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1. Introduction

Let E be a real Banach space with dual E∗. The normalized duality mapping is the mapping J :
E → 2E

∗
defined for all x ∈ E by

Jx =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2, ∥∥f∗∥∥ = ‖x‖}, (1.1)

where 〈·, ·〉 denotes the generalized duality pairing between members of E and E∗. It is well
known that if E∗ is strictly convex, then J is single valued. In what follows, the single-valued
normalized duality mapping will be denoted by j.

Let (E, ‖·‖) be a normed linear space. The norm ‖·‖ is said to be uniformly Gâteaux differ-
entiable if for each y ∈ S = {x ∈ E : ‖x‖ = 1}, the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.2)

exists uniformly for x ∈ S. It is well known that Lp spaces, 1 < p < ∞, have uniformly Gâteaux
differentiable norm (see, e.g., [1]). Furthermore, if E has a uniformly Gâteaux differentiable
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norm, then the duality mapping is norm-to-weak∗ uniformly continuous on bounded subsets
of E.

Let C be a nonempty subset of a normed linear space E. A mapping T : C → E is said to
be nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C. (1.3)

Most published results on nonexpansive mappings centered on existence theorems for fixed
points of these mappings, and iterative approximation of such fixed points.

DeMarr [2] in 1963 studied the problem of existence of common fixed point for a family
of nonlinear nonexpansive mappings. He proved the following theorem.

Theorem 1.1 (DM). Let E be a Banach space and C be a nonempty compact convex subset of E. If Ω
is a nonempty commuting family of nonexpansive mappings of C into itself, then the family Ω has a
common fixed point in C.

In 1965, Browder [3] proved the result of DeMarr in a uniformly convex Banach space,
requiring that C be only bounded, closed, convex, and nonempty. For other fixed-point theo-
rems for families of nonexpansive mappings, the reader may consult Belluce and Kirk [4], Lim
[5], and Bruck Jr. [6].

In 1973, Bruck Jr. [7] considered the study of structure of the fixed-point set F(T) = {x ∈
C : Tx = x} of nonexpansive mapping T and established several results.

Kirk [8] introduced an iterative process given by

xn+1 = α0xn + α1Txn + α2T
2xn + · · · + αrT

rxn, (1.4)

where αi ≥ 0, α0 > 0 and
∑r

i=0αi = 1, for approximating fixed points of nonexpansive map-
pings on convex subset of uniformly convex Banach spaces. Maiti and Saha [9]worked on and
improved the results of Kirk [8].

Considerable research efforts have been devoted to develop iterative methods for ap-
proximating common fixed points (when such fixed points exist) of families of several classes
of nonlinear mappings (see, e.g., [10–18]).

Let C be a nonempty closed and bounded subset of a real Banach space E. Let Ti : C →
C, i = 1, 2, . . . , r be a finite family of nonexpansive mappings and let

S = α0I + α1T1 + α2T2 + · · · + αrTr, (1.5)

where αi ≥ 0, α1 > 0, and
∑r

i=0αi = 1. Then the family {Ti}ri=1 such that the common fixed-
point set F :=

⋂r
i=1F(Ti)/=∅ is said to satisfy condition A (see, e.g., [9, 19, 20]) if there exists a

nondecreasing function φ : [0,+∞) → [0,+∞) with φ(0) = 0, φ(ε) > 0 for all ε ∈ (0,+∞), such
that ‖x − Sx‖ ≥ φ(d(x, F)) for all x ∈ C, where d(x, F) = inf{‖x − z‖ : z ∈ F}.

Liu et al. [19] introduced the following iteration process:

x0 ∈ C, xn+1 = Sxn, n ≥ 0 (1.6)

and showed that {xn}n≥0 defined by (1.6) converges to a common fixed point of {Ti}ri=1 in
Banach spaces, provided that {Ti}ri=1 satisfy condition A. The result of Liu et al. [19] improves
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the corresponding results of Kirk [8], Maiti and Saha [9], Senter and Dotson [20] and those of
a host of other authors. However, the assumption that the family {Ti}ri=1 satisfies condition A
is strong.

