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Let S be a left amenable semigroup, let S = {T(s) : s ∈ S} be a representation of S as Lipschitzian
mappings from a nonempty compact convex subset C of a smooth Banach space E into C with a
uniform Lipschitzian condition, let {μn} be a strongly left regular sequence of means defined on an
S-stable subspace of l∞(S), let f be a contraction on C, and let {αn}, {βn}, and {γn} be sequences
in (0, 1) such that αn + βn + γn = 1, for all n. Let xn+1 = αnf(xn) + βnxn + γnT(μn)xn, for all n ≥ 1.
Then, under suitable hypotheses on the constants, we show that {xn} converges strongly to some
z in F(S), the set of common fixed points of S, which is the unique solution of the variational
inequality 〈(f − I)z, J(y − z)〉 ≤ 0, for all y ∈ F(S).
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1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of E. A mapping
T : C → C is said to be

(i) Lipschitzian with Lipschitz constant l > 0 if

‖Tx − Ty‖ ≤ l‖x − y‖, ∀x, y ∈ C; (1.1)

(ii) nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C; (1.2)

(iii) asymptotically nonexpansive if there exists a sequence {kn} of positive numbers
satisfying the property limn→∞kn = 1 and

‖Tnx − Tny‖ ≤ kn‖x − y‖, ∀x, y ∈ C. (1.3)
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Halpern [1] introduced the following iterative scheme for approximating a fixed point
of a nonexpansive mapping T on C:

xn+1 = αnx + (1 − αn)Txn, n = 1, 2, . . . , (1.4)

where x1 = x is an arbitrary point in C and {αn} is a sequence in [0, 1]. Strong convergence
of Halpern type iterative sequence has been widely studied: Wittmann [2] discussed such
a sequence in a Hilbert space. Shioji and Takahashi [3] (see also [4]) extended Wittmann’s
result and proved strong convergence of {xn} defined by (1.4) in a uniformly convex Banach
space with a uniformly Gateaux differentiable norm.

In particular, Xu [5] proposed the following viscosity iterative process (originally due
to Moudafi [6]) in a uniformly smooth Banach space:

xn+1 = αnf(xn) + (1 − αn)Txn, n = 1, 2, . . . , (1.5)

where, f : C → C is a contraction, and proved, under appropriate conditions, {xn} converges
to a fixed point of T which is a solution of a variational inequality. Recently, many papers have
been devoted to algorithms for finding such solutions, see, for example, [7–9].

It is an interesting problem to extend the above results to the nonexpansive semigroup
case [10–18]. Lau, Miyake and Takahashi [19] considered the following iteration process;

xn+1 = αnx + (1 − αn)T(μn)xn, n = 1, 2, . . . , (1.6)

for a semigroup S = {T(s) : s ∈ S} of nonexpansive mappings on a compact convex subset
C of a smooth and strictly convex Banach space with respect to a left regular sequence {μn}
of means defined on an appropriate invariant subspace of l∞(S); for some related results we
refer the readers to [20, 21].

The iterative methods for approximation of fixed points of asymptotically nonexpan-
sive mappings have been studied by authors (see, e.g., [22–32] and references therein).

For a semigroup S, we can define a partial preordering ≺ on S by a ≺ b if and only if
aS ⊃ bS. If S is a left reversible semigroup (i.e., aS ∩ bS/=∅ for a, b ∈ S), then it is a directed
set. (Indeed, for every a, b ∈ S, applying aS ∩ bS/=∅, there exist a′, b′ ∈ S with aa′ = bb′; by
taking c = aa′ = bb′, we have cS ⊆ aS ∩ bS, and then a ≺ c and b ≺ c.)

If a semigroup S is left amenable, then S is left reversible [33].

Definition 1.1. Let S = {T(s) : s ∈ S} be a representation of a left reversible semigroup S as
Lipschitzian mappings on C with Lipschitz constants {k(s) : s ∈ S}. We will say that S is an
asymptotically nonexpansive semigroup on C, if there holds the uniform Lipschitzian condition
limsk(s) ≤ 1 on the Lipschitz constants. (Note that a left reversible semigroup is a directed
set.)

It is worth mentioning that there is a notion of asymptotically nonexpansive defined
dependent on left ideals in a semigroup in [34, 35].

