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The purpose of this paper is to compare convergence speed of the Picard and Mann iterations on
one hand, Krasnoselskij and Ishikawa iterations on the other hand, for the class of Zamfirescu op-
erators. The results improve corresponding results of (Berinde 2004) and (Babu and Vara Prasad
2006).
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1. Introduction

Let E be a real Banach space, D a closed convex subset of E, and T : D → D a self-map. Let
p0, v0, u0, x0 ∈ D be arbitrary. The sequence {pn}∞n=0 ⊂ D defined by

pn+1 = Tpn, n ≥ 0, (1.1)

is called the Picard iteration or Picard iterative procedure. For λ ∈ (0, 1), the sequence {vn}∞n=0 ⊂
D defined by

vn+1 = (1 − λ)vn + λTvn, n ≥ 0, (1.2)

is called the Krasnoselskij iteration or Krasnoselskij iterative procedure. Let {an} be a sequence
of real numbers in [0, 1]. The sequence {un}∞n=0 ⊂ D defined by

un+1 = (1 − an)un + anTun, n ≥ 0, (1.3)
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is called the Mann iteration or Mann iterative procedure. The sequence {xn}∞n=0 ⊂ D defined by

x0 ∈ D,

yn =
(
1 − bn

)
xn + bnTxn, n ≥ 0,

xn+1 =
(
1 − an

)
xn + anTyn, n ≥ 0,

(1.4)

is called the Ishikawa iteration or Ishikawa iterative procedure, where {an} and {bn} are se-
quences of real numbers in [0, 1]. Obviously, for bn = 0 the Ishikawa iteration (1.4) can be
reduced to (1.3); and for λ = 1 we obtain the Picard iteration. In the last twenty years, many
authors have studied the convergence of the sequence of the Picard, Krasnoselskij, Mann, and
Ishikawa iterations of a mapping T to a fixed point of T , under various contractive conditions.
In such situations, it is of theoretical and practical importance to compare these iteration meth-
ods in order to establish which one converges faster if possible.

Definition 1.1 (see [1]). The operator T : X → X satisfies condition Zamfirescu if and only if
there exist real numbers a, b, c satisfying 0 < a < 1, 0 < b, c < 1/2 such that for each pair x, y in
X, at least one of the following conditions is true:

(1) ‖Tx − Ty‖ ≤ a‖x − y‖;
(2) ‖Tx − Ty‖ ≤ b(‖x − Tx‖ + ‖y − Ty‖);
(3) ‖Tx − Ty‖ ≤ c(‖x − Ty‖ + ‖y − Tx‖).

Obviously, we could obtain that every Zamfirescu operator T satisfies the inequality

‖Tx − Ty‖ ≤ δ‖x − y‖ + 2δ‖x − Tx‖ (1.5)

for all x, y ∈ D, where δ = max{a, b/(1 − b), c/(1 − c)} with 0 < δ < 1.
In 1972, Zamfirescu [1] obtained a very interesting fixed point theorem for Zamfirescu

operator.

Theorem Z (see [1]). Let (X, d) be a complete metric space and T : X → X a Zamfirescu operator.
Then, T has a unique fixed point q and the Picard iteration (1.1) converges to q.

Later on, Berinde [3] improved and extended the above-mentioned theorem and the
results in paper [2] with the following result.

Theorem B1 (see [3]). Let E be an arbitrary Banach space, D a closed convex subset of E, and T :
D → D an operator satisfying condition Z. Let {un}∞n=0 be the Mann iteration defined by (1.2) for
u0 ∈ D, with {an} ⊂ [0, 1] satisfying

∑∞
n=0 αn = ∞. Then, {un}∞n=0 converges strongly to the fixed

point of T .

TheoremB2 (see [3]). Let E be an arbitrary Banach space,D a closed convex subset of E, and T : D →
D an operator satisfying condition Z. Let {xn}∞n=0 be the Ishikawa iteration defined by (1.3) for x0 ∈ D,
with {an} and {bn} being sequences of positive numbers in [0, 1] and {an} satisfying

∑∞
n=0 an = ∞.