Let E be a reflexive and strictly convex Banach space with a uniformly Gâteaux dif-
ferentiable norm. Let Ti : E → E, i = 1, 2, . . . , r be nonexpansive mappings and {xn}n≥0 a
sequence in E defined iteratively by (1.6) and suppose that J−1 : E∗ → E is weakly sequen-
tially continuous at 0. If F :=

⋂r
i=1F(Ti)/=∅, then Jung [21] in 2002 proved that, under this

situation, {xn}n≥0 converges weakly to a common fixed point of {Ti}ri=1. In [22], Gossez and
Lami Dozo proved that for any normed linear space E, the existence of a weakly sequen-
tially continuous duality mapping implies that the space E satisfies Opial’s condition (that
is, for all sequences {xn} in E such that {xn} converges weakly to some x ∈ E, the inequality
lim infn→∞‖xn − y‖ > lim infn→∞‖xn − x‖ holds for all y /=x, see e.g., [23]). It is well known that
Lp spaces, 1 < p < +∞, p /= 2, do not satisfy Opial’s condition. Consequently, the results of Jung
[21] are not applicable in Lp spaces 1 < p < +∞, p /= 2.

Another class of nonlinear mappings now studied is the class of accretive operators. Let
E be a real normed linear space. A mapping A : D(A) ⊂ E → E is said to be accretive if the
following inequality holds:

‖x − y‖ ≤ ∥∥x − y + s(Ax −Ay)
∥∥ ∀s > 0, ∀x, y ∈ D(A), (1.7)

where D(A) denotes the domain of the operator A. It is not difficult to deduce from (1.7) that
the mapping A is accretive if and only if (I + sA)−1 is nonexpansive on the range of (I + sA),
where I denotes the identity operator defined on E. We note that the range,R(I+sA), of (I+sA)
needs not be all of E.WhenA is accretive and, in addition, the range of (I + sA) is all of E, then
A is called m-accretive.

Our presentation in this paper is primarily motivated by the study of equations of the
form

u′(t) +Au(t) = f, u(0) = u0, f ∈ E. (1.8)

It is well known that many physically significant problems can be modeled by equations of the
form (1.8) (where A is accretive), which is generally called Evolution Equation. Typical exam-
ples where such evolution equations occur can be found in the heat, wave, and Schrödinger
equations (see, e.g., [24]). One of the fundamental results in the theory of accretive operators,
due to Browder [25], states that ifA is locally Lipschitzian and accretive, thenA ism-accretive
and this implies that (1.8) has a solution u∗ ∈ D(A) for any f ∈ E (in particular for f = 0).
This result was subsequently generalized by Martin [26] to continuous accretive operators. If
in (1.8), f = 0 and u(t) is independent of t, then (1.8) reduces to

Au = 0 (1.9)

whose solutions correspond to the equilibrium points of (1.8). There is no known method to
obtain a closed form solution of (1.9). The general approach for approximating a solution of
(1.9) is to transform it into a fixed-point problem. Defining T := I −A, we observe that x∗ is a
solution of (1.9) if and only if x∗ is a fixed point of T (i.e., x∗ ∈ Tx∗). Browder [25] called such
an operator T pseudocontractive.

Consequently, the study of methods of approximating fixed points of pseudocontractive
maps, which correspond to equilibrium points of the system (1.8), became a flourishing area
of research for numerous mathematicians (see, e.g., [27–31]).
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Remark 1.2. We observe that a mapping A := I − T is accretive if and only if the mapping T
is pseudocontractive. It is, therefore, not difficult to see (using (1.7)) that every nonexpansive
mapping is pseudocontractive. The converse, however, does not hold. The following illustrates
this fact.

Example 1.3. Let T : [0, 1] → (R, |·|) be defined by

Tx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − 1
2

ifx ∈
[
0,

1
2

)
,

x − 1 ifx ∈
(
1
2
, 1
]
.

