said to be G-continuous at a point a ∈ X if and only if, given
ε > 0, there exists δ > 0 such that x, y ∈ X; and G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ε.
A function f is G-continuous at X if and only if it is G-continuous at all a ∈ X.

Proposition 1.7 (see [9]). Let (X,G), (X′, G′) be two G-metric spaces. Then a function f : X → X′

is G-continuous at a point x ∈ X if and only if it is G sequentially continuous at x; that is, whenever
(xn) is G-convergent to x, (f(xn)) is G-convergent to f(x).

Definition 1.8 (see [9]). A G-metric space (X,G) is called symmetric G-metric space if
G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 1.9 (see [9]). Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly
continuous in all three of its variables.

Proposition 1.10 (see [8]). Every G-metric space (X,G) will define a metric space (X, dG) by

dG(x, y) = G(x, y, y) +G(y, x, x), ∀x, y ∈ X. (1.1)

Note that if (X,G) is a symmetric G-metric space, then

dG(x, y) = 2G(x, y, y), ∀x, y ∈ X. (1.2)
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However, if (X,G) is not symmetric, then it holds by the G-metric properties that

3
2
G(x, y, y) ≤ dG(x, y) ≤ 3G(x, y, y), ∀x, y ∈ X, (1.3)

and that in general these inequalities cannot be improved.

Definition 1.11 (see [9]). A G-metric space (X,G) is said to be G-complete (or complete G-
metric) if every G-Cauchy sequence in (X,G) is G-convergent in (X,G).

Proposition 1.12 (see [9]). A G-metric space (X,G) is G-complete if and only if (X, dG) is a
complete metric space.

2. Main results

Here we start our work with the following theorem.

Theorem 2.1. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping satisfying
one of the following conditions:

G(T(x), T(y), T(z))≤{aG(x, y, z)+bG(x, T(x), T(x))+cG(y, T(y), T(y))+dG(z, T(z), T(z))}
(2.1)

or

G(T(x), T(y), T(z)) ≤ {aG(x, y, z) + bG(x, x, T(x)) + cG(y, y, T(y)) + dG(z, z, T(z))}
(2.2)

for all x, y, z ∈ X where 0 ≤ a + b + c + d < 1, then T has a unique fixed point (say u, i.e., Tu = u),
and T is G-continuous at u.

Proof. Suppose that T satisfies condition (2.1), then for all x, y ∈ X, we have

G(Tx, Ty, Ty) ≤ aG(x, y, y) + bG(x, Tx, Tx) + (c + d)G(y, Ty, Ty),

G(Ty, Tx, Tx) ≤ aG(y, x, x) + bG(y, Ty, Ty) + (c + d)G(x, Tx, Tx).
(2.3)

Suppose that (X,G) is symmetric, then by definition of metric (X, dG) and (1.2), we get

dG(Tx, Ty) ≤ adG(x, y) +
c + d + b

2
dG(x, Tx) +

c + d + b

2
dG(y, Ty), ∀x, y ∈ X. (2.4)

In this line, since 0 < a + b + c + d < 1, then the existence and uniqueness of the fixed point
follows from well-known theorem in metric space (X, dG) (see [10]).

However, if (X,G) is not symmetric then by definition of metric (X, dG) and (1.3), we
get

dG(Tx, Ty) ≤ adG(x, y) +
2(c + d + b)

3
dG(x, Tx) +

2(c + d + b)
3

dG(y, Ty), (2.5)

for all x, y ∈ X, then the metric condition gives no information about this map since 0 <
a + 2(c + d + b)/3 + 2(c + d + b)/3 need not be less than 1. But this can be proved by G-metric.
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Let x0 ∈ X be an arbitrary point, and define the sequence (xn) by xn = Tn(x0). By (2.1),
we have

G(xn, xn+1, xn+1) ≤ aG(xn−1, xn, xn) + bG(xn−1, xn, xn) + (c + d)G(xn, xn+1, xn+1), (2.6)

then

G(xn, xn+1, xn+1) ≤ a + b

1 − (c + d)
G(xn−1, xn, xn). (2.7)