In this paper, motivated by (1.5), (1.6) and the above-mentioned results, we introduce
the following viscosity iterative scheme

xn+1 = αnf(xn) + βnxn + γnT(μn)xn, ∀n ≥ 1, (1.7)
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for an asymptotically nonexpansive semigroup S = {T(s) : s ∈ S} on a compact convex
subset C of a smooth Banach space E with respect to a left regular sequence {μn} of means
defined on an appropriate invariant subspace of l∞(S), where f is a contraction on C, and
{αn}, {βn} and {γn} are sequences in (0, 1) such that αn + βn + γn = 1, for all n. Then, under
appropriate conditions on constants, we prove that the sequence {xn} converges strongly to
some z in F(S), the set of common fixed points of S, which is the unique solution of the
variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (1.8)

It is remarked that we have not assumed E to be strictly convex and our results are new
even for nonexpansive mappings. Moreover, our results extend many previous results (e.g.,
[11, 19]).

2. Preliminaries

Let E be a Banach space and let E∗ be the topological dual of E. The value of x∗ ∈ E∗ at x ∈ E
will be denoted by 〈x, x∗〉 or x∗(x). With each x ∈ E, we associate the set

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x∗‖2 = ‖x‖2}. (2.1)

Using the Hahn-Banach theorem, it immediately follows that J(x)/=∅ for each x ∈ E. A
Banach space E is said to be smooth if the duality mapping J of E is single valued. We know
that if E is smooth, then J is norm to weak-star continuous; see [20, 21].

Let S be a semigroup. We denote by l∞(S) the Banach space of all bounded real valued
functions on S with supremum norm. For each s ∈ S, we define ls and rs on l∞(S) by
(lsf)(t) = f(st) and (rsf)(t) = f(ts) for each t ∈ S and f ∈ l∞(S). Let X be a subspace of
l∞(S) containing 1 and let X∗ be its topological dual. An element μ of X∗ is said to be a mean
on X if ‖μ‖ = μ(1) = 1. We often write μt(f(t)) instead of μ(f) for μ ∈ X∗ and f ∈ X. Let X
be left invariant (resp., right invariant), that is, ls(X) ⊂ X (resp., rs(X) ⊂ X) for each s ∈ S.
A mean μ on X is said to be left invariant (resp., right invariant) if μ(lsf) = μ(f) (resp.,
μ(rsf) = μ(f)) for each s ∈ S and f ∈ X. X is said to be left (resp., right) amenable if X has
a left (resp., right) invariant mean. X is amenable if X is both left and right amenable. A net
{μα} of means on X is said to be strongly left regular if

lim
α

∥∥l∗sμα − μα

∥∥ = 0, (2.2)

for each s ∈ S, where l∗s is the adjoint operator of ls. Let C be a nonempty closed and convex
subset of E. Throughout this paper, Swill always denote a semigroup with an identity e. S is
called left reversible if any two right ideals in S have nonvoid intersection, that is, aS∩bS/=∅

for a, b ∈ S. In this case, we can define a partial ordering ≺ on S by a ≺ b if and only if aS ⊃ bS.
It is easy too see t ≺ ts, (∀t, s ∈ S). Further, if t ≺ s then pt ≺ ps for all p ∈ S. If a semigroup S
is left amenable, then S is left reversible. But the converse is false.

S = {T(s) : s ∈ S} is called a representation of S as Lipschitzian mappings on C if for
each s ∈ S, the mapping T(s) is Lipschitzian mapping on C with Lipschitz constant k(s), and
T(st) = T(s)T(t) for s, t ∈ S. We denote by F(S) the set of common fixed points of S, and



4 Fixed Point Theory and Applications

by Ca the set of almost periodic elements in C, that is, all x ∈ C such that {T(s)x : s ∈ S} is
relatively compact in the norm topology of E. We will call a subspace X of l∞(S), S-stable if
the functions s �→ 〈T(s)x, x∗〉 and s �→ ‖T(s)x − y‖ on S are in X for all x, y ∈ C and x∗ ∈ E∗.
We know that if μ is a mean on X and if for each x∗ ∈ E∗ the function s �→ 〈T(s)x, x∗〉 is
contained in X and C is weakly compact, then there exists a unique point x0 of E such that

μs〈T(s)x, x∗〉 = 〈x0, x
∗〉, (2.3)

for each x∗ ∈ E∗. We denote such a point x0 by T(μ)x. Note that T(μ)z = z, for each z ∈ F(S);
see [36–38]. Let D be a subset of B where B is a subset of a Banach space E and let P be
a retraction of B onto D. Then P is said to be sunny [39] if for each x ∈ B and t ≥ 0 with
Px + t(x − Px) ∈ B,

P(Px + t(x − Px)) = Px. (2.4)

A subset D of B is said to be a sunny nonexpansive retract of B if there exists a sunny
nonexpansive retraction P of B onto D. We know that if E is smooth and P is a retraction
of B onto D, then P is sunny and nonexpansive if and only if for each x ∈ B and z ∈ D,

〈x − Px, J(z − Px)〉 ≤ 0. (2.5)

For more details see [20, 21].
We will need the following lemma, which will appear in [32].

