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1. Introduction

Let E be a real Banach space, let C be a nonempty closed convex subset of E, and let T : C → E
be a mapping. Recall that T is nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C. (1.1)

We denote by F(T) the set of fixed points of T , that is, F(T) = {x ∈ C : x = Tx}. A mapping T is
said to be quasi-nonexpansive if F(T)/=∅ and

‖Tx − y‖ ≤ ‖x − y‖ ∀x ∈ C, y ∈ F(T). (1.2)

It is easy to see that if T is nonexpansive with F(T)/=∅, then it is quasi-nonexpansive. There
are many methods for approximating fixed points of a quasi-nonexpansive mapping. In 1953,
Mann [1] introduced the iteration as follows: a sequence {xn} is defined by

xn+1 = αnxn +
(
1 − αn

)
Txn, (1.3)
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where the initial guess element x0 ∈ C is arbitrary and {αn} is a real sequence in [0, 1].
Mann iteration has been extensively investigated for nonexpansive mappings. One of the
fundamental convergence results was proved by Reich [2]. In an infinite-dimensional Hilbert
space, Mann iteration can yield only weak convergence (see [3, 4]). Attempts to modify the
Mann iteration method (1.3) so that strong convergence is guaranteed have recently been
made. Nakajo and Takahashi [5] proposed the following modification of Mann iteration
method (1.3) for a nonexpansive mapping T from C into itself in a Hilbert space:

x0 ∈ C is arbitrary,

yn = αnxn +
(
1 − αn

)
Txn,

Cn =
{
z ∈ C :

∥
∥yn − z

∥
∥ ≤ ∥∥xn − z

∥
∥},

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉 ≥ 0
}
,

xn+1 = PCn ∩Qn
x0, n = 0, 1, 2, . . . ,

(1.4)

where PK denotes the metric projection from a Hilbert space H onto a closed convex subset
K of H and prove that the sequence {xn} converges strongly to PF(T)x0. A projection onto
intersection of two halfspaces is computed by solving a linear system of two equations with
two unknowns (see [6, Section 3]).

Recently, Su and Qin [7]modified iteration (1.4), so-called the monotone CQmethod for
nonexpansive mapping, as follows:

x0 ∈ C is arbitrary,

yn = αnxn +
(
1 − αn

)
Txn,

C0 =
{
z ∈ C :

∥
∥y0 − z

∥
∥ ≤ ∥∥x0 − z

∥
∥},

Q0 = C,

Cn =
{
z ∈ Cn−1 ∩Qn−1 :

∥∥yn − z
∥∥ ≤ ∥∥xn − z

∥∥},

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, x0 − xn

〉 ≥ 0
}
,

xn+1 = PCn ∩Qn
x0, n = 0, 1, 2, . . . ,

(1.5)

and prove that the sequence {xn} converges strongly to PF(T)x0.
We now recall some definitions concerning relatively quasi-nonexpansive mappings and

what have been proved until now. Let E be a real smooth Banach space with norm ‖ · ‖ and
let E∗ be the dual of E. Denote by 〈·, ·〉 the pairing between E and E∗. The normalized duality
mapping J from E to E∗ is defined by

Jx =
{
f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, where x ∈ E. (1.6)

The reader is directed to [8] (and its review [9]), where the properties on the duality mapping
and several related topics are presented. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 ∀x, y ∈ E. (1.7)
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Let T be a mapping from C into E. A point p in C is said to be an asymptotic fixed point of T
[10] if C contains a sequence {xn}which converges weakly to p and limn→∞(xn −Txn) = 0. The
set of asymptotic fixed points of T is denoted by F̂(T). We say that the mapping T is relatively
nonexpansive if the following conditions are satisfied:

(R1) F(T)/=∅;

(R2) φ(p, Tx) ≤ φ(p, x) for each x ∈ C, p ∈ F(T);

(R3) F(T) = F̂(T).

If T satisfies (R1) and (R2), then T is called relatively quasi-nonexpansive.
Several articles have appeared providing method for approximating fixed points of

relatively quasi-nonexpansive mappings [11–16]. Matsushita and Takahashi [12] introduced
the following iteration: a sequence {xn} defined by

xn+1 =
∏

C

J−1
(
αnJxn +

(
1 − αn

)
JTxn

)
, (1.8)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T is a
relatively nonexpansive mapping, and ΠC denotes the generalized projection from E onto a
closed convex subset C of E. They prove that the sequence {xn} converges weakly to a fixed
point of T . Moreover, Matsushita and Takahashi [13] proposed the following modification of
iteration (1.8):

x0 ∈ C is arbitrary,

yn = J−1
(
αnJxn +

(
1 − αn)JTxn

)
,

Cn =
{
z ∈ C : φ

(
z, yn) ≤ φ

(
z, xn

)}
,

Qn =
{
z ∈ C :

〈
xn − z, x0 − xn

〉 ≥ 0
}
,

xn+1 =
∏

Cn ∩Qn

x0, n = 0, 1, 2, . . . ,

(1.9)

and prove that the sequence {xn} converges strongly to ΠF(T)x0.
Recently, Kohsaka and Takahashi [11] extended iteration (1.8) to obtain a weak

convergence theorem for common fixed points of a finite family of relatively nonexpansive
mapping {Ti}mi=1 by the following iteration:

xn+1 =
∏

C

J−1
(

m∑

i=1

wn,i

(
αn,iJxn +

(
1 − αn,i

)
JTixn

)
)

, n = 1, 2, . . . , (1.10)

where αn,i ⊂ [0, 1] and wn,i ⊂ [0, 1]with
∑m

i=1wn,i = 1 for all n ∈ N.
Employing the ideas of Su and Qin [7], and of Aoyama et al. [17], we modify iterations