Let q = (a + b)/(1 − (c + d)), then 0 ≤ q < 1 since 0 ≤ a + b + c + d < 1.
So,

G(xn, xn+1, xn+1) ≤ qG(xn−1, xn, xn). (2.8)

Continuing in the same argument, we will get

G(xn, xn+1, xn+1) ≤ qnG(x0, x1, x1). (2.9)

Moreover, for all n,m ∈ N; n < m, we have by rectangle inequality that

G(xn, xm, xm)≤G(xn, xn+1, xn+1)+G(xn+1, xn+2, xn+2)+G(xn+2, xn+3, xn+3)+· · ·+G(xm−1, xm, xm)

≤ (qn + qn+1 + · · · + qm−1)G(x0, x1, x1)

≤ qn

1 − q
G(x0, x1, x1),

(2.10)

and so limG(xn, xm, xm) = 0, as n,m → ∞. Thus (xn) is G-Cauchy sequence. Due to the
completeness of (X,G), there exists u ∈ X such that (xn) is G-converge to u.

Suppose that T(u) /= u, then

G(xn, T(u), T(u)) ≤ aG(xn−1, u, u) + bG(xn−1, xn, xn) + (c + d)G(u, T(u), T(u)), (2.11)

taking the limit as n → ∞, and using the fact that the function G is continuous, then
G(u, T(u), T(u)) ≤ (c + d)G(u, T(u), T(u)). This contradiction implies that u = T(u).

To prove uniqueness, suppose that u /= v such that T(v) = v, then

G(u, v, v) ≤ aG(u, v, v) + bG(u, T(u), T(u)) + (c + d)G(v, T(v), T(v)) = aG(u, v, v), (2.12)

which implies that u = v.
To show that T is G-continuous at u, let (yn) ⊆ X be a sequence such that lim(yn) = u.

we can deduce that

G(u, T(yn), T(yn)) ≤ aG(u, yn, yn) + bG(u, T(u), T(u)) + (c + d)G(yn, T(yn), T(yn))

= aG(u, yn, yn) + (c + d)G(yn, T(yn), T(yn)),
(2.13)

and since G(yn, T(yn), T(yn)) ≤ G(yn, u, u) + G(u, T(yn), T(yn)), we have that G(u, T(yn),
T(yn)) ≤ (a/(1 − (c + d)))G(u, yn, yn) + ((c + d)/(1 − (c + d)))G(yn, u, u).
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Taking the limit as n → ∞, from which we see that G(u, T(yn), T(yn)) → 0 and so, by
Proposition 1.7, T(yn) → u = Tu. It is proved that T is G-continuous at u.

If T satisfies condition (2.2), then the argument is similar to that above. However, to
show that the sequence (xn) is G-Cauchy, we start with

G(xn, xn, xn+1) ≤ aG(xn−1, xn−1, xn) + (b + c)G(xn−1, xn−1, xn) + dG(xn, xn, xn+1), (2.14)

then

G(xn, xn, xn+1) ≤ a + b + c

1 − d
G(xn−1, xn−1, xn). (2.15)

Let q = (a + b + c)/(1 − d), then 0 ≤ q < 1 since 0 ≤ a + b + c + d < 1.
Continuing in the same way, we find that

G(xn, xn, xn+1) ≤ qnG(x0, x0, x1). (2.16)

Then for all n,m ∈ N; n < m, we have by repeated use of the rectangle inequality
G(xn, xn, xm) ≤ (qn/(1 − q))G(x0, x0, x1).

Corollary 2.2. Let (X,G) be a complete G-metric space and let T : X → X be a mapping satisfying
one of the following conditions:

G(Tm(x), Tm(y), Tm(z))

≤ {
aG(x, y, y) + bG(x, Tm(x), Tm(x)) + cG(y, Tm(y), Tm(y)) + dG(z, Tm(z), Tm(z))

}

(2.17)

or

G(Tm(x), Tm(y), Tm(z))≤{aG(x, y, y)+bG(x, x, Tm(x))+cG(y, y, Tm(y))+dG(z, z, Tm(z))
}
,

(2.18)

for all x, y, z ∈ X, where 0 ≤ a + b + c + d < 1. Then T has a unique fixed point (say u), and Tm is
G-continuous at u.