Lemma 2.1. Let S be a left reversible semigroup and S = {T(s) : s ∈ S} be a representation of S as
Lipschitzian mappings from a nonempty weakly compact convex subset C of a Banach space E into C,
with the uniform Lipschitzian condition limsk(s) ≤ 1 on the Lipschitz constants of the mappings. Let
X be a left invariant S-stable subspace of l∞(S) containing 1, and μ be a left invariant mean on X.
Then F(S) = F(T(μ)) ∩ Ca.

Corollary 2.2. Let {μn} be an asymptotically left invariant sequence of means on X. If z ∈ Ca and
lim infn→∞‖T(μn)z − z‖ = 0, then z is a common fixed point for S.

Proof. From lim infn→∞‖T(μn)z − z‖ = 0, there exists a subsequence {T(μnk)z} of {T(μn)z}
that converges strongly to z. Since the set of means onX is compact in the weak-star topology,
there exists a subnet {μnkα

: α ∈ Λ} of {μnk} such that {μnkα
} converges to μ in the weak-star

topology. Then, it is easy to show that μ is a left invariant mean on X. On the other hand, for
each x∗ ∈ E∗, we have

〈
T
(
μnkα

)
z, x∗〉 = μnkα

〈T(·)z, x∗〉 −→ μ〈T(·)z, x∗〉 = 〈T(μ)z, x∗〉. (2.6)

Now, since {T(μnk)z} converges strongly to z, we have 〈z, x∗〉 = 〈T(μ)z, x∗〉 and hence z =
T(μ)z. It follows from Lemma 2.1 that z is a common fixed point of S.

Lemma 2.3. Let S be a left reversible semigroup and S = {T(s) : s ∈ S} be a representation of S as
Lipschitzian mappings from a nonempty weakly compact convex subset C of a Banach space E into C,
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with the uniform Lipschitzian condition limsk(s) ≤ 1 on the Lipschitz constants of the mappings. Let
X be a left invariant subspace of l∞(S) containing 1 such that the mappings s �→ 〈T(s)x, x∗〉 be in X
for all x ∈ X and x∗ ∈ E∗, and {μn} be a strongly left regular sequence of means on X. Then

lim sup
n→∞

sup
x,y∈C

(‖T(μn)x − T(μn)y‖ − ‖x − y‖) ≤ 0. (2.7)

Proof. Consider an arbitrary ε > 0 and take d = diam(C). Since limsk(s) ≤ 1, there exists
s0 ∈ S such that

sup
s≥s0

k(s) < 1 +
ε

2d
. (2.8)

From limn→∞‖l∗s0μn − μn‖ = 0, we may choose a natural number N such that

∥∥l∗s0μn − μn

∥∥ <
ε

2d
, ∀n ≥ N. (2.9)

Then, for each x, y ∈ C, n ≥ N and x∗ ∈ J(T(μn)x − T(μn)y)we have

∥∥T(μn)x − T(μn)y
∥∥2 =

〈
T(μn)x − T(μn)y, x∗〉

= (μn)s
〈
T(s)x − T(s)y, x∗〉 − (l∗s0μn

)
s

〈
T(s)x − T(s)y, x∗〉

+
(
l∗s0μn

)
s

〈
T(s)x − T(s)y, x∗〉

≤ ∥∥μn − l∗s0μn

∥∥d‖x∗‖ + (μn)s
〈
T(s0s)x − T(s0s)y, x∗〉

≤ ε

2d
d
∥∥T(μn)x − T(μn)y

∥∥ + sup
s∈S

∥∥T(s0s)x − T(s0s)y
∥∥∥∥T(μn)x − T(μn)y

∥∥

≤ ε

2
∥∥T(μn)x − T(μn)y

∥∥ + sup
s∈S

k(s0s)‖x − y‖∥∥T(μn)x − T(μn)y
∥∥.