(1.10)

Clearly, T is not continuous and thus cannot be nonexpansive. Now, let s > 0, then for
x, y ∈ [0, 1/2) ∪ (1/2, 1] we obtain that |x − y + s((I − T)x − (I − T)y)| ≥ |x − y|. So, T is pseu-
docontrative but not nonexpansive. Thus, the class of pseudocontractive mappings properly
contains the class of nonexpansive mappings. Moreover, we see in particular that the operator
A is accretive, if and only if the mapping JA := (I +A)−1 is a single-valued nonexpansive map-
ping from R(I +A) to D(A) and that F(JA) = N(A), where N(A) = {x ∈ D(A) : Ax = 0} and
F(JA) = {x ∈ E : JAx = x}. (see, e.g., [1]).

Let C be a nonempty closed convex subset of a real reflexive and strictly convex Banach
space E which has a uniformly Gâteaux differentiable norm. Let Ai : C → E, i = 1, 2, . . . , r be
a finite family of m-accretive mappings with N =

⋂r
i=1N(Ai)/=∅. Suppose that every bounded

closed convex nonempty subset of E has the fixed-point property for nonexpansive mappings;
Zegeye and Shahzad [32] constructed an iterative sequence which converges strongly to a
common solution of the equations Aix = 0, i = 1, 2, . . . , r.

It is our purpose in this paper to construct an iterative algorithm for the approximation
of a common zero of a countably infinite family of m-accretive operators in Banach spaces. As a
result, we obtain strong convergence theorems for approximation of a common fixed point
of a countably inftinite family {Tk}k∈N of pseudocontractive mappings, provided that I − Tk is m-
accretive for all k ∈ N.Our theorems improve, generalize, and extend the correponding results
of Zegeye and Shahzad [32] and several other results recently announced (see Remark 3.18
of this paper) from a finite family {Ai}ri=1 of m-accretive mappings to a countably infinite family
{Ak}k∈N of m-accretive mappings. Furthermore, our theorems are applicable, in particular in
Lp spaces 1 < p < +∞, and our method of proof is of independent interest.

2. Preliminaries

In the sequel, the following Lemmas and Theorems will be used.

Lemma 2.1 (see, e.g., [18, 27, 33]). Let {λn}n≥1 be a sequence of nonnegative real numbers satisfying
the condition

λn+1 ≤
(
1 − αn

)
λn + σn, n ≥ 0, (2.1)

where {αn}n≥0 and {σn}n≥0 are sequences of real numbers such that {αn}n≥1 ⊂ [0, 1],
∑∞

n=1αn =
+∞. Suppose that σn = o(αn), n ≥ 0 (i.e., limn→∞(σn/αn) = 0) or

∑∞
n=1|σn| < +∞ or

lim supn→∞(σn/αn) ≤ 0, then λn → 0 as n → ∞.
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Lemma 2.2. Let E be a real normed linear space. Then the following inequality holds: for all x, y ∈ E,
for all j(x + y) ∈ J(x + y),

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉
. (2.2)

Lemma 2.3 (see [7, Lemma 3, page 257]). Let C be a nonempty closed and convex subset of a real
strictly convex Banach space E. Let {Tk}k∈N be a sequence of nonself nonexpansive mappings Tk : C →
E. Then there exists a nonexpansive mapping T : C → E such that F(T) =

⋂∞
k=1F(Tk).

Proof. If the sequence {Tk}k∈N does not have a common fixed point, we can assume T to be
translation by any nonzero vector in which case F(T) =

⋂∞
k=1F(Tk) = ∅. Otherwise, let x∗ be a

common fixed point of {Tk}k∈N. Let {ξk}k≥1 be any sequence of positive real numbers such that∑∞
k=1ξk = 1 and set T :=

∑∞
k=1ξkTk. Then the mapping T is well defined, since

∥∥Tkx
∥∥ ≤ ∥∥Tkx − Tkx

∗∥∥ +
∥∥Tkx∗∥∥ ≤ ∥∥x − x∗∥∥ +

∥∥x∗∥∥. (2.3)

Thus,
∑∞

k=1ξkTkx converges absolutely for each x ∈ C. It is easy to see that T is nonexpansive
and maps C into E. Next, we claim that F(T) =