(1.5), (1.8)–(1.10) to obtain strong convergence theorems for common fixed points of countable
relatively quasi-nonexpansive mappings in a Banach space. Consequently, we obtain strong
convergence theorems for quasi-nonexpansive mappings in a Hilbert space without using
demiclosedness principle. Moreover, we introduce a new certain condition for an infinite
family of mappings which is inspired by Aoyama et al. [17], and we also show how to generate
a corresponding sequence of mappings satisfying our condition.
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2. Preliminaries

Throughout the paper, let E be a real Banach space. We say that E is strictly convex if the
following implication holds for x, y ∈ E:

‖x‖ = ‖y‖ = 1, x /=y imply
∥∥∥∥
x + y

2

∥∥∥∥ < 1. (2.1)

It is also said to be uniformly convex if for any ε > 0, there exists δ > 0 such that

‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε imply
∥
∥
∥
∥
x + y

2

∥∥
∥
∥ ≤ 1 − δ. (2.2)

It is known that if E is uniformly convex Banach space, then E is reflexive and strictly convex.
A Banach space E is said to be smooth if

lim
t→ 0

‖x + ty‖ − ‖x‖
t

(2.3)

exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = 1}. In this case, the norm of E is said to be
Gâteaux differentiable. The space E is said to have uniformly Gâteaux differentiable norm if for each
y ∈ S(E), the limit (2.3) is attained uniformly for x ∈ S(E). The norm of E is said to be Fréchet
differentiable if for each x ∈ S(E), the limit (2.3) is attained uniformly for y ∈ S(E). The norm
of E is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit
(2.3) is attained uniformly for x, y ∈ S(E).

We also know the following properties (see, e.g., [18] for details).

(a) E (E∗, resp.) is uniformly convex if and only if E∗ (E, resp.) is uniformly smooth.

(b) J(x)/=∅ for each x ∈ E.

(c) If E is reflexive, then J is a mapping of E onto E∗.

(d) If E is strictly convex, then J(x) ∩ J(y) = ∅ for all x /=y.

(e) If E is smooth, then J is single valued.

(f) If E has a Fréchet differentiable norm, then J is norm to norm continuous.

(g) If E is uniformly smooth, then J is uniformly norm to norm continuous on each
bounded subset of E.

(h) If E is a Hilbert space, then J is the identity operator.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 ∀x, y ∈ E. (2.4)

It is obvious from the definition of the function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2 ∀x, y ∈ E. (2.5)

Moreover, we know the following results.
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Lemma 2.1 (see [13, Remark 2.1]). Let E be a strictly convex and smooth Banach space, then
φ(x, y) = 0 if and only if x = y.

Lemma 2.2 (see [11, Lemma 2.5]). Let E be a uniformly convex and smooth Banach space and let
r > 0. Then there exists a continuous, strictly increasing, and convex function g : [0, 2r] → [0,∞)
such that g(0) = 0 and

g
(‖x − y‖) ≤ φ(x, y) (2.6)

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive, strictly
convex, and smooth. It is known that [19] for any x ∈ E, there exists a unique point x∗ ∈ C
such that

φ
(
x∗, x

)
= min

y∈C
φ(y, x). (2.7)

Following Alber [20], we denote such an x∗ by ΠCx. The mapping ΠC is called the generalized
projection from E onto C. It is easy to see that in a Hilbert space, the mappingΠC coincides with
the metric projection PC. Concerning the generalized projection, the following are well known.

Lemma 2.3 (see [19, Proposition 4]). Let C be a nonempty closed convex subset of a smooth Banach
space E and let x ∈ E. Then

x∗ =
∏

C

x ⇐⇒ 〈x∗ − y, Jx − Jx∗〉 ≥ 0 for each y ∈ C. (2.8)

Lemma 2.4 (see [19, Proposition 5]). Let E be a reflexive, strictly convex, and smooth Banach space,
let C be a nonempty closed convex subset of E, and let x ∈ E. Then

φ

(

y,
∏

C

x

)

+ φ

(
∏

C

x, x

)

≤ φ(y, x) for each y ∈ C. (2.9)

Dealing with the generalized projection from E onto the fixed point set of a relatively
quasi-nonexpansive mapping, we get the following result.

Lemma 2.5. Let E be a strictly convex and smooth Banach space, let C be a nonempty closed convex
subset of E, and let T be a relatively quasi-nonexpansive mapping from C into E. Then F(T) is closed
and convex.

Proof. The proof of [13, Proposition 2.4] does not invoke condition (R3) at all. So the conclusion
holds for relatively quasi-nonexpansive mappings as well.

Let C be a subset of a Banach space E and let {Tn} be a family of mappings from C into
E. For a subset B of C, we say that

(i) ({Tn}, B) satisfies condition AKTT if

∞∑

n=1

sup
{∥∥Tn+1z − Tnz

∥∥ : z ∈ B
}
< ∞; (2.10)
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(ii) ({Tn}, B) satisfies condition ∗AKTT if

∞∑

n=1

sup
{∥∥JTn+1z − JTnz

∥
∥ : z ∈ B

}
< ∞. (2.11)

Aoyama et al. [17, Lemma 3.2] prove the following result which is very useful in our main
result.

Lemma 2.6. Let C be a nonempty subset of a Banach space E and let {Tn} be a sequence of mappings
from C into E. Let B be a subset of C with ({Tn}, B) satisfying condition AKTT, then there exists a
mapping T̃ : B → E such that

T̃x = lim
n→∞

Tnx ∀x ∈ B (2.12)

and limn→∞ sup{‖T̃z − Tnz‖ : z ∈ B} = 0.

