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A class of semilinear impulsive periodic system on Banach spaces is considered. First, we introduce
the T0-periodic PC-mild solution of semilinear impulsive periodic system. By virtue of Gronwall
lemma with impulse, the estimate on the PC-mild solutions is derived. The continuity and
compactness of the new constructed Poincaré operator determined by impulsive evolution operator
corresponding to homogenous linear impulsive periodic system are shown. This allows us to apply
Horn’s fixed-point theorem to prove the existence of T0-periodic PC-mild solutions when PC-mild
solutions are ultimate bounded. This extends the study on periodic solutions of periodic system
without impulse to periodic system with impulse on general Banach spaces. At last, an example is
given for demonstration.
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1. Introduction

It is well known that impulsive periodic motion is a very important and special phenomenon
not only in natural science but also in social science such as climate, food supplement,
insecticide population, and sustainable development. There are many results, such as
existence, the relationship between bounded solutions and periodic solutions, stability, food
limited, and robustness, about impulsive periodic system on finite dimensional spaces (see
[1–7]).

Although, there are some papers on periodic solution of periodic systems on infinite
dimensional spaces (see [8–13]) and some results about the impulsive systems on infinite
dimensional spaces (see [14–18]). Particulary, Professor Jean Mawhin investigated the
periodic solutions of all kinds of systems on (in)finite dimensional spaces extensively (see
[2, 19–23]). However, to our knowledge, nonlinear impulsive periodic systems on infinite
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dimensional spaces (with unbounded operator) have not been extensively investigated.
There are only few works done by us about the impulsive periodic system (with unbounded
operator) on infinite dimensional spaces (see [24–27]). We have been established periodic
solution theory under the existence of a bounded solution for the linear impulsive periodic
system on infinite dimensional spaces. Several criteria were obtained to ensure the existence,
uniqueness, global asymptotical stability, alternative theorem, Massera’s theorem, and
Robustness of a T0-periodic PC-mild solution for the linear impulsive periodic system.

Herein, we go on studying the semilinear impulsive periodic system

ẋ(t) = Ax(t) + f(t, x), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk,
(1.1)

on infinite dimensional Banach space X, where 0 = τ0 < τ1 < τ2 < · · · < τk · · · , limk→∞τk = ∞,
τk+δ = τk + T0, Δx(τk) = x(τ+

k
) − x(τ−

k
), k ∈ Z

+
0 , T0 is a fixed positive number and δ ∈ N

denoted the number of impulsive points between 0 and T0. The operatorA is the infinitesimal
generator of a C0-semigroup {T(t), t ≥ 0} on X, f is a measurable function from [0,∞) ×
X to X and is T0-periodic in t, andBk+δ = Bk, ck+δ = ck. This paper is mainly concerned
with the existence of periodic solution for semilinear impulsive periodic system on infinite
dimensional Banach space X.

In this paper, we use Horn’s fixed-point theorem to obtain the existence of periodic
solution for semilinear impulsive periodic system (1.1). First, by virtue of impulsive
evolution operator corresponding to homogeneous linear impulsive system, we construct
a new Poincaré operator P for semilinear impulsive periodic system (1.1), then we overcome
some difficulties to show the continuity and compactness of Poincaré operator P which are
very important. By virtue of Gronwall lemmawith impulse, the estimate of PC-mild solutions
is given. Therefore, the existence of T0-periodic PC-mild solutions for semilinear impulsive
periodic system when PC-mild solutions are ultimate bounded is shown.

This paper is organized as follows. In Section 2, some results of linear impulsive
periodic system and properties of impulsive evolution operator corresponding to homoge-
neous linear impulsive periodic system are recalled. In Section 3, the Gronwall’s lemma with
impulse is collected and the T0-periodic PC-mild solution of semilinear impulsive periodic
system (1.1) is introduced. The new Poincaré operator P is constructed and the relation
between T0-periodic PC-mild solution and the fixed point of Poincaré operator P is given.
After the continuity and compactness of Poincaré operator P are shown, the existence of T0-
periodic PC-mild solutions for semilinear impulsive periodic system is established by virtue
of Horn’s fixed-point theorem when PC-mild solutions are ultimate bounded. At last, an
example is given to demonstrate the applicability of our result.

2. Linear impulsive periodic system

Let X be a Banach space. £(X) denotes the space of linear operators in X; £b(X) denotes the
space of bounded linear operators in X. £b(X) is the Banach space with the usual supremum
norm. Define ˜D = {τ1, . . . , τδ} ⊂ [0, T0]. We introduce PC([0, T0];X) ≡ {x : [0, T0] → X | x is
continuous at t ∈ [0, T0]\ ˜D, x is continuous from left and has right-hand limits at t ∈ ˜D}, and
PC1([0, T0];X) ≡ {x ∈ PC([0, T0];X) | ẋ ∈ PC([0, T0];X)}. Set

‖x‖PC = max

{

sup
t∈[0,T0]

‖x(t + 0)‖, sup
t∈[0,T0]

‖x(t − 0)‖
}

, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC. (2.1)
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It can be seen that endowed with the norm ‖·‖PC(‖·‖PC1), PC([0, T0];X)(PC1([0, T0];X)) is a
Banach space.

In order to study the semilinear impulsive periodic system, we first recall linear
impulse periodic system here.

Firstly, we recall homogeneous linear impulsive periodic system

.
x (t) = Ax(t), t /= τk,

Δx(t) = Bkx(t), t = τk.
(2.2)

We introduce the following assumption [H1].

[H1.1]: A is the infinitesimal generator of a C0-semigroup {T(t), t ≥ 0} on X with domain
D(A).

[H1.2]: There exists δ such that τk+δ = τk + T0.