Proof. From the previous theorem, we see that Tm has a unique fixed point (say u), that is,
Tm(u) = u. But T(u) = T(Tm(u)) = Tm+1(u) = Tm(T(u)), so T(u) is another fixed point for Tm

and by uniqueness Tu = u.

Theorem 2.3. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping satisfying
one of the following conditions:

G(T(x), T(y), T(z)) ≤ k max

⎧
⎪⎪⎨

⎪⎪⎩

G(x, T(x), T(x)),

G(y, T(y), T(y)),

G(z, T(z), T(z))

⎫
⎪⎪⎬

⎪⎪⎭
(2.19)

or

G(T(x), T(y), T(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, x, T(x)),

G(y, y, T(y)),

G(z, z, T(z))

⎫
⎪⎪⎬

⎪⎪⎭
, (2.20)

for all x, y, z ∈ X, where 0 ≤ k < 1. Then T has a unique fixed point (say u), and T is G-continuous
at u.
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Proof. Suppose that T satisfies condition (2.19), then for all x, y ∈ X,

G(Tx, Ty, Ty) ≤ kmax{G(x, Tx, Tx), G(y, Ty, Ty)},
G(Ty, Tx, Tx) ≤ kmax{G(y, Ty, Ty), G(x, Tx, Tx)}.

(2.21)

Suppose that (X,G) is symmetric, then by definition of the metric (X, dG) and (1.2) we get

dG(Tx, Ty) ≤ kmax{dG(x, Tx), dG(y, Ty)}, ∀x, y ∈ X. (2.22)

Since k < 1, then the existence and uniqueness of the fixed point follows from a theorem in
metric space (X, dG) (see [11]).

However, if (X,G) is not symmetric, then by definition of the metric (X, dG) and (1.3),
we get

dG(Tx, Ty) ≤ 4k
3

max{dG(x, Tx), dG(y, Ty)}, ∀x, y ∈ X. (2.23)

The metric condition gives no information about this map since 4k/3 need not be less than 1,
but we will proof it by G-metric.

Let x0 ∈ X be an arbitrary point, and define the sequence (xn) by xn = Tn(x0). By
(2.19), we can verify that

G(xn, xn+1, xn+1) ≤ kmax{G(xn−1, xn, xn), G(xn, xn+1, xn+1)}
= kG(xn−1, xn, xn) (since 0 ≤ k < 1).

(2.24)

Continuing in the same argument, we will find

G(xn, xn+1, xn+1) ≤ knG(x0, x1, x1). (2.25)

For all n,m ∈ N; n < m, we have by rectangle inequality that

G(xn, xm, xm)≤G(xn, xn+1, xn+1)+G(xn+1, xn+2, xn+2)+G(xn+2, xn+3, xn+3)+· · ·+G(xm−1, xm, xm)

≤ (kn + kn+1 + · · · + km−1)G(x0, x1, x1)

≤ kn

1 − k
G(x0, x1, x1).

(2.26)

Then, limG(xn, xm, xm) = 0, as n,m → ∞, and thus (xn) is G-Cauchy sequence. Due to the
completeness of (X,G), there exists u ∈ X such that (xn) → u.

Suppose that T(u) /= u, then G(xn+1, T(u), T(u)) ≤ kmax{G(xn+1, xn+2, xn+2), G(u, T(u),
T(u))} and by taking the limit as n → ∞, and using the fact that the function G is continuous,
we get that G(u, T(u), T(u)) ≤ kG(u, T(u), T(u)). This contradiction implies that u = T(u).

To prove uniqueness, suppose that u /= v such that T(v) = v, then G(u, v, v) ≤
kmax{G(v, v, v), G(u, u, u)} = 0 which implies that u = v.