⋂∞
k=1F(Tk). The inclusion

⋂∞
k=1F(Tk) ⊂ F(T) is

obvious. We prove the reverse inclusion only. Suppose that Tx0 = x0. Then

∥∥x0 − x∗∥∥ =
∥∥Tx0 − x∗∥∥ =

∥∥∥∥∥

∞∑

k=1

ξkTkx0 − x∗
∥∥∥∥∥

=

∥∥∥∥∥

∞∑

k=1

ξk
(
Tkx0 − x∗)

∥∥∥∥∥

≤
∞∑

k=1

ξk
∥∥Tkx0 − x∗∥∥.

(2.4)

But Tkx∗ = x∗ and Tk are nonexpansive for all k ∈ N, so ‖Tkx0−x∗‖ ≤ ‖x0−x∗‖. Since∑∞
k=1ξk = 1,

(2.4) implies that

∥∥∥
∥∥

∞∑

k=1

ξkTkx0 − x∗
∥∥∥
∥∥
=
∥
∥x0 − x∗∥∥ ,

∥∥Tkx0 − x∗∥∥ =
∥∥x0 − x∗∥∥ ∀ k ∈ N.

(2.5)

Since E is strictly convex and each ξk > 0 while
∑∞

k=1ξk = 1, (2.5) implies that Tkx0 − x∗ =
Tmx0 − x∗ for all k,m ∈ N, that is, Tkx0 = Tmx0 for all k,m ∈ N. Hence,

x0 = Tx0 =
∞∑

k=1

ξkTkx0 =
∞∑

k=1

ξkTmx0 = Tmx0 ∀m ∈ N. (2.6)

Thus, x0 ∈
⋂∞

m=1F(Tm). This completes the proof.

Remark 2.4. The proof of Lemma 2.3 is as given by Bruck Jr. [7]. We included it here for com-
pleteness of our presentation in this paper.
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Theorem 2.5 (I). (see e.g., [1]). LetA be a continuous accretive operator defined on a real Banach space
E with D(A) = E. Then A ism-accretive.

Theorem 2.6 (MJ). (see [34]). Let C be a closed convex nonempty subset of a real reflexive Banach
space E which has uniformly Gâteaux differentiable norm and T : C → E a nonexpansive mapping
with F(T)/=∅. Suppose that every bounded closed convex nonempty subset of C has the fixed-point
property for nonexpansive mappings, then there exists a continuous path t → zt, 0 < t < 1 satisfying
zt = tu + (1 − t)Tzt, for arbitrary but fixed u ∈ C, which converges strongly to a fixed point of T .

3. Main results

For the rest of this paper, {αn}n≥1 is a real sequence such that {αn}n≥1 ⊂ [0, 1] and satisfies (i)
limn→∞αn = 0; (ii)

∑∞
n=1αn = ∞ and either (iii) limn→∞|αn−αn−1|/αn = 0 or (iii)′

∑∞
n=1|αn−αn−1| <

∞. The sequence {ξk}∞k=1 is a sequence of positive real numbers such that
∑∞

k=1ξk = 1.
We now state and prove our main theorems.

3.1. Strong convergence theorems for a countably infinite family of
m-accretive mappings

Theorem 3.1. Let C be a closed convex nonempty subset of a real reflexive and strictly convex Banach
space E which has a uniformly Gâteaux differentiable norm. Let Ak : C → E, k ∈ N be a countably
infinite family of m-accretive mappings such that N ′ =

⋂∞
k=1N(Ak)/=∅. Suppose that every bounded

closed convex nonempty subset of C has the fixed point property for nonexpansive mappings. For arbi-
trary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu + (1 − αn)Sxn, n ≥ 1, (3.1)

where S =
∑∞

k=1ξkJAk
; JAk

= (I + Ak)
−1, k ∈ N. Then, {xn}n≥1 converges strongly to a common zero

of {Ak}k∈N.