(2.10)

Therefore,

∥∥T(μn)x − T(μn)y
∥∥ ≤ ε

2
+ sup

s∈S
k(s0s)‖x − y‖

≤ ε

2
+ sup

s≥s0
k(s)‖x − y‖ ≤ ε

2
+
(
1 +

ε

2d

)
‖x − y‖ ≤ ε + ‖x − y‖,

(2.11)

that is,

sup
x,y∈C

(∥∥T(μn)x − T(μn)y
∥∥ − ‖x − y‖) ≤ ε, ∀n ≥ N. (2.12)

Since ε > 0 is arbitrary, the desired result follows.
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Remark 2.4. Taking in Lemma 2.3

cn = sup
x,y∈C

(∥∥T(μn)x − T(μn)y
∥
∥ − ‖x − y‖), ∀n, (2.13)

we obtain lim supn→∞cn ≤ 0. Moreover,

∥
∥T(μn)x − T(μn)y

∥
∥ ≤ ‖x − y‖ + cn, ∀x, y ∈ C. (2.14)

Corollary 2.5. Let S be a left reversible semigroup and S = {T(s) : s ∈ S} be a representation of
S as Lipschitzian mappings from a nonempty compact convex subset C of a Banach space E into C,
with the uniform Lipschitzian condition limsk(s) ≤ 1. Let X be a left invariant S-stable subspace of
l∞(S) containing 1, and μ be a left invariant mean on X. Then T(μ) is nonexpansive and F(S)/=∅.
Moreover, if E is smooth, then F(S) is a sunny nonexpansive retract of C and the sunny nonexpansive
retraction of C onto F(S) is unique.

Proof. From (2.14), by taking μn = μ (∀n), it follows that Tμ is nonexpansive. So, from
Lemma 2.1, we get F(S) = F(Tμ)/=∅. On the other hand, it is well-known that the fixed
point set of a nonexpansive mapping on a compact convex subset of a smooth Banach space
is a sunny nonexpansive retract of C and the sunny nonexpansive retraction of C onto F(S)
is unique [19, 20]. This concludes the result.

We will need the following lemmas in what follows.

Lemma 2.6 (see [20, 21]). Let X be a real Banach space and let J be the duality mapping. Then, for
any given x, y ∈ X and j(x + y) ∈ J(x + y), there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉. (2.15)

Lemma 2.7 (see [40]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − γn)an + δn, n ≥ 0, (2.16)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1γn = ∞;

(ii) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1|δn| < ∞.

Then limn→∞an = 0.

Lemma 2.8 (see [41]). Let {xn} and {zn} be bounded sequences in a Banach space X and let {βn}
be a sequence in [0, 1] with 0 < lim infn→∞βn and lim supn→∞βn < 1. Suppose

xn+1 = βnxn + (1 − βn)zn (2.17)
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for all integers n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖
) ≤ 0. (2.18)

Then limn→∞‖xn − zn‖ = 0.

3. The main theorem

We are now ready to establish our main theorem.

Theorem 3.1. Let S be a left reversible semigroup and S = {T(s) : s ∈ S} be a representation of S
as Lipschitzian mappings from a nonempty compact convex subset C of a smooth Banach space E into
C, with the uniform Lipschitzian condition limsk(s) ≤ 1 and f be an α-contraction on C for some
0 < α < 1. Let X be a left invariant S-stable subspace of l∞(S) containing 1, {μn} be a strongly left
regular sequence of means on X such that limn→∞‖μn+1 − μn‖ = 0 and {cn} be the sequence defined
by (2.13). Let {αn}, {βn} and {γn} be sequences in (0, 1) such that

(i) αn + βn + γn = 1, ∀n,
(ii) limn→∞αn = 0;

(iii)
∑∞

n=1αn = ∞;

(iv) lim supn→∞cn/αn ≤ 0; (note that, by Remark 2.4, lim supn→∞cn ≤ 0)

(v) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let {xn} be the following sequence generated by x1 ∈ C and ∀n ≥ 1,

xn+1 = αnf(xn) + βnxn + γnT(μn)xn. (3.1)

Then {xn} converges strongly to z ∈ F(S) which is the unique solution of the variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (3.2)

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C onto F(S).

Remark 3.2. For example, we may choose

αn :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
n
+
√
cn if cn ≥ 0,

1
n

if cn < 0.

(3.3)

Proof. We divide the proof into several steps and prove the claim in each step.