Inspired by the preceding lemma, we have the following result.

Lemma 2.7. Let E be a reflexive and strictly convex Banach space whose norm is Fréchet differentiable,
let C be a nonempty subset of E, and let {Tn} be a sequence of mappings from C into E. Let B be a subset
of C with ({Tn}, B) satisfying condition ∗AKTT, then there exists a mapping T̂ : B → E such that

T̂x = lim
n→∞

Tnx ∀x ∈ B (2.13)

and limn→∞ sup{‖JT̂z − JTnz‖ : z ∈ B} = 0.

Proof. For x ∈ B, we show that {JTnx} is a Cauchy sequence in E∗. Let ε > 0. By the condition
∗AKTT of ({Tn}, B), there exists l0 ∈ N such that

∞∑

n=l0

sup
{∥∥JTn+1z − JTnz

∥∥ : z ∈ B
}
< ε. (2.14)

In particular, if k > l ≥ l0, then

∥∥JTkx − JTlx
∥∥ ≤

k−1∑

n=l

sup
{∥∥JTn+1z − JTnz

∥∥ : z ∈ B
}

≤
∞∑

n=l0

sup
{∥∥JTn+1z − JTnz

∥∥ : z ∈ B
}
< ε.

(2.15)

Hence, {JTnx} is a Cauchy sequence in E∗. It follows then that limn→∞JTnx exists for all x ∈ B.
Moreover, it is noted that the convergence is uniform on B. Since E is reflexive and strictly
convex, J is bijective and we can define a mapping T̂ from B into E such that

T̂x = J−1
(
lim
n→∞

JTnx
)

∀x ∈ B. (2.16)
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Since E has a Fréchet differentiable norm, J is norm-to-norm continuous and hence

T̂x = J−1J
(
lim
n→∞

Tnx
)
= lim

n→∞
Tnx ∀x ∈ B. (2.17)

This completes the proof.

Combining Lemmas 2.6 and 2.7, we obtain a crucial tool for our main result.

Lemma 2.8. Let E be a reflexive and strictly convex Banach space whose norm is Fréchet differentiable,
let C be a nonempty subset of E, and let {Tn} be a sequence of mappings from C into E. Suppose that
for each bounded subset B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition
∗AKTT. Then there exists a mapping T : C → E such that

Tx = lim
n→∞

Tnx ∀x ∈ C. (2.18)

Proof. To see that T is well defined, we suppose that ({Tn}, {x}) satisfies condition AKTT
and condition ∗AKTT. Then, by Lemmas 2.6 and 2.7, there exist T̃ and T̂ such that T̃x =
limn→∞Tnx = T̂x.

Lemma 2.9 (see [11, Lemma 3.2]). Let E be a reflexive, strictly convex, and smooth Banach space, let
z ∈ E, and let {ti}mi=1 ⊂ (0, 1) with

∑m
i=1ti = 1. If {xi}mi=1 is a finite sequence in E such that

φ

(

z, J−1
(

m∑

i=1

tiJxi

))

=
m∑

i=1

tiφ
(
z, xi

)
, (2.19)

then x1 = x2 · · · = xm.

Lemma 2.10. Let E be a strictly convex Banach space and let {tn} ⊂ (0, 1) with
∑∞

n=1tn = 1. If {xn} is
a sequence in E such that

∑∞
n=1tnxn and

∑∞
n=1tn‖xn‖2 converge, and

∥∥∥∥∥

∞∑

n=1

tnxn

∥∥∥∥∥

2

=
∞∑

n=1

tn
∥∥xn

∥∥2, (2.20)

then {xn} is a constant sequence.

Proof. Suppose that xi /=xj for some i, j ∈ N. Then, by the strict convexity of E,
∥∥∥∥

ti
ti + tj

xi +
tj

ti + tj
xj

∥∥∥∥

2

<
ti

ti + tj

∥∥xi

∥∥2 +
tj

ti + tj

∥∥xj

∥∥2. (2.21)

It follows that
∥∥∥
∥∥

∞∑

n=1

tnxn

∥∥∥
∥∥

2

=

∥∥∥
∥∥
(
ti + tj

)
(

ti
ti + tj

xi +
tj

ti + tj
xj

)
+
∑

n/= i,j

tnxn

∥∥∥
∥∥

2

≤ (ti + tj
)
∥∥∥∥

ti
ti + tj

xi +
tj

ti + tj
xj

∥∥∥∥

2

+
∑

n/= i,j

tn
∥∥xn

∥∥2

<
(
ti + tj

)
(

ti
ti + tj

∥∥xi

∥∥2 +
tj

ti + tj

∥∥xj

∥∥2
)
+
∑

n/= i,j

tn
∥∥xn

∥∥2

=
∞∑

n=1

tn
∥∥xn

∥∥2.

(2.22)

This is a contradiction.
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3. Main results

In this section, we establish strong convergence theorem for finding common fixed points of a
countable family of relatively quasi-nonexpansive mappings in a Banach space.

This theorem generalizes a recent theorem by Su et al. [21, Theorem 3.1]. It is noted that
relative quasi-nonexpansiveness considered in the paper and hemirelative nonexpansiveness
of [21] are the same.We do prefer the former name because in a Hilbert space setting, relatively
quasi-nonexpansive mappings are just quasi-nonexpansive.