To show that T is G-continuous at u, let (yn) ⊆ X be a sequence such that lim(yn) = u,
then

G(u, T(yn), T(yn)) ≤ kmax{G(u, T(u), T(u)), G(yn, T(yn), T(yn))} = kG(yn, T(yn), T(yn)).
(2.27)

But, G(yn, T(yn), T(yn)) ≤ G(yn, u, u) + G(u, T(yn), T(yn)), then G(u, T(yn), T(yn)) ≤ (k/(1 −
k))G(yn, u, u). Taking the limit as n → ∞, fromwhich we see thatG(u, T(yn), T(yn)) → 0, and
so by Proposition 1.7, T(yn) → u = Tu. So, T is G-continuous at u
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Corollary 2.4. Let (X,G) be a complete G-metric space and let T : X → X be a mapping satisfying
one of the following conditions for some m ∈ N:

G(Tm(x), Tm(y), Tm(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, Tm(x), Tm(x)),

G(y, Tm(y), Tm(y)),

G(z, Tm(z), Tm(z))

⎫
⎪⎪⎬

⎪⎪⎭
(2.28)

or

G(Tm(x), Tm(y), Tm(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, x, Tm(x)),

G(y, y, Tm(y)),

G(z, z, Tm(z))

⎫
⎪⎪⎬

⎪⎪⎭
, (2.29)

for all x, y, z ∈ X, then T has a unique fixed point (say u) and Tm is G-continuous at u.

Proof. We use the same argument as in Corollary 2.2.

Theorem 2.5. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping satisfying
one of the following conditions:

G(T(x), T(y), T(y)) ≤ kmax{G(x, T(y), T(y)), G(y, T(x), T(x)), G(y, T(y), T(y))} (2.30)

or

G(T(x), T(y), T(y)) ≤ kmax{G(x, x, T(y)), G(y, y, T(x)), G(y, y, T(y))}, (2.31)

for all x, y ∈ X, where k ∈ [0, 1). Then T has a unique fixed point (say u), and T is G-continuous at
u.

Proof. Suppose that T satisfies condition (2.30), then for all x, y ∈ X,

G(Tx, Ty, Ty) ≤ kmax{G(x, Ty, Ty), G(y, Tx, Tx), G(y, Ty, Ty)},
G(Ty, Tx, Tx) ≤ kmax{G(x, Ty, Ty), G(y, Tx, Tx), G(x, Tx, Tx)}.

(2.32)

Suppose that (X,G) is symmetric, then by definition of the metric (X, dG) and (1.2), we have.

dG(Tx, Ty) ≤ k

2
max

⎧
⎪⎪⎨

⎪⎪⎩

dG(x, Ty),

dG(y, Tx),

dG(y, Ty)

⎫
⎪⎪⎬

⎪⎪⎭
+
k

2
max

⎧
⎪⎪⎨

⎪⎪⎩

dG(x, Ty),

dG(y, Tx),

dG(x, Tx)

⎫
⎪⎪⎬

⎪⎪⎭

≤ kmax{dG(x, Ty), dG(y, Tx), dG(x, Tx), dG(y, Ty)}, ∀x, y ∈ X.

(2.33)

Since 0 ≤ k < 1, then the existence and uniqueness of the fixed point follows from a theorem
in metric space (X, dG) (see [12]).

However, if (X,G) is not symmetric, then by definition of the metric (X, dG) and (1.3),
we have

dG(Tx, Ty) ≤ 2k
3

max

⎧
⎪⎪⎨

⎪⎪⎩

dG(x, Ty),

dG(y, Tx),

dG(y, Ty)

⎫
⎪⎪⎬

⎪⎪⎭
+
2k
3

max

⎧
⎪⎪⎨

⎪⎪⎩

dG(x, Ty),

dG(y, Tx),

dG(x, Tx)

⎫
⎪⎪⎬

⎪⎪⎭
, (2.34)
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for all x, y ∈ X, then the metric space (X, dG) gives no information about this map since 4k/3
need not be less than 1. But we will proof it by G-metric.