Then, {xn}∞n=0 converges strongly to the fixed point of T .

In order to compare the fixed point iteration procedures {pn}, {un}, and {xn} that con-
verge to a certain fixed point of given operator T , Berinde [4] provided the following defini-
tions.
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Definition 1.2 (see [4]). Let {an}∞n=0 and {bn}∞n=0 be two sequences of real numbers that converge
to a and b, respectively, and assume that there exists l = limn→∞(|an − a|/|bn − b|). If l = 0, then
it can be said that {an}∞n=0 converges faster to a than {bn}∞n=0 to b. If 0 < l < ∞, then it can be
said that {an}∞n=0 and {bn}∞n=0 have the same rate of convergence.

Definition 1.3 (see [4]). Suppose that for two fixed point iteration procedures {un}∞n=0 and
{vn}∞n=0 both converging to the same fixed point p with the error estimates ‖un − p‖ ≤ an,
‖vn−p‖ ≤ bn, n ≥ 0, where {an}∞n=0 and {bn}∞n=0 are two sequences of positive numbers (converg-
ing to zero). If {an}∞n=0 converges faster than {bn}∞n=0, then it can be said that {un}∞n=0 converges
faster than {vn}∞n=0 to p.

The purpose of this paper is to improve the results in [4, 5] by giving a direct rate of
convergence for some fixed point procedures.

2. Main results

In the sequel, suppose that δ is a constant from (1.5).

Theorem 2.1. Let E be an arbitrary real Banach space, D a closed convex subset of E, and T : D → D
a Zamfirescu operator. Let {pn}∞n=0 be defined by (1.1) for x0 ∈ D, and let {un}∞n=0 be defined by (1.3)
for y0 ∈ D with {an} in [0, 1/(1 + δ)) and satisfying (i)

∑∞
n=0 an = ∞, (ii) an → 0 as n → ∞. Then,

the Picard iteration converges faster than the Mann iteration to the fixed point of T .

Proof. By [1, Theorem 2.3], T has a unique fixed point, denote it by q. Moreover, Picard’s itera-
tion {pn}∞n=0 defined by (1.1) converges to q, for any p0 ∈ E, and

∥∥pn+1 − q
∥∥ =

∥∥Tpn − q
∥∥. (2.1)

Take x = q and y = pn in (1.5), then we get
∥∥pn+1 − q

∥∥ ≤ δ
∥∥pn − q

∥∥ ≤ δn+1∥∥p0 − q
∥∥, n ≥ 0. (2.2)

Now, by Mann’s iteration in (1.3) and (1.5),
∥∥un+1 − q

∥∥ ≥ (
1 − an

)∥∥un − q
∥∥ − an

∥∥Tun − Tq
∥∥

≥ (
1 − (1 + δ)an

)∥∥un − q
∥∥

≥ (
1 − (1 + δ)an

)(
1 − (1 + δ)an−1

) · · · (1 − (1 + δ)a0
)∥∥u0 − q

∥∥.

(2.3)

From (2.2) and (2.3), it follows that ‖pn+1 − q‖/‖un+1 − q‖ ≤ δn+1‖p0 − q‖/(1− (1+ δ)an)(1− (1+
δ)an−1) · · · (1 − (1 + δ)a0)‖u0 − q‖ → 0 as n → ∞. Indeed, we consider

∑∞
n=0(δ

n+1‖p0 − q‖/(1 −
(1 + δ)an)(1 − (1 + δ)an−1) · · · (1 − (1 + δ)a0)‖u0 − q‖). Set wn = δn+1‖p0 − q‖/(1 − (1 + δ)an)(1 −
(1 + δ)an−1) · · · (1 − (1 + δ)a0)‖u0 − q‖, then we obtain that limn→∞(wn+1/wn) = δ < 1. Applying
the ratio test, we get

∑∞
n=0wn < ∞, so wn → 0 as n → ∞, that is, ‖pn − q‖ = o(‖un − q‖). By

Definition 1.2, we obtain the conclusion of Theorem 2.1.