Recall that an operator T in a Banach space is closed if xn → x and Txn → y, then Tx = y.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let {Tn} be a sequence of relatively quasi-nonexpansive mappings
from C into E such that

⋂∞
n=0F(Tn) is nonempty and let {xn} be a sequence in C defined as follows:

x0 ∈ C, C−1 = Q−1 = C,

yn = J−1
(
αnJxn +

(
1 − αn

)
JTnxn

)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ

(
z, yn

) ≤ φ
(
z, xn

)}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, Jx0 − Jxn

〉 ≥ 0
}
,

xn+1 =
∏

Cn ∩Qn

x0, n = 0, 1, 2, . . . ,

(3.1)

where {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Suppose that for each bounded subset
B of C, the ordered pair ({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. Let T be the
mapping from C into E defined by Tz = limn→∞Tnz for all z ∈ C and suppose that T is closed and
F(T) =

⋂∞
n=0F(Tn). Then {xn} converges strongly to ΠF(T)x0.

Proof. We first note that each Cn and Qn are closed and convex. This follows since φ(z, yn) ≤
φ(z, xn) is equivalent to

2
〈
z, Jxn − Jyn

〉 ≤ ∥∥xn

∥∥2 − ∥∥yn

∥∥2. (3.2)

It is clear that
⋂∞

n=0F(Tn) ⊂ C = C−1 ∩Q−1. Next, we show that
∞⋂

n=0

F
(
Tn
) ⊂ Cn ∩Qn ∀n ∈ N ∪ {0}. (3.3)

Suppose that
⋂∞

n=0F(Tn) ⊂ Ck−1 ∩Qk−1 for some k ∈ N ∪ {0}. Let p ∈ ⋂∞
n=0F(Tn). Then

φ
(
p, yk

)
= φ
(
p, J−1

(
αkJxk +

(
1 − αk

)
JTkxk

))

= ‖p‖2 − 2
〈
p, αkJxk +

(
1 − αk

)
JTkxk

〉
+
∥∥αkJxk +

(
1 − αk

)
JTkxk

∥∥2

≤ ‖p‖2 − 2αk

〈
p, Jxk

〉 − 2
(
1 − αk

)〈
p, JTkxk

〉
+ αk

∥∥xk

∥∥2 +
(
1 − αk

)∥∥Tkxk

∥∥2

= αk

(‖p‖2 − 2
〈
p, Jxk

〉
+
∥∥xk

∥∥2) +
(
1 − αk

)(‖p‖2 − 2
〈
p, JTkxk

〉
+
∥∥Tkxk

∥∥2
)

= αkφ
(
p, xk

)
+
(
1 − αk

)
φ
(
p, Tkxk

)

≤ αkφ
(
p, xk

)
+
(
1 − αk

)
φ
(
p, xk

)

= φ
(
p, xk

)
.

(3.4)
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This implies that
⋂∞

n=0F(Tn) ⊂ Ck. From xk = ΠCk−1 ∩Qk−1x0 and by Lemma 2.3, we have

〈
xk − z, Jx0 − Jxk

〉 ≥ 0 for each z ∈ Ck−1 ∩Qk−1. (3.5)

In particular,

〈
xk − p, Jx0 − Jxk

〉 ≥ 0 for every p ∈
∞⋂

n=0

F
(
Tn
)

(3.6)

and hence
⋂∞

n=0F(Tn) ⊂ Qk. It follows that

∞⋂

n=0

F
(
Tn
) ⊂ Ck ∩Qk. (3.7)

By induction, (3.3) holds. This implies that {xn} is well defined. It follows from the definition
of Qn and Lemma 2.3 that xn = ΠQn

x0. Since xn+1 = ΠCn ∩Qn
x0 ∈ Qn, we have

φ
(
xn, x0

) ≤ φ
(
xn+1, x0

) ∀n ∈ N ∪ {0}. (3.8)

Therefore, φ(xn, x0) is nondecreasing. Using xn = ΠQn
x0 and Lemma 2.4, we have

φ
(
xn, x0

)
= φ
(
ΠQn

x0, x0
) ≤ φ

(
p, x0

) − φ
(
p, xn

) ≤ φ
(
p, x0

)
(3.9)

for all p ∈ ⋂∞
n=0F(Tn) for all n ∈ N ∪ {0}. Therefore, φ(xn, x0) is bounded. So

lim
n→∞

φ
(
xn, x0

)
exists. (3.10)

In particular, by (2.5), the sequence {(‖xn‖ − ‖x0‖)2} is bounded. This implies that {xn} is
bounded. Noticing again that xn = ΠQn

x0, and for any positive integer k, we have xn+k ∈
Qn+k−1 ⊂ Qn. By Lemma 2.4,

φ
(
xn+k, xn

)
= φ

(

xn+k,
∏

Qn

x0

)

≤ φ
(
xn+k, x0

) − φ

(
∏

Qn

x0, x0

)

= φ
(
xn+k, x0

) − φ
(
xn, x0

)
.

(3.11)

Using Lemma 2.2, we have, form,n with m > n,

g
(∥∥xm − xn

∥∥) ≤ φ
(
xm, xn

) ≤ φ
(
xm, x0

) − φ
(
xn, x0

)
, (3.12)

where g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function with g(0) =
0. Then the properties of the function g yield that {xn} is a Cauchy sequence in C, so there
exists w ∈ C such that xn → w. In view of xn+1 = ΠCn∩Qn

x0 ∈ Cn and the definition of Cn, we
also have

φ
(
xn+1, yn

) ≤ φ
(
xn+1, xn

) ∀n ∈ N ∪ {0}. (3.13)
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It follows that

lim
n→∞

φ
(
xn+1, yn

)
= lim

n→∞
φ
(
xn+1, xn

)
= 0. (3.14)