Let x0 ∈ X be arbitrary point, and define the sequence (xn) by xn = Tn(x0), then by
(2.30) and using k < 1, we deduce that

G(xn, xn+1, xn+1) ≤ kmax{G(xn−1, xn+1, xn+1), G(xn, xn+1, xn+1)} = kG(xn−1, xn+1, xn+1). (2.35)

So,

G(xn, xn+1, xn+1) ≤ kG(xn−1, xn+1, xn+1), (2.36)

and using

G(xn−1, xn+1, xn+1) ≤ kmax{G(xn−2, xn+1, xn+1), G(xn, xn−1, xn−1), G(xn, xn+1, xn+1)}, (2.37)

then,

G(xn, xn+1, xn+1) ≤ k2 max{G(xn−2, xn+1, xn+1), G(xn, xn−1, xn−1)}. (2.38)

Continuing in this procedure, we will have

G(xn, xn+1, xn+1) ≤ knΓn, (2.39)

where Γn = max{G(xi, xj , xj); for all i, j ∈ {0, 1, . . . , n + 1}}.
For n,m ∈ N; n < m, let Γ = max{Γi; for all i = n, . . . ,m − 1}.
Then, for all n,m ∈ N; n < m, we have by rectangle inequality

G(xn, xm, xm)≤G(xn, xn+1, xn+1)+G(xn+1, xn+2, xn+2)+G(xn+2, xn+3, xn+3)+· · ·+G(xm−1, xm, xm)

≤knΓn + kn+1Γn+1 + · · · + km−1Γm−1

≤(kn + kn+1 + · · · + km−1)Γ

≤ kn

1 − k
Γ.

(2.40)

This prove that limG(xn, xm, xm) = 0, as n,m → ∞, and thus (xn) is G-Cauchy sequence.
Since (X,G) is G-complete then there exists u ∈ X such that (xn) is G-converge to u.

Suppose that T(u) /= u, then

G(xn, T(u), T(u)) ≤ kmax{G(xn−1, T(u), T(u)), G(u, xn+1, xn+1), G(u, T(u), T(u))}. (2.41)

Taking the limit as n → ∞, and using the fact that the function G is continuous, we get
G(u, T(u), T(u)) ≤ kG(u, T(u), T(u)), this contradiction implies that u = T(u).

To prove the uniqueness, suppose that u /= v such that T(v) = v. So, by (2.30), we have
that

G(u, v, v) ≤ kmax{G(u, v, v), G(v, u, u)} =⇒ G(u, v, v) ≤ kG(v, u, u). (2.42)

Again we will find G(v, u, u) ≤ kG(u, v, v), so

G(u, v, v) ≤ k2G(u, v, v); (2.43)

since k < 1, this implies that u = v.
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To show that T is G-continuous at u, let (yn) ⊆ X be a sequence such that lim(yn) = u,
then

G(u, T(yn), T(yn)) ≤ kmax{G(u, T(yn), T(yn)), G(yn, T(u), T(u)), G(yn, T(yn), T(yn))}.
(2.44)

But, G(yn, T(yn), T(yn)) ≤ G(yn, u, u) + G(u, T(yn), T(yn)), so, G(u, T(yn), T(yn)) ≤ (k/(1 −
k))G(yn, u, u).

Taking the limit as n → ∞, from which we see that G(u, T(yn), T(yn)) → 0 and so, by
Proposition 1.7, we have T(yn) → u = Tuwhich implies that T is G-continuous at u.

Corollary 2.6. Let (X,G) be a complete G-metric space, and let T : X → X, be a mapping satisfying
one of the following conditions:

G(T(x), T(y), T(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, T(y), T(y)), G(x, T(z), T(z)),

G(y, T(x), T(x)), G(y, T(z), T(z)),

G(z, T(x), T(x)), G(z, T(y), T(y))

⎫
⎪⎪⎬

⎪⎪⎭
(2.45)

or

G(T(x), T(y), T(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, x, T(y)), G(x, x, T(z)),

G(y, y, T(x)), G(y, y, T(z)),

G(z, z, T(x)), G(z, z, T(y))

⎫
⎪⎪⎬

⎪⎪⎭
, (2.46)

for all x, y, z ∈ X where k ∈ [0, 1), then T has a unique fixed point (say u) and T is G-continuous at
u.