Theorem 2.2. Let E be an arbitrary Banach space, D a closed convex subset of E, and T : D → D a
Zamfirescu operator. Let {vn}∞n=0 be defined by (1.2) for v0 ∈ D, and let {xn}∞n=0 be defined by (1.4)
for x0 ∈ D with {an} and {bn} in [0, 1/(1 + δ)) and satisfying (i)

∑∞
n=0 an = ∞, (ii) an, bn → 0 as

n → ∞. Let q be a fixed point of T in D. Then, the Krasnoselskij iteration converges faster than the
Ishikawa iteration to the fixed point q of T .
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Proof. By Theorem B2 (see [3]), there exists a unique fixed point, denote it by q. For the Kras-
noselskij iteration, by using (1.2) we have

∥∥vn+1 − q
∥∥ ≤ (1 − λ)

∥∥vn − q
∥∥ + λ

∥∥Tvn − Tq
∥∥. (2.4)

Take x = q and y = vn in (1.5) to obtain

∥∥Tvn − Tq
∥∥ ≤ δ

∥∥vn − q
∥∥, (2.5)

and then
∥
∥vn+1 − q

∥
∥ ≤ (

1 − (1 − δ)λ
)∥∥vn − q

∥
∥

≤ (
1 − (1 − δ)λ

)n+1∥∥v0 − q
∥∥ −→ 0

(2.6)

as n → ∞. For the Ishikawa iterative procedure, by (1.4) we get

∥∥xn+1 − q
∥∥ ≥ (

1 − an

)∥∥xn − q
∥∥ − an

∥∥Tyn − Tq
∥∥. (2.7)

Take x = q and y = yn in (1.5) to obtain

∥
∥Tyn − Tq

∥∥ ≤ δ
∥∥yn − q

∥∥, (2.8)

and again using (1.4) and (1.5),

∥∥yn − q
∥∥ ≤ (

1 − bn
)∥∥xn − q

∥∥ + bn
∥∥Txn − Tq

∥∥

≤ (
1 − (1 − δ)bn

)∥∥xn − q
∥∥,

(2.9)

and hence by (2.8), (2.9), and (2.7), we get

∥∥xn+1 − q
∥∥ ≥ (

1 − an − anδ
(
1 − (1 − δ)bn

))∥∥xn − q
∥∥

≥ (
1 − (1 + δ)an

)∥∥xn − q
∥∥

≥ (
1 − (1 + δ)an

)(
1 − (1 + δ)an−1

)∥∥xn−1 − q
∥∥

≥ (
1 − (1 + δ)an

)(
1 − (1 + δ)an−1

) · · · (1 − (1 + δ)a0
)∥∥x0 − q

∥∥.

(2.10)

On repeating the proof course of Theorem 2.1, then ‖vn+1−q‖/‖xn+1−q‖ ≤ (1 − (1 − δ)λ)n+1‖v0−
q‖/(1 − (1 + δ)an)(1 − (1 + δ)an−1) · · · (1 − (1 + δ)a0)‖x0 − q‖ → 0 as n → ∞. Hence, ‖vn − q‖ =
o(‖xn − q‖). By Definition 1.2, we also obtain the conclusion of Theorem 2.2.

Remark 2.3. Theorem 2.1 provides a direct comparison of the rate of convergence of Picard and
Mann iterations in the class of Zamfirescu operators, while Theorem 2.2 obtains a similar result
for Krasnoselskij and Ishikawa iterations. However, we do not have a direct comparison result
of the rate of convergence in the case of Mann and Ishikawa iterations in the same class of
mappings. So, the best result for these two fixed point iterations remains that of [5], obtained
by means of the comparison sequences {an} and {bn} and not in a direct way, as in the present
paper (Theorems 2.1 and 2.2).
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