Proof. Since JAk
= (I + Ak)

−1 is nonexpansive for each k ∈ N, we obtain, by Lemma 2.3, that
S =

∑∞
k=1ξkJAk

is well defined, nonexpansive, and F(S) =
⋂∞

k=1F(JAk
) = N ′. Now, let q ∈ F(S),

then we obtain by induction (using (3.1)) that

‖xn − q‖ ≤ max{‖x1 − q‖, ‖u − q‖} (3.2)

for all n ∈ N; hence {xn}n≥1 and {Sxn}n≥1 are bounded. This implies that for someM0 > 0,

‖xn+1 − Sxn‖ = αn‖u − Sxn‖ ≤ αnM0 −→ 0 asn −→ ∞. (3.3)

Moreover, from (3.1)we obtain that
∥∥xn+1 − xn

∥∥ =
∥∥αnu +

(
1 − αn

)
Sxn − αn−1u − (1 − αn−1

)
Sxn−1

∥∥

=
∥∥(αn − αn−1

)(
u − Sxn−1

)
+
(
1 − αn

)(
Sxn − Sxn−1

)∥∥

≤ (1 − αn

)∥∥xn − xn−1
∥∥ +
∣∣αn − αn−1

∣∣M0.

(3.4)

This results in the following two cases.
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Case 1. Condition (iii) is satisfied. In this case, ‖xn+1 − xn‖ ≤ (1 − αn)‖xn − xn−1‖ + σn, where
σn = αnβn; βn = (|αn − αn−1|M0)/αn, so that σn = o(αn) (since limn→∞|αn − αn−1|/αn = 0).

Case 2. Condition (iii)′ is satisfied. In this case, ‖xn+1 − xn‖ ≤ (1 − αn)‖xn − xn−1‖ + σn, where
σn = |αn − αn−1|M0, so that

∑∞
n=0σn < ∞.

In either case, we obtain (by Lemma 2.1) that limn→∞‖xn+1 − xn‖ = 0. This implies that
limn→∞‖xn − Sxn‖ = 0 (since ‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Sxn‖ → 0 as n → ∞). For all
t ∈ (0, 1), define the mapping Gt : E → E by

Gtx := tu + (1 − t)Sx, x ∈ E. (3.5)

It is easy to see that Gt is a contraction for each t ∈ (0, 1), and so has for each t ∈ (0, 1) a unique
fixed point zt ∈ C; using Theorem 2.6, we have that zt → z∗ ∈ F(S) as t → 0.Now,

zt − xn = t
(
u − xn

)
+ (1 − t)

(
Szt − xn

)
. (3.6)

So, by Lemma 2.2 we have that

∥∥zt − xn

∥∥2 ≤ (1 − t)2
∥∥Szt − xn

∥∥2 + 2t
〈
u − xn, j

(
zt − xn

)〉

≤ (1 − t)2
(∥∥Szt − Sxn

∥∥ +
∥∥Sxn − xn

∥∥)2 + 2
(‖zt − xn‖2 +

〈
u − zt, j

(
zt − xn

)〉)

≤ (1 + t2
)‖zt − xn‖2 + 2t

〈
u − zt, j

(
zt − xn

)〉
+
∥∥Sxn − xn

∥∥(2
∥∥zt − xn

∥∥ +
∥∥Sxn − xn

∥∥).
(3.7)

This implies that

〈
u − zt, j

(
xn − zt

)〉 ≤
(

t

2
+

∥∥Sxn − xn

∥∥

2t

)

M, (3.8)

for some M > 0. Thus,

lim sup
n→∞

〈
u − zt, j

(
xn − zt

)〉 ≤ t

2
M. (3.9)

Moreover, we have that

〈
u − zt, j

(
xn − zt

)〉
=
〈
u − z, j

(
xn − z

)〉
+
〈
u − z, j

(
xn − zt

) − j
(
xn − z

))〉
+
〈
z − zt, j

(
xn − zt

)〉

(3.10)