Proof. If we let z = y in conditions (2.45) and (2.46), then they become conditions (2.30) and
(2.31), respectively, in Theorem 2.5; so the proof follows from Theorem 2.5.

Corollary 2.7. Let (X,G) be a complete G-metric space and let T : X → X be a mapping satisfying
one of the following conditions:

G(Tm(x), Tm(y), Tm(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, Tm(y), Tm(y)), G(x, Tm(z), Tm(z)),

G(y, Tm(x), Tm(x)), G(y, Tm(z), Tm(z)),

G(z, Tm(x), Tm(x)), G(z, Tm(y), Tm(y))

⎫
⎪⎪⎬

⎪⎪⎭
,

G(Tm(x), Tm(y), Tm(z)) ≤ kmax

⎧
⎪⎪⎨

⎪⎪⎩

G(x, x, Tm(y)), G(x, x, Tm(z)),

G(y, y, Tm(x)), G(y, y, Tm(z)),

G(z, z, Tm(x)), G(z, z, Tm(y))

⎫
⎪⎪⎬

⎪⎪⎭
,

G(Tm(x), Tm(y), Tm(y)) ≤kmax{G(x,Tm(y),Tm(y)), G(y,Tm(x),Tm(x)), G(y,Tm(y),Tm(y))},
(2.47)

or,

G(Tm(x), Tm(y), Tm(y)) ≤ kmax{G(x, x, Tm(y)), G(y, y, Tm(x)), G(y, y, Tm(y))}, (2.48)

for all x, y, z ∈ X, for somem ∈ N, where k ∈ [0, 1), then T has a unique fixed point (say u), and Tm

is G-continuous at u.
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Proof. The proof follows from Theorem 2.5, Corollary 2.6, and from an argument similar to
that used in Corollary 2.2.

Theorem 2.8. Let (X,G) be a complete G-metric space, and let T : X → X be a mapping satisfying
one of the following conditions:

G(T(x), T(y), T(y)) ≤ kmax{G(x, T(y), T(y)), G(y, T(x), T(x))} (2.49)

or

G(T(x), T(y), T(y)) ≤ kmax{G(x, x, T(y)), G(y, y, T(x))}, (2.50)

for all x, y ∈ X, where k ∈ [0, 1), then T has a unique fixed point (say u), and T is G-continuous at u.

Proof. Since whenever the mapping satisfies condition (2.49), or (2.50), then it satisfies
condition (2.45), or (2.46), respectively, in Theorem 2.5. Then the proof follows from
Theorem 2.5.

Theorem 2.9. Let (X,G) be a complete G-metric space, and let T : X → X, be a mapping satisfying
one of these conditions

G(T(x), T(y), T(y)) ≤ a{G(x, T(y), T(y)) +G(y, T(x), T(x))} (2.51)

or

G(T(x), T(y), T(y)) ≤ a{G(x, x, T(y)) +G(y, y, T(x))}, (2.52)

for all x, y ∈ X, where a ∈ [0, 1/2), then T has a unique fixed point (say u), and T is G-continuous
at u.

Proof. Suppose that T satisfies condition (2.51), then we have

G(Tx, Ty, Ty) ≤ a{G(y, Tx, Tx) +G(x, Ty, Ty)},
G(Ty, Tx, Tx) ≤ a{G(x, Ty, Ty) +G(y, Tx, Tx)},

(2.53)

for all x, y ∈ X.
Suppose that (X,G) is symmetric, then by definition of the metric (X, dG) and (1.2),

we get

dG(Tx, Ty) ≤ a{dG(x, Ty) + dG(y, Tx)} ∀x, y ∈ X. (2.54)

Since 0 ≤ 2a < 1, then the existence and uniqueness of the fixed point follow from a theorem
in metric space (X, dG) (see [13]).