By using Lemma 2.2, we obtain

lim
n→∞

∥∥xn+1 − yn

∥∥ = lim
n→∞

∥∥xn+1 − xn

∥∥ = 0. (3.15)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥
∥Jxn+1 − Jyn

∥
∥ = lim

n→∞
∥
∥Jxn+1 − Jxn

∥
∥ = 0. (3.16)

On the other hand, we have, for each n ∈ N ∪ {0},
∥∥Jxn+1 − Jyn

∥∥ =
∥∥Jxn+1 −

(
αnJxn +

(
1 − αn

)
JTnxn

)∥∥

=
∥
∥(1 − αn

)(
Jxn+1 − JTnxn

) − αn

(
Jxn − Jxn+1

)∥∥

≥ (1 − αn

)∥∥Jxn+1 − JTnxn

∥∥ − αn

∥∥Jxn − Jxn+1
∥∥,

(3.17)

and hence

∥∥Jxn+1 − JTnxn

∥∥ ≤ 1
1 − αn

∥∥Jxn+1 − Jyn

∥∥ +
αn

1 − αn

∥∥Jxn − Jxn+1
∥∥. (3.18)

From (3.16) and lim supn→∞αn < 1, we obtain

lim
n→∞

∥∥Jxn+1 − JTnxn

∥∥ = 0. (3.19)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥∥xn+1 − Tnxn

∥∥ = lim
n→∞

∥∥J−1
(
Jxn+1

) − J−1
(
JTnxn

)∥∥ = 0. (3.20)

It follows from (3.15) that

∥∥xn − Tnxn

∥∥ ≤ ∥∥xn − xn+1
∥∥ +
∥∥xn+1 − Tnxn

∥∥ −→ 0 (3.21)

and so

lim
n→∞

∥∥Jxn − JTnxn

∥∥ = 0. (3.22)

Case 1. ({Tn}, {xn}) satisfies condition AKTT. We apply Lemma 2.6 to get

∥∥xn − Txn

∥∥ ≤ ∥∥xn − Tnxn

∥∥ +
∥∥Tnxn − Txn

∥∥

≤ ∥∥xn − Tnxn

∥∥ + sup
{∥∥Tnz − Tz

∥∥ : z ∈ {xn

}} −→ 0.
(3.23)
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Case 2. ({Tn}, {xn}) satisfies condition ∗AKTT. It follows from Lemma 2.7 that

∥∥Jxn − JTxn

∥∥ ≤ ∥∥Jxn − JTnxn

∥∥ +
∥∥JTnxn − JTxn

∥∥

≤ ∥∥Jxn − JTnxn

∥
∥ + sup

{∥∥JTnz − JTz
∥
∥ : z ∈ {xn

}} −→ 0.
(3.24)

Hence,

lim
n→∞

∥∥xn − Txn

∥∥ = lim
n→∞

∥∥J−1
(
Jxn

) − J−1
(
JTxn

)∥∥ = 0. (3.25)

From both cases, we obtain

lim
n→∞

∥∥xn − Txn

∥∥ = 0. (3.26)

Since T is closed and xn → w, we have w ∈ F(T). Furthermore, by (3.9),

φ
(
w,x0

)
= lim

n→∞
φ
(
xn, x0

) ≤ φ
(
p, x0

) ∀p ∈ F(T). (3.27)

Hence, w = ΠF(T)x0.

Corollary 3.2 (see [21, Theorem 3.1]). Let E be a uniformly convex and uniformly smooth Banach
space and let C be a nonempty closed convex subset of E. Let T be a closed relatively quasi-nonexpansive
mapping from C into E such that F(T) is nonempty and let {xn} be a sequence in C defined as follows:

x0 ∈ C, C−1 = Q−1 = C,

yn = J−1
(
αnJxn +

(
1 − αn

)
JTxn

)
,

Cn =
{
z ∈ Cn−1 ∩Qn−1 : φ

(
z, yn

) ≤ φ
(
z, xn

)}
,

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, Jx0 − Jxn

〉 ≥ 0
}
,

xn+1 =
∏

Cn ∩Qn

x0, n = 0, 1, 2, . . . ,

(3.28)

where {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Then {xn} converges strongly to ΠF(T)x0.

Remark 3.3. If, in Theorem 3.1, Tn is continuous for each n ∈ N, then the mapping T is
continuous and closed.

In our main theorem, we assume that for each bounded subset B of C, the ordered pair
({Tn}, B) satisfies either condition AKTT or condition ∗AKTT. As in [17], we can generate
a sequence {Tn} of relatively quasi-nonexpansive mappings satisfying such an assumption
by using convex combination of a given sequence {Sk} of relatively quasi-nonexpansive
mappings with a nonempty common fixed point set.
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Let {βkn} be a family of positive real numbers with indices n,k ∈ N ∪ {0} with k ≤ n such
that

(i)
∑n

k=0 β
k
n = 1 for every n ∈ N ∪ {0};

(ii) limn→∞ βkn = βk > 0 for every k ∈ N ∪ {0}; and
(iii)

∑∞
n=0
∑n

k=0 | βkn+1 − βkn| < ∞.