Step 1. Claim. Let {ωn} be a sequence in C. Then

lim
n→∞

∥∥T(μn+1)ωn − T(μn)ωn

∥∥ = 0. (3.4)
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Put D = sup{‖z‖ : z ∈ C}. Then
∥
∥T(μn+1)ωn − T(μn)ωn

∥
∥ = sup

‖z‖=1

∣
∣〈T(μn+1)ωn − T(μn)ωn, z

〉∣∣

= sup
‖z‖=1

∣
∣(μn+1)s

〈
T(s)ωn, z

〉 − (μn)s
〈
T(s)ωn, z

〉∣∣

≤ ‖μn+1 − μn‖ sup
s∈S

‖T(s)ωn‖ ≤ ‖μn+1 − μn‖D −→ 0, as n −→ ∞.

(3.5)

Step 2. Claim. limn→∞‖xn+1 − xn‖ = 0.
Define a sequence {zn} by zn = (xn+1 − βnxn)/(1 − βn) so that xn+1 = βnxn + (1 − βn)zn.
We now compute

∥∥zn+1 − zn
∥∥ =
∥∥∥∥

1
1 − βn+1

(
xn+2 − βn+1xn+1

) − 1
1 − βn

(
xn+1 − βnxn

)
∥∥∥∥

=
∥∥∥∥

1
1 − βn+1

(
αn+1f

(
xn+1

)
+ γn+1T

(
μn+1

)
xn+1

)

− 1
1 − βn

(
αnf(xn) + γnT(μn)xn

)
∥∥∥∥

=
∥∥∥∥

1
1 − βn+1

(
αn+1f

(
xn+1

)
+
(
1 − αn+1 − βn+1

)
T
(
μn+1

)
xn+1

)

− 1
1 − βn

(
αnf(xn) +

(
1 − αn+1 − βn+1

)
T(μn)xn

)
∥∥∥∥

≤ ∥∥T(μn+1
)
xn+1 − T(μn)xn

∥∥

+
∥∥∥∥

αn+1

1 − βn+1

(
f
(
xn+1

) − T
(
μn+1

)
xn+1

) − αn+1

1 − βn+1

(
f
(
xn+1

) − T
(
μn+1

)
xn+1

)
∥∥∥∥.

(3.6)

Since C is bounded and lim supn→∞βn < 1, we have for some big enough constant K > 0,

∥∥zn+1 − zn
∥∥ ≤ ∥∥T(μn+1

)
xn+1 − T(μn)xn+1

∥∥ +
∥∥T(μn)xn+1 − T(μn)xn

∥∥ +K
(
αn+1 + αn

)

≤ ∥∥T(μn+1
)
xn+1 − T(μn)xn+1

∥∥ +
∥∥xn+1 − xn

∥∥ + cn +K
(
αn+1 + αn

)
.

(3.7)

Now, since αn → 0 and by Step 1 and Lemma 2.3, we immediately conclude that

lim sup
n

(∥∥zn+1 − zn
∥∥ − ∥∥xn+1 − xn

∥∥)

≤ lim sup
n

(∥∥T
(
μn+1

)
xn+1 − T(μn)xn+1

∥∥ + cn +K
(
αn+1 + αn

)) ≤ 0.
(3.8)

Applying Lemma 2.8, we get limn‖xn+1 − xn‖ = limn(1 − βn)‖xn − zn‖ = 0.
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Step 3. Claim. The ω-limit set of {xn}, ω({xn}), is a subset of F(S).
Let y ∈ ω({xn}) and {xnk} be a subsequence of {xn} converging strongly to y. Note

that

xn+1 − xn = αnf(xn) + (1 − βn)(T(μn)xn − xn) − αnT(μn)xn. (3.9)

So

∥
∥xn − T(μn)xn

∥
∥ ≤ 1

1 − βn

(∥∥xn+1 − xn

∥
∥ + αn

∥
∥f(xn) − T(μn)xn

∥
∥). (3.10)

Hence, by (ii), (v) and Step 2, we have

lim
n→∞

∥
∥xn − T(μn)xn

∥
∥ = 0. (3.11)

From this and Lemma 2.3, we obtain

lim sup
k→∞

∥∥y − T
(
μnk

)
y
∥∥ ≤ lim sup

k→∞

(∥∥y − xnk

∥∥ +
∥∥xnk − T

(
μnk

)
xnk

∥∥ +
∥∥T
(
μnk

)
xnk − T

(
μnk

)
y
∥∥)

≤ lim sup
k→∞

(
2
∥∥y − xnk

∥∥ +
∥∥xnk − T

(
μnk

)
xnk

∥∥ + cnk

) ≤ 0.