Thus, since {xn}n≥1 is bounded, we have that 〈z∗ − zt, j(xn − zt)〉 → 0 as t → 0. Also, 〈u −
z∗, j(xn − zt) − j(xn − z∗)〉 → 0 as t → 0 since the normalized duality mapping j is norm-to-
weak∗ unformly continuous on bounded subsets of E. Thus as t → 0, we obtian from (3.9) and
(3.10) that

lim sup
n→∞

〈
u − z∗, j

(
xn − z∗

)〉 ≤ 0. (3.11)
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Now, put

μn := max
{
0,
〈
u − z∗, j

(
xn − z∗

)〉}
. (3.12)

Then, 0 ≤ μn for all n ≥ 0. It is easy to see that μn → 0 as n → ∞ since by (3.11), if ε > 0 is given,
there exists nε ∈ N such that 〈u− z∗, j(xn − z∗)〉 < ε for all n ≥ nε. Thus, 0 ≤ μn < ε for all n ≥ nε.
So, limn→∞μn = 0.

Next, we obtain from the recursion formula (3.1) that

xn+1 − z∗ = αn

(
u − z∗

)
+
(
1 − αn

)(
Sxn − z∗

)
. (3.13)

It follows that

∥∥xn+1 − z∗
∥∥2 ≤ (1 − αn

)2∥∥Sxn − z∗
∥∥2 + 2αn

〈
u − z∗, j

(
xn+1 − z∗

)〉

≤ (1 − αn

)∥∥xn − z∗
∥∥2 + 2αnμn+1

=
(
1 − αn

)∥∥xn − z∗
∥∥ + γn,

(3.14)

where γn = 2αnμn+1. Therefore, γn = o(αn) and by Lemma 2.1, we obtain that {xn}n≥1 converges
strongly to z∗ ∈ F(S). But F(S) =

⋂∞
k=1F(JAk

) =
⋂∞

k=1N(Ak) = N ′. Hence, {xn}n≥1 converges
strongly to the common zero of the family {Ak}k∈N of m-accretive operators. This completes
the proof.

Corollary 3.2. Let C be a closed convex nonempty subset of a real reflexive and strictly convex Banach
space E which has a uniformly Gâteaux differentiable norm. Let Ak : C → E, k = 1, 2, . . . , r be a finite
family of m-accretive mappings such that N ′ =

⋂r
k=1N(Ak)/=∅. Suppose that every bounded closed

convex nonempty subset of C has the fixed point property for nonexpansive mappings. For arbitrary
u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
Sxn, n ≥ 1, (3.15)

where S =
∑r

k=1αkJAk
; JAk

= (I + Ak)
−1; {αk}rk=1 is a finite collection of positive real numbers such

that
∑r

k=1αk = 1. Then, {xn}n≥1 converges strongly to a common zero of {Ak}rk=1.

Proof. The mapping S =
∑r

k=1αkJAk
is clearly nonexpansive. Following the arguement of the

proof of Lemma 2.3 we get that F(S) =
⋂r

k=1F(JAk
). The rest follows from Theorem 3.1. This

completes the proof.

Remark 3.3. If, in particular, we consider a single m-accretive operator A, the requirement that
E be strictly convex will be dispensed, in this case, with r = 1 and S in Corollary 3.2 coincides
with JA = (I +A)−1.

Remark 3.4. We note that if E is smooth, then E is reflexive and has a uniformly Gâteaux differ-
entiable norm and with property that every bounded closed convex nonempty subset of E has
the fixed point property for nonexpansive mappings (see e.g., [1]).
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Thus, we have the following corollary.

Corollary 3.5. Let C be a closed convex nonempty subset of a real uniformly smooth Banach space E.
Let A : C → E be an m-accretive operator with N(A)/=∅. For arbitrary u, x1 ∈ C, let the sequence
{xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
JAxn, n ≥ 1, (3.16)

where JA := (I +A)−1. Then {xn}n≥1 converges strongly to some x∗ ∈ N(A).

Remark 3.6. If in Theorem 3.1 we consider C = E, then the condition that Ak is m-accretive for
each k ∈ N could be replaced with the continuity of each Ak.

Thus, we have the following theorem.