Let E be a uniformly convex and uniformly smooth Banach space and let C be a nonempty
closed convex subset of E. For a sequence {Sk}∞k=1 of continuous relatively quasi-nonexpansive
mappings with a common fixed point and S0 is the identity mapping, we define a sequence
{Tn} of mappings from C into E by

Tnx = J−1
(

n∑

k=0

βknJSkx

)

(3.29)

for x ∈ C and n ∈ N ∪ {0}. We note that

∞⋂

k=0

F
(
Sk

) ⊂
n⋂

k=0

F
(
Sk

) ⊂ F
(
Tn
) ∀n ∈ N ∪ {0}. (3.30)

For n ∈ N ∪ {0}, let p ∈ ⋂n
k=0F(Sk). Then

φ
(
p, Tnx

)
= φ

(

p, J−1
(

n∑

k=0

βknJSkx

))

= ‖p‖2 − 2

〈

p,
n∑

k=0

βknJSkx

〉

+

∥∥
∥∥∥

n∑

k=0

βknJSkx

∥∥
∥∥∥

2

≤ ‖p‖2 − 2
n∑

k=0

βkn
〈
p, JSkx

〉
+

n∑

k=0

βkn
∥∥Skx

∥∥2

=
n∑

k=0

βknφ
(
p, Skx

)

≤ φ(p, x)

(3.31)

for all x ∈ C. Then, for all z ∈ F(Tn) and fix q ∈ ⋂∞
k=0F(Sk),

φ(q, z) = φ
(
q, Tnz

)
= φ

(

q, J−1
(

n∑

k=0

βknJSkz

))

≤
n∑

k=0

βknφ
(
q, Skz

) ≤ φ(q, z), (3.32)
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that is,

φ

(

q, J−1
(

n∑

k=0

βknJSkz

))

=
n∑

k=0

βknφ
(
q, Skz

)
= φ(q, z). (3.33)

By Lemma 2.9, we have z = S0z = S1z = · · · = Snz. So

F
(
Tn
) ⊂

n⋂

k=0

F
(
Sk

) ∀n ∈ N ∪ {0}. (3.34)

This implies that

F
(
Tn
)
=

n⋂

k=0

F
(
Sk

) ∀n ∈ N ∪ {0}, (3.35)

and so

∞⋂

n=0

F
(
Tn
)
=

∞⋂

k=0

F
(
Sk

)
/=∅. (3.36)

Then, by (3.31), we have that {Tn} is a sequence of relatively quasi-nonexpansive mappings.
Let B be a bounded subset of C and let p ∈ ⋂∞

k=0F(Sk). By (2.5), we have

(∥∥Skx
∥∥ − ‖p‖)2 ≤ φ

(
p, Skx

) ≤ φ(p, x) ≤ (‖x‖ + ‖p‖)2, (3.37)

and hence

∥∥Skx
∥∥ ≤ 2‖p‖ + sup

{‖z‖ : z ∈ B
}

(3.38)

for all x ∈ B and k ∈ N ∪ {0}. Let M = sup{‖Skx‖ : x ∈ B, k ∈ N ∪ {0}}. For x ∈ B and
n ∈ N ∪ {0}, we have

∥∥JTn+1x − JTnx
∥∥ =

∥∥
∥∥∥

n+1∑

k=0

βkn+1JSkx −
n∑

k=0

βknJSkx

∥∥
∥∥∥

≤
n∑

k=0

∣∣βkn+1 − βkn
∣∣∥∥JSkx

∥∥ + βn+1n+1

∥∥JSkx
∥∥

=
n∑

k=0

∣∣βkn+1 − βkn
∣∣∥∥Skx

∥∥ +

(

1 −
n∑

k=0

βkn+1

)
∥∥Skx

∥∥

≤
n∑

k=0

∣∣βkn+1 − βkn
∣∣M +

(
n∑

k=0

βkn −
n∑

k=0

βkn+1

)

M

≤ 2M
n∑

k=0

∣∣βkn+1 − βkn
∣∣.

(3.39)
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Therefore,

sup
{∥∥JTn+1x − JTnx

∥∥ : x ∈ B
} ≤ 2M

n∑

k=0

∣
∣βkn+1 − βkn

∣
∣. (3.40)

It follows from (iii) that

∞∑

n=0

sup
{∥∥JTn+1x − JTnx

∥
∥ : x ∈ B

} ≤ 2M
∞∑

n=0

n∑

k=0

∣
∣βkn+1 − βkn

∣
∣ < ∞. (3.41)

By Lemma 2.7, we can define a mapping T by

Tx = lim
n→∞

Tnx, ∀x ∈ C. (3.42)

Using the same argument presented in the proof of [17, pages 2357-2358], we have

lim
n→∞

n∑

k=0

∣∣βkn − βk
∣∣ = 0,

∞∑

k=0

βk = 1. (3.43)

For each x ∈ C, the series
∑∞

k=0 β
kJSkx converges absolutely and

∥∥∥∥∥
JTx −

∞∑

k=0

βkJSkx

∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥
JTnx −

∞∑

k=0

βkJSkx

∥∥∥∥∥

= lim
n→∞

∥∥∥∥
∥

n∑

k=0

βknJSkx −
∞∑

k=0

βkJSkx

∥∥∥∥
∥

≤ lim
n→∞

(
n∑

k=0

∣∣βkn − βk
∣∣∥∥JSkx

∥∥ +
∞∑

k=n+1

βk
∥∥JSkx

∥∥
)

≤ lim
n→∞

n∑

k=0

∣∣βkn − βk
∣∣∥∥Skx

∥∥ + lim
n→∞

∞∑

k=n+1

βk
∥∥Skx

∥∥

≤ lim
n→∞

n∑

k=0

∣∣βkn − βk
∣∣M + lim

n→∞

∞∑

k=n+1

βkM = 0.