(3.12)

Therefore, applying Corollary 2.2, we get y ∈ F(S).

Step 4. Claim. The sequence {xn} converges strongly to z = Pfz.
We know, from Corollary 2.5 and the proof of Corollary 2.2, that there exists a unique

sunny nonexpansive retraction P of C onto F(S). The Banach Contraction Mapping Principal
guarantees that Pf has a unique fixed point zwhich by (2.5) is the unique solution of

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (3.13)

We first show

lim sup
n→∞

〈(f − I)z, J(xn − z)〉 ≤ 0. (3.14)

Let {xnk} be a subsequence of {xn} such that

lim
k→∞

〈
(f − I)z, J

(
xnk − z

)〉
= lim sup

n→∞
〈(f − I)z, J

(
xn − z

)〉
. (3.15)

Without loss of generality, we can assume that {xnk} converges to some y ∈ C. By Step 3,
y ∈ F(S). Smoothness of E and a combination of (3.13) and (3.15) give

lim sup
n→∞

〈
(f − I)z, J(xn − z)

〉
=
〈
(f − I)z, J(y − z)

〉 ≤ 0, (3.16)
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as required. Now, taking

un = T(μn)xn, ∀n ≥ 1, (3.17)

we have ‖un − z‖ ≤ ‖xn − z‖ + cn. By using Lemma 2.6, we have

∥
∥xn+1 − z

∥
∥2 =

∥
∥[γn(un − z) + βn(xn − z)

]
+ αn

(
γf(xn) − z

)∥∥2

≤ ∥∥γn(un − z) + βn(xn − z)
∥
∥2 + 2αn

〈
f(xn) − z, J

(
xn+1 − z

)〉

≤ (1 − βn)
∥
∥
∥
∥

γn
1 − βn

(un − z)
∥
∥
∥
∥

2

+ βn
∥
∥xn − z

∥
∥2

+ 2αn

〈
f(xn) − f(z), J

(
xn+1 − z

)〉
+ 2αn

〈
f(z) − z, J

(
xn+1 − z

)〉

≤ γ2n
1 − βn

∥∥un − z
∥∥2 + βn

∥∥xn − z
∥∥2

+ 2αnα
∥∥xn − z

∥∥∥∥xn+1 − z
∥∥ + 2αn

〈
f(z) − z, J

(
xn+1 − z

)〉

≤ γ2n
1 − βn

∥∥xn − z
∥∥2 +

cnγ
2
n

1 − βn
+ βn

∥∥xn − z
∥∥2

+ αnα
(∥∥xn − z

∥∥2 +
∥∥xn+1 − z

∥∥2) + 2αn

〈
f(z) − z, J

(
xn+1 − z

)〉

=
(

γ2n
1 − βn

+ βn + αnα

)∥∥xn − z
∥∥2

+ αnα
∥∥xn+1 − z

∥∥2 + 2αn

〈
f(z) − z, J

(
xn+1 − z

)〉
+

cnγ
2
n

1 − βn

=
(
(1 − αnα) − 2αn + 2αnα +

α2
n

1 − βn

)∥∥xn − z
∥∥2

+ αnα
∥∥xn+1 − z

∥∥2 + 2αn

〈
f(z) − z, J

(
xn+1 − z

)〉
+

cnγ
2
n

1 − βn
.

(3.18)

It follows that

∥∥xn+1 − z
∥∥2 ≤

(
1 − 2(1 − α)αn

1 − αnα

)∥∥xn − z
∥∥2

+
αn

1 − αnα

(
2
〈
γf(z) − z, J

(
xn+1 − z

)〉
+

αn

1 − βn

∥∥xn − z
∥∥2 +

cn
αn

× γ2n
1 − βn

)
.

(3.19)

Now, from conditions (ii)–(v), (3.14) and Lemma 2.7, we get ‖xn − z‖ → 0.

Corollary 3.3. Let S be a left reversible semigroup and S = {T(s) : s ∈ S} be a representation of
S as nonexpansive mappings from a nonempty compact convex subset C of a smooth Banach space
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E into C and f be an α-contraction on C for some 0 < α < 1. Let X be a left invariant S-stable
subspace of l∞(S) containing 1 and {μn} be a strongly left regular sequence of means on X such that
limn→∞‖μn+1 − μn‖ = 0. Let {αn}, {βn} and {γn} be sequences in (0, 1) such that

(i) αn + βn + γn = 1, ∀n,
(ii) limn→∞αn = 0;

(iii)
∑∞

n=1αn = ∞;

(iv) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let {xn} be the sequence generated by x1 ∈ C and ∀n ≥ 1,

xn+1 = αnf(xn) + βnxn + γnT(μn)xn. (3.20)

Then {xn} converges strongly to z ∈ F(S) which is the unique solution of the variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (3.21)

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C onto F(S).