However, if (X,G) is not symmetric, then by definition of the metric (X, dG) and (1.3),
we have

dG(Tx, Ty) ≤ 4a
3
dG(x, Ty) +

4a
3
dG(y, Tx) ∀x, y ∈ X. (2.55)

So, the metric space (X, dG) gives no information about this map since 8a/3 need not be less
than 1. But this can be proved by G-metric.
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Let x0 ∈ X be arbitrary point, and define the sequence (xn) by xn = Tn(x0), then by
(2.51), we have

G(xn, xn+1, xn+1) ≤ a{G(xn−1, xn+1, xn+1) +G(xn, xn, xn)} = aG(xn−1, xn+1, xn+1). (2.56)

But

G(xn−1, xn+1, xn+1) ≤ aG(xn−1, xn, xn) + aG(xn, xn+1, xn+1), (2.57)

thus we have

G(xn, xn+1, xn+1) ≤ a

1 − a
G(xn−1, xn, xn). (2.58)

Let k = a/(1 − a), hence 0 ≤ k < 1 then continue in this procedure, we will get that
G(xn, xn+1, xn+1) ≤ knG(x0, x1, x1).

For all n,m ∈ N; n < m, we have by rectangle inequality

G(xn, xm, xm) ≤G(xn, xn+1, xn+1)+G(xn+1, xn+2, xn+2)+G(xn+2, xn+3, xn+3)+· · ·+G(xm−1, xm, xm)

≤ (kn + kn+1 + · · · + km−1)G(x0, x1, x1)

≤ kn

1 − k
G(x0, x1, x1).

(2.59)

Then, limG(xn, xm, xm) = 0, as n,m → ∞, and so, (xn) is G-Cauchy sequence. By
completeness of (X,G), there exists u ∈ X such that (xn) is G-converge to u.

Suppose that T(u) /= u, then

G(xn, T(u), T(u)) ≤ a{G(xn−1, T(u), T(u)) +G(u, xn, xn)}. (2.60)

Taking the limit as n → ∞, and using the fact that the function G is continuous, then
G(u, T(u), T(u)) ≤ aG(u, T(u), T(u)). This contradiction implies that u = T(u).

To prove uniqueness, suppose that u /= v such that T(v) = v, then G(u, v, v) ≤
a{G(u, v, v) +G(v, u, u)}, so

G(u, v, v) ≤
(
k =

a

1 − a

)
G(v, u, u) (2.61)

again by the same argument, we can verify that G(u, v, v) ≤ k2G(u, v, v), which implies that
u = v.

To show that T is G-continuous at u, let (yn) ⊆ X be a sequence such that lim(yn) = u,
then

G(u, T(yn), T(yn)) ≤ a{G(u, T(yn), T(yn)) +G(yn, T(u), T(u))}, (2.62)

and so G(u, T(yn), T(yn)) ≤ (a/(1 − a))G(yn, T(u), T(u).
Taking the limit as n → ∞, from which we see that G(u, T(yn), T(yn)) → 0. By

Proposition 1.7, we have T(yn) → u = Tuwhich implies that T is G-continuous at u.
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Al. I. Cuza din Iaşi. Serie Nouă. Matematică, vol. 46, no. 1, pp. 3–24, 2000.

[6] B. C. Dhage, “On generalized metric spaces and topological structure. II,” Pure and Applied
Mathematika Sciences, vol. 40, no. 1-2, pp. 37–41, 1994.

[7] B. C. Dhage, “On continuity of mappings in D-metric spaces,” Bulletin of the Calcutta Mathematical
Society, vol. 86, no. 6, pp. 503–508, 1994.

[8] Z. Mustafa and B. Sims, “Some remarks concerning D-metric spaces,” in International Conference on
Fixed Point Theory and Applications, pp. 189–198, Yokohama, Yokohama, Japan, 2004.

[9] Z. Mustafa and B. Sims, “A new approach to generalized metric spaces,” Journal of Nonlinear and
Convex Analysis, vol. 7, no. 2, pp. 289–297, 2006.

[10] S. Reich, “Some remarks concerning contraction mappings,” Canadian Mathematical Bulletin, vol. 14,
pp. 121–124, 1971.

[11] R. M. T. Bianchini, “Su un problema di S. Reich riguardante la teoria dei punti fissi,” Bollettino
dell’Unione Matematica Italiana, vol. 5, no. 4, pp. 103–108, 1972.
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