(3.44)

This implies that

Tx = J−1
( ∞∑

k=0

βkJSkx

)

∀x ∈ C. (3.45)

It is obvious that

∞⋂

k=0

F
(
Sk

) ⊂ F(T). (3.46)
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Let z ∈ F(T) and fix p ∈ ⋂∞
k=0F(Sk). Then

φ(p, z) = φ
(
p, Tz

)
= φ

(

p, J−1
( ∞∑

k=0

βkJSkz

))

= lim
n→∞

φ

(

p, J−1
(

n∑

k=0

βkJSkz

))

= lim
n→∞

(

‖p‖2 − 2

〈

p,
n∑

k=0

βkJSkz

〉

+

∥
∥
∥
∥
∥

n∑

k=0

βkJSkz

∥
∥
∥
∥
∥

2)

≤ lim
n→∞

(

‖p‖2 − 2

〈

p,
n∑

k=0

βkJSkz

〉

+
n∑

k=0

βk
∥
∥JSkz

∥
∥2
)

= lim
n→∞

( ∞∑

k=0

βk‖p‖2 − 2
n∑

k=0

βk
〈
p, JSkz

〉
+

n∑

k=0

βk
∥∥Skz

∥∥2
)

= lim
n→∞

(
n∑

k=0

βkφ
(
p, Skz

)
+

∞∑

k=n+1

βk‖p‖2
)

= lim
n→∞

n∑

k=0

βkφ
(
p, Skz

)

=
∞∑

k=0

βkφ
(
p, Skz

)

≤
∞∑

k=0

βkφ(p, z)

= φ(p, z).

(3.47)

It follows that
∥∥∥∥∥

∞∑

k=0

βkJSkz

∥∥∥∥∥

2

=
∞∑

k=0

βk
∥∥JSkz

∥∥2. (3.48)

By the strict convexity of E∗ and Lemma 2.10,

JSkz = JS0z = Jz ∀k ∈ N. (3.49)

Since J is one to one,

Skz = S0z = z ∀k ∈ N. (3.50)

So z ∈ ⋂∞
k=0F(Sk). Therefore,

F(T) ⊂
∞⋂

k=0

F
(
Sk

)
. (3.51)
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This together with (3.36) and (3.46) gives

F(T) =
∞⋂

n=0

F
(
Tn
)
=

∞⋂

k=0

F
(
Sk

)
. (3.52)

Hence, we obtain that {Tn} satisfies all the conditions of our main theorem. Now, we have the
following result.

Theorem 3.4. Let E be a uniformly convex and uniformly smooth Banach space and let C be a
nonempty closed convex subset of E. Let {βkn} be a family of positive real numbers with indices n,
k ∈ N ∪ {0} with k ≤ n such that

(i)
∑n

k=0 β
k
n = 1 for every n ∈ N ∪ {0};

(ii) limn→∞ βkn = βk > 0 for every k ∈ N ∪ {0};
(iii)

∑∞
n=0
∑n

k=0 |βkn+1 − βkn| < ∞.

Let {Sk} be a sequence of continuous relatively quasi-nonexpansive mappings with a common fixed
point and let S0 be the identity operator, one defines a sequence {Tn} of relatively quasi-nonexpansive
mappings from C into E by

Tnx = J−1
(

n∑

k=0

βknJSkx

)

(3.53)

for all x ∈ C and n ∈ N ∪ {0}. Then the sequence {xn} in C defined by (3.1) converges strongly to
Π⋂∞

k=0F(Sk)x0.

4. Deduced theorems

In Hilbert spaces, relatively quasi-nonexpansive mappings and quasi-nonexpansive mappings
are the same. We obtain the following result.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let {Tn} be a sequence
of quasi-nonexpansive mappings from C into E such that

⋂∞
n=0F(Tn) is nonempty and let {xn} be a

sequence in C defined as follows:

x0 ∈ C, C−1 = Q−1 = C,

yn = αnxn +
(
1 − αn

)
Tnxn,

Cn =
{
z ∈ Cn−1 ∩Qn−1 :

∥∥yn − z
∥∥ ≤ ∥∥xn − z

∥∥},

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, x0 − xn

〉 ≥ 0
}
,

xn+1 = PCn ∩Qn
x0, n = 0, 1, 2, . . . ,

(4.1)

where {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Suppose that for each bounded subset B
of C, the ordered pair ({Tn}, B) satisfies condition AKTT. Let T be the mapping from C into E defined
by Tz = limn→∞Tnz for all z ∈ C and suppose that T is closed and F(T) =

⋂∞
n=0F(Tn). Then {xn}

converges strongly to PF(T)x0.
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Proof. Since J is an identity operator, we have

φ(x, y) = ‖x − y‖2, (4.2)

for every x, y ∈ H. Therefore,

∥
∥Tnx − p

∥
∥ ≤ ‖x − p‖ ⇐⇒ φ

(
p, Tnx

) ≤ φ(p, x) (4.3)

for every x ∈ C and p ∈ F(Tn). Hence, Tn is quasi-nonexpansive if and only if Tn is relatively
quasi-nonexpansive. Then, by Theorem 3.1, we obtain the result.

Corollary 4.2 (see [22, Theorem 2.1]). Let C be a nonempty closed convex subset of a Hilbert space
H. Let T be a closed quasi-nonexpansive mapping from C into E such that F(T) is nonempty and let
{xn} be a sequence in C defined as follows:

x0 ∈ C, C−1 = Q−1 = C,

yn = αnxn +
(
1 − αn

)
Txn,

Cn =
{
z ∈ Cn−1 ∩Qn−1 :

∥∥yn − z
∥∥ ≤ ∥∥xn − z

∥∥},

Qn =
{
z ∈ Cn−1 ∩Qn−1 :

〈
xn − z, x0 − xn

〉 ≥ 0
}
,

xn+1 = PCn ∩Qn
x0, n = 0, 1, 2, . . . ,

(4.4)

where {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Then {xn} converges strongly to PF(T)x0.