Remark 3.4. If S is a countable left amenable semigroup, then there is a strong left regular
sequence on l∞(S) consisting finite means μ, that is, μ =

∑n
i=1λiδxi , λi ≥ 0,

∑n
i=1λi = 1. See [42,

Corollary 3.7].

Remark 3.5. It is known that if S is a left reversible semigroup, then WAP(S), the space of
weakly almost periodic functions on S, has a left invariant mean. But the converse is not true
(see [43]).

Problem. Can the hypothesis on S of Theorem 3.1 be replaced by WAP(S) has a left
invariant mean?

4. Applications

Corollary 4.1. Let C be a compact convex subset of a smooth Banach space E and let S, T be
asymptotically nonexpansive mappings of C into itself with ST = TS and f be an α-contraction
on C for some 0 < α < 1. Let {cn} be defined by

cn =
d

n2

n−1∑

i=0

n−1∑

j=0

(
1 − kilj

)
, (4.1)

where, d = diam(C) and ki and lj are defined as

‖Six − Siy‖ ≤ ki‖x − y‖, ‖Tjx − Tjy‖ ≤ lj‖x − y‖, (4.2)
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for all x, y ∈ C, and limi→∞ki = limj→∞lj = 1. Let {αn}, {βn} and {γn} be sequences in (0, 1) such
that

(i) αn + βn + γn = 1, ∀n,
(ii) limn→∞αn = 0;

(iii)
∑∞

n=1αn = ∞;

(iv) lim supn→∞cn/αn ≤ 0; (note that limn→∞cn = 0)

(v) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let x1 = x ∈ C and {xn} be a sequence defined by

xn = αnf(xn) + βnxn + γn

(
1
n2

n−1∑

i=0

n−1∑

j=0

SiTjxn

)

(4.3)

for each n ∈ N. Then {xn} converges strongly to z ∈ F(S) ∩ F(T) which is the unique solution of the
variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S) ∩ F(T). (4.4)

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C onto
F(S) ∩ F(T).

Proof. Let T(i, j) = SiTj for each i, j ∈ N ∪ {0}. Then {T(i, j) : i, j ∈ N ∪ {0}} is a semigroup of
Lipschitzian mappings on C such that for all x, y ∈ C,

‖T(i, j)x − T(i, j)y‖ ≤ k(i, j)‖x − y‖ (4.5)

where k(i, j) = kilj . Hence limi,j→∞k(i, j) = 1. On the other hand, for each n ∈ N, define
μn(f) = 1/n2∑n−1

i=0
∑n−1

j=0 f(i, j) for each f ∈ l∞((N ∪ {0})2). Then, {μn} is a strongly regular
sequence of means and limn→∞‖μn+1 − μn‖ = 0 [9, 44]. Next, for each x, y ∈ C and n ∈ N, we
have

∥∥T(μn)x − T(μn)y
∥∥ =

∥∥∥∥∥
1
n2

n−1∑

i=0

n−1∑

j=0

SiTjx − 1
n2

n−1∑

i=0

n−1∑

j=0

SiTjy

∥∥∥∥∥
≤ ‖x − y‖ + cn. (4.6)

Now, apply Theorem 3.1 to conclude the result.

Corollary 4.2. Let C be a compact convex subset of a smooth Banach space E and let S = {T(t) : t ∈
R+} be a strongly continuous semigroup of Lipschitzian mappings on C with the uniform Lipschitzian
condition limt→∞k(t) ≤ 1 and {tn} be an increasing sequence in (0,∞) such that limn→∞tn = ∞
and limn→∞(tn/tn+1) = 1. Let {αn}, {βn} and {γn} be sequences in (0, 1) such that

(i) αn + βn + γn = 1, ∀n,
(ii) limn→∞αn = 0;



Shahram Saeidi 13

(iii)
∑∞

n=1αn = ∞;

(iv) lim supn→∞cn/αn ≤ 0, where

cn = sup
x,y∈C

{∥∥
∥
∥
∥
1
tn

∫ tn

0
T(s)xds − 1

tn

∫ tn

0
T(s)yds

∥∥
∥
∥
∥
− ‖x − y‖

}

; (4.7)

(v) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let x1 = x ∈ C and {xn} be a sequence defined by

xn+1 = αnf(xn) + βnxn + γn

(
1
tn

∫ tn

0
T(s)xnds

)

(4.8)

for each n ∈ N. Then {xn} converges strongly to z ∈ F(S) which is the unique solution of the
variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (4.9)

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C onto F(S).