Theorem 3.7. Let E be a real reflexive and strictly convex Banach space which has a uniformly Gâteaux
differentiable norm. Let Ak : E → E, k ∈ N be a countably infinite family of continuous accretive
operators such thatN ′ =

⋂∞
k=1N(Ak)/=∅. Suppose that every bounded closed convex nonempty subset

of E has the fixed point property for nonexpansive mappings. For arbitrary u, x1 ∈ E, let {xn}n≥1 be
iteratively generated by

xn+1 = αnu +
(
1 − αn

)
Sxn, n ≥ 1, (3.17)

where S =
∑∞

k=1ξkJAk
; JAk

= (I + Ak)
−1. Then, {xn}n≥1 converges strongly to a common zero of

{Ak}k∈N.

Proof. By Theorem 2.5, we have that Ak is m-accretive for each k ∈ N. The rest follows from
Theorem 3.1.

Corollary 3.8. Let E be a real reflexive and strictly convex Banach space which has a uniformly Gâteaux
differentiable norm. Let Ak : E → E, k = 1, 2, . . . , r be a finite family of continuous accretive operators
such that N ′ =

⋂r
k=1N(Ak)/=∅. Suppose that every bounded closed convex nonempty subset of E has

the fixed point property for nonexpansive mappings. For arbitrary u, x1 ∈ E, let {xn}n≥1 be iteratively
generated by

xn+1 = αnu +
(
1 − αn

)
Sxn, n ≥ 1, (3.18)

where S =
∑r

k=1αkJAk
; JAk

= (I + Ak)
−1, where {αk}rk=1 is a finite collection of positive real numbers

such that
∑r

k=1αk = 1. Then, {xn}n≥1 converges strongly to a common zero of {Ak}rk=1.

3.2. Strong convergence theorem for countably infinite family of
pseudocontractive mappings

Theorem 3.9. Let C be a closed convex nonempty subset of a real reflexive and strictly convex Banach
space E which has a uniformly Gâteaux differentiable norm. Let Tk : C → E, k ∈ N be a countably
infinite family of pseudocontractive mappings such that for each k ∈ N, (I − Tk) is m-accretive on C
and F ′ =

⋂∞
k=1F(Tk)/=∅. Let JTk = (I + (I − Tk)

−1) = (2I − Tk)
−1 for each k ∈ N. Suppose that every
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bounded closed convex nonempty subset of C has the fixed-point property for nonexpansive mappings.
For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
Txn, n ≥ 1, (3.19)

where T =
∑∞

k=1ξkJTk . Then, {xn}n≥1 converges strongly to a common fixed point of {Tk}k∈N.

Proof. Put Ak := (I − Tk) for each k ∈ N. It is then obvious that N(Ak) = F(Tk) and hence⋂∞
k=1N(Ak) = F ′ =

⋂∞
k=1F(Tk). Besides, Ak is m-accretive for each k ∈ N. Thus, the proof

follows from Theorem 3.1.

Corollary 3.10. Let C be a closed convex nonempty subset of a real reflexive and strictly convex Banach
space E which has a uniformly Gâteaux differentiable norm. Let Tk : C → E, k = 1, 2, . . . , r be a finite
family of pseudocontractive mappings such that for each k = 1, 2, . . . , r, (I − Tk) is m-accretive on C
and F =

⋂r
k=1F(Tk)/=∅. Let JTk = (I + (I − Tk)

−1) = (2I − Tk)
−1 for each k = 1, 2, . . . , r. Suppose

that every nonempty bounded closed convex subset of C has the fixed-point property for nonexpansive
mappings. For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
Txn, n ≥ 1, (3.20)

where T =
∑r

k=1αkJTk and {αk}rk=1 is a finite collection of positive numbers such that
∑r

k=1αk = 1.
Then, {xn}n≥1 converges strongly to a common fixed point of {Tk}rk=1.

Corollary 3.11. Let C be a nonempty closed convex subset of a real uniformly smooth Banach space E.
Let T : C → E be pseudocontractive mappings such that (I − T) ism-accretive on C and F(T)/=∅. Let
JT = (I + (I − T)−1) = (2I − T)−1. For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
JTxn, n ≥ 1. (3.21)

Then, {xn}n≥1 converges strongly to a fixed point of T.