We give an example of a countable family of quasi-nonexpansive mappings which are
not nonexpansive but satisfy all the requirements of our main theorem.

Example 4.3. Let E = R with the usual norm. For n ∈ N, we define a mapping Tn on R by

Tnx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x ≤ 1
n2

,

1
n2

if x >
1
n2

,
(4.5)

for all x ∈ R. Then
⋂∞

n=1F(Tn) = F(Tn) = {0} and
∣∣Tnx − 0

∣∣ ≤ |x − 0| ∀x ∈ R. (4.6)

So {Tn} is a sequence of quasi-nonexpansive mappings. Let z ∈ R, then

∣∣Tn+1z − Tnz
∣∣ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if z ≤ 1

(n + 1)2
,

1
n2

if
1

(n + 1)2
< z ≤ 1

n2
,

1
n2

− 1

(n + 1)2
if z >

1
n2

,

(4.7)
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for all n ∈ N. It follows that

∞∑

n=1

sup
{∣∣Tn+1z − Tnz

∣∣ : z ∈ R

}
=

∞∑

n=1

1
n2

< ∞. (4.8)

We now define a mapping T on R by

Tx = lim
n→∞

Tnx = 0 ∀x ∈ R. (4.9)

Hence, the sequence {Tn} satisfies all conditions in our main result. We also note that each
Tn is neither nonexpansive nor relatively nonexpansive. Actually, Tn above fails to have the
condition (R3). Let {xm} be a sequence define by xm = 1/n2 + 1/m. Then

xm −→ 1
n2

, xm − Tnxm =
1
m

−→ 0 as m −→ ∞. (4.10)

This implies that 1/n2 ∈ F̂(Tn) and 1/n2 /∈ F(Tn).
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[3] H. H. Bauschke, E. Matoušková, and S. Reich, “Projection and proximal point methods: convergence
results and counterexamples,” Nonlinear Analysis: Theory, Methods & Applications, vol. 56, no. 5,
pp. 715–738, 2004.

[4] A. Genel and J. Lindenstrauss, “An example concerning fixed points,” Israel Journal of Mathematics,
vol. 22, no. 1, pp. 81–86, 1975.

[5] K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and
nonexpansive semigroups,” Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp.
372–379, 2003.

[6] M. V. Solodov and B. F. Svaiter, “Forcing strong convergence of proximal point iterations in a Hilbert
space,” Mathematical Programming, Series A, vol. 87, no. 1, pp. 189–202, 2000.

[7] Y. Su and X. Qin, “Monotone CQ iteration processes for nonexpansive semigroups and maximal
monotone operators,” to appear in Nonlinear Analysis: Theory, Methods & Applications.

[8] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of
Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[9] S. Reich, “Review: geometry of Banach spaces, duality mappings and nonlinear problems,” Bulletin
of the American Mathematical Society, vol. 26, no. 2, pp. 367–370, 1992.

[10] S. Reich, “A weak convergence theorem for the alternating method with Bregman distances,” in
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture
Notes in Pure and Applied Mathematics, pp. 313–318, Dekker, New York, NY, USA, 1996.

[11] F. Kohsaka and W. Takahashi, “Block iterative methods for a finite family of relatively nonexpansive
mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2007, Article ID 21972, 18
pages, 2007.



W. Nilsrakoo and S. Saejung 19

[12] S.-Y. Matsushita and W. Takahashi, “Weak and strong convergence theorems for relatively
nonexpansive mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2004, no. 1,
pp. 37–47, 2004.

[13] S.-Y. Matsushita and W. Takahashi, “A strong convergence theorem for relatively nonexpansive
mappings in a Banach space,” Journal of Approximation Theory, vol. 134, no. 2, pp. 257–266, 2005.

[14] S.-Y. Matsushita and W. Takahashi, “An iterative algorithm for relatively nonexpansive mappings
by hybrid method and applications,” in Nonlinear Analysis and Convex Analysis, pp. 305–313,
Yokohama Publishers, Yokohama, Japan, 2004.

[15] S. Plubtieng and K. Ungchittrakool, “Strong convergence theorems for a common fixed point of two
relatively nonexpansive mappings in a Banach space,” Journal of Approximation Theory, vol. 149,
no. 2, pp. 103–115, 2007.

[16] X. Qin and Y. Su, “Strong convergence theorems for relatively nonexpansive mappings in a Banach
space,” Nonlinear Analysis: Theory, Methods & Applications, vol. 67, no. 6, pp. 1958–1965, 2007.

[17] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, “Approximation of common fixed points of a
countable family of nonexpansivemappings in a Banach space,” Nonlinear Analysis: Theory,Methods
& Applications, vol. 67, no. 8, pp. 2350–2360, 2007.

[18] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Applications, Yokohama
Publishers, Yokohama, Japan, 2000.

[19] S. Kamimura andW. Takahashi, “Strong convergence of a proximal-type algorithm in a Banach space,”
SIAM Journal on Optimization, vol. 13, no. 3, pp. 938–945, 2002.

[20] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and
applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,
vol. 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15–50, Dekker, New York, NY, USA, 1996.

[21] Y. Su, D. Wang, andM. Shang, “Strong convergence of monotone hybrid algorithm for hemi-relatively
nonexpansive mappings,” to appear in Fixed Point Theory and Applications.

[22] Y. Su, D. Wang, and M. Shang, “Strong convergence of monotone hybrid algorithm for quasi-
nonexpansive mappings,” International Journal of Mathematical Analysis, vol. 1, pp. 1235–1241, 2007.


	Introduction
	Preliminaries
	Main results
	Deduced theorems
	Acknowledgments
	References