Proof. For n ∈ N, define μn(f) = 1/tn
∫ tn
0 f(t)dt for each f ∈ C(R+), where f ∈ C(R+) denotes

the space of all real valued bounded continuous functions on R+ with supremum norm. Then,
{μn} is a strongly regular sequence of means and limn→∞‖μn+1 − μn‖ = 0 [9, 44]. Further, for
each x ∈ C, we have T(μn)x = 1/tn

∫ tn
0 T(s)xds. Therefore, it suffices to apply Theorem 3.1 to

conclude the desired result.

Corollary 4.3. Let C be a compact convex subset of a smooth Banach space E and let S = {T(t) : t ∈
R+} be a strongly continuous semigroup of Lipschitzian mappings on C with the uniform Lipschitzian
condition limt→∞k(t) ≤ 1 and {rn} be a decreasing sequence in (0,∞) such that limn→∞rn = 0. Let
{αn}, {βn} and {γn} be sequences in (0, 1) such that

(i) αn + βn + γn = 1, ∀n,
(ii) limn→∞αn = 0;

(iii)
∑∞

n=1αn = ∞;

(iv) lim supn→∞cn/αn ≤ 0, where

cn = sup
x,y∈C

{∥∥∥∥∥
rn

∫∞

0
exp
( − rknt

)
T(t)xdt − rn

∫∞

0
exp
( − rknt

)
T(t)ydt

∥∥∥∥∥
− ‖x − y‖

}

; (4.10)

(v) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let x1 = x ∈ C and {xn} be a sequence defined by

xn+1 = αnf(xn) + βnxn + γnrn

∫∞

0
exp(−rns)T(s)xnds (4.11)
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for each n ∈ N. Then {xn} converges strongly to z ∈ F(S) which is the unique solution of the
variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (4.12)

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C onto F(S).

Proof. For n ∈ N, define μn(f) = rn
∫∞
0 exp(−rknt)f(t)dt for each f ∈ C(R+). Then, {μn} is a

strongly regular sequence of means and limn→∞‖μn+1−μn‖ = 0 [9, 44]. Further, for each x ∈ C,
we have T(μn)x = rn

∫∞
0 exp(−rnt)T(t)xdt. Therefore, the result follows from Theorem 3.1.

Corollary 4.4. Let C be a compact convex subset of a smooth Banach space E and let S be an
asymptotically nonexpansive mapping of C into itself and f be an α-contraction on C for some
0 < α < 1. Let {cn} be defined by

cn =
d

n

n−1∑

i=0

(1 − ki), (4.13)

where, d = diam(C) and ki is defined as ‖Six−Siy‖ ≤ ki‖x−y‖, for all x, y ∈ C, and limi→∞ki = 1.
Let {αn}, {βn} and {γn} be sequences in (0, 1) such that

(i) αn + βn + γn = 1, ∀n,
(ii) limn→∞αn = 0;

(iii)
∑∞

n=1αn = ∞;

(iv) lim supn→∞cn/αn ≤ 0;

(v) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1.

Let x1 = x ∈ C and {xn} be a sequence defined by

xn = αnf(xn) + βnxn + γn
∞∑

m=0

qn,mT
mxn (4.14)

for each n ∈ N where Q = {qn,m} is a strongly regular matrix. Then {xn} converges strongly to
z ∈ F(S) which is the unique solution of the variational inequality

〈(f − I)z, J(y − z)〉 ≤ 0, ∀y ∈ F(S). (4.15)

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C onto F(S).

Proof. For each n ∈ N, define

μn(f) =
∞∑

m=0

qn,mf(m) (4.16)
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for each f ∈ l∞(N ∪ {0}). Since Q is a strongly regular matrix, for each m, we have qn,m → 0,
as n → ∞; see [37]. Then, it is easy to see that {μn} is a regular sequence of means, and
‖μn+1 − μn‖ → 0 [44]. Further, for each x ∈ C, we have T(μn)x =

∑∞
m=0 qn,mT

mx. Now, apply
Theorem 3.1 to conclude the result.

For deducing some more applications, we refer to, for example, [44].
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