Theorem 3.12. Let E be a real reflexive and strictly convex Banach space E which has a uniformly
Gâteaux differentiable norm. Let Tk : E → E, k ∈ N be a countably infinite family of continuous
pseudocontractive mappings such that F ′ =

⋂∞
k=1F(Tk)/=∅. Let JTk = (I + (I − Tk)

−1) = (2I − Tk)
−1

for each k ∈ N. Suppose that every bounded closed convex nonempty subset of C has the fixed point
property for nonexpansive mappings. For arbitrary u, x1 ∈ C, let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
Txn, n ≥ 1, (3.22)

where T =
∑∞

k=1ξkJTk . Then, {xn}n≥1 converges strongly to a common fixed point of {Tk}k∈N.

Proof. The proof follows from Theorem 3.9.

Corollary 3.13. Let E be a real reflexive and strictly convex Banach space E which has a uniformly
Gâteaux differentiable norm. Let Tk : E → E, k = 1, 2, . . . , r be a finite family of continuous pseu-
docontractive mappings such that F =

⋂r
k=1F(Tk)/=∅. Let JTk = (I + (I − Tk)

−1) = (2I − Tk)
−1 for

each k = 1, 2, . . . , r. Suppose that every bounded closed convex nonempty subset of E has the fixed-point
property for nonexpansive mappings. For arbitrary u, x1 ∈ E, let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
Txn, n ≥ 1, (3.23)
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where T =
∑r

k=1αkJTk ; JTk = (I + Tk)
−1, where {αk}rk=1 is a finite collection of positive numbers such

that
∑r

k=1αk = 1. Then, {xn}n≥1 converges strongly to a common fixed point of {Tk}rk=1.

Corollary 3.14. Let E be a real uniformly smooth Banach space. Let T : E → E be continuous pseudo-
contractive mappings such that F(T)/=∅. Let JT = (I+(I − T)−1) = (2I−T)−1. For arbitrary u, x1 ∈ E,
let {xn}n≥1 be iteratively generated by

xn+1 = αnu +
(
1 − αn

)
JTxn, n ≥ 1. (3.24)

Then, {xn}n≥1 converges strongly to fixed point of T.

Remark 3.15. A prototype for the sequence {αn}n≥1 satisfying the conditions on our iteration
parameter is the sequence {1/(n + 1)}n≥1.We note that conditions (iii) and (iii)′ are not compa-
rable, since (e.g.) the sequence {βn}n≥1 given by

βn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
n
, ifn is odd

1√
n − 1

, ifn is even
(3.25)

satisfies (iii) but does not satisfy (iii)′ (see e.g., [33]).

Remark 3.16. The addition of bounded error terms to our recursion formulas leads to no further
generalization.

Remark 3.17. If f : K → K is a contraction mapping and we replace u by f(xn) in the recursion
formulas of our theorems, we obtain what some authors now call viscosity iteration process.
We observe that all our theorems in this paper carry over trivially to the so-called viscosity
process. One simply replaces u by f(xn), repeats the argument of this paper, using the fact that
f is a contraction map.

Remark 3.18. Our theorems improve, extend, and generalize the corresponding results of Zeg-
eye and Shahzad [32] and that of a host of other authors from approximation of a common zero
(common fixed point) of a finite family of accretive (pseudocontractive) operators to approximation
of a common zero (common fixed point) of a countably infinite family of accretive (pseudocon-
tractive) operators. Furthermore, Theorem 3.12 extends the corresponding results of Liu et al.
[19], Maiti and Saha [9], Senter and Dotson [20], Jung [17] from approximation of a common
fixed point of a finite family of nonexpansive mappings to the approximation of common fixed
points of a countably infinite family of continuous psedocontractive mappings, without as-
suming that our operators satisfy the so-called condition A. Our theorems are applicable, in
particular, in Lp spaces, 1 < p < +∞.
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