[H1.3]: For each k ∈ Z
+
0 , Bk ∈ £b(X) and Bk+δ = Bk.

In order to study system (2.2), we need to consider the associated Cauchy problem

.
x (t) = Ax(t), t ∈ [0, T0] \ ˜D,

Δx(τk) = Bkx(τk), k = 1, 2, . . . , δ,

x(0) = x.

(2.3)

If x ∈ D(A) and D(A) is an invariant subspace of Bk, using [28, Theorem 5.2.2, page
144], step by step, one can verify that the Cauchy problem (2.3) has a unique classical solution
x ∈ PC1([0, T0];X) represented by x(t) = S(t, 0)x, where

S(·, ·) : Δ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0} −→ £(X), (2.4)

given by

S(t, θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

T(t − θ), τk−1 ≤ θ ≤ t ≤ τk,

T(t − τ+k )(I + Bk)T(τk − θ), τk−1 ≤ θ < τk < t ≤ τk+1,

T(t − τ+
k
)

[

∏

θ<τj<t

(I + Bj)T(τj − τ+j−1)

]

(I + Bi)T(τi − θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.5)

Definition 2.1. The operator {S(t, θ), (t, θ) ∈ Δ} given by (2.5) is called the impulsive
evolution operator associated with {T(t), t ≥ 0} and {Bk; τk}∞k=1.

We introduce the PC-mild solution of Cauchy problem (2.3) and T0-periodic PC-mild
solution of system (2.2).
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Definition 2.2. For every x ∈ X, the function x ∈ PC([0, T0];X) given by x(t) = S(t, 0)x is said
to be the PC-mild solution of the Cauchy problem (2.3).

Definition 2.3. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (2.2) if it is a PC-mild solution of Cauchy problem (2.3) corresponding to some x and
x(t + T0) = x(t) for t ≥ 0.

The following lemma gives the properties of the impulsive evolution operator
{S(t, θ), (t, θ) ∈ Δ} associated with {T(t), t ≥ 0} and {Bk; τk}∞k=1 are widely used in this paper.

Lemma 2.4 (see [24, Lemma 1]). Impulsive evolution operator {S(t, θ), (t, θ) ∈ Δ} has the follow-
ing properties.

(1) For 0 ≤ θ ≤ t ≤ T0, S(t, θ) ∈ £b(X), that is, there exists a constantMT0 > 0 such that

sup
0≤θ≤t≤T0

‖S(t, θ)‖ ≤ MT0 . (2.6)

(2) For 0 ≤ θ < r < t ≤ T0, r /= τk, S(t, θ) = S(t, r)S(r, θ).

(3) For 0 ≤ θ ≤ t ≤ T0 and N ∈ Z
+
0 , S(t +NT0, θ +NT0) = S(t, θ).

(4) For 0 ≤ t ≤ T0 and N ∈ Z
+
0 , S(NT0 + t, 0) = S(t, 0)[S(T0, 0)]

N .

(5) If {T(t), t ≥ 0} is a compact semigroup in X, then S(t, θ) is a compact operator for 0 ≤ θ <
t ≤ T0.

Secondly, we recall nonhomogeneous linear impulsive periodic system

ẋ(t) = Ax(t) + f(t), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk,
(2.7)

where f ∈ L1([0, T0];X), f(t + T0) = f(t) for t ≥ 0 and ck+δ = ck.
In order to study system (2.7), we need to consider the associated Cauchy problem

ẋ(t) = Ax(t) + f(t), t ∈ [0, T0] \ ˜D,

Δx(τk) = Bkx(τk) + ck, k = 1, 2, . . . , δ,

x(0) = x,

(2.8)

and introduce the PC-mild solution of Cauchy problem (2.8) and T0-periodic PC-mild
solution of system (2.7).

Definition 2.5. A function x ∈ PC([0, T0];X), for finite interval [0, T0], is said to be a PC-mild
solution of the Cauchy problem (2.8) corresponding to the initial value x ∈ X and input
f ∈ L1([0, T0];X) if x is given by

x(t) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ)dθ +

∑

0≤τk<t
S(t, τ+k )ck. (2.9)

Definition 2.6. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (2.7) if it is a PC-mild solution of Cauchy problem (2.8) corresponding to some x and
x(t + T0) = x(t) for t ≥ 0.
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Here, we note that system (2.2) has a T0-periodic PC-mild solution x if and only if
S(T0, 0) has a fixed point. The impulsive periodic evolution operator {S(t, θ), (t, θ) ∈ Δ}
can be used to reduce the existence of T0-periodic PC-mild solutions for system (2.7) to the
existence of fixed points for an operator equation. This implies that we can use the uniform
framework in [8, 13] to study the existence of periodic PC-mild solutions for impulsive
periodic system on Banach space.

3. Semilinear impulsive periodic system

In order to derive the estimate of PC-mild solutions, we collect the following Gronwall’s
lemma with impulse which is widely used in sequel.

Lemma 3.1. Let x ∈ PC([0, T0];X) and satisfy the following inequality:

‖x(t)‖ ≤ a + b

∫ t

0
‖x(θ)‖dθ +

∑

0<τk<t

ζk‖x(τk)‖, (3.1)

where a, b, ζk ≥ 0, are constants. Then, the following inequality holds:

‖x(t)‖ ≤ a
∏

0<τk<t

(1 + ζk)ebt. (3.2)

Proof. Defining

u(t) = a + b

∫ t

0
‖x(θ)‖dθ +

∑

0<τk<t

ζk‖x(τk)‖, (3.3)

we get

u̇(t) = b‖x(t)‖ ≤ bu(t), t /= τk,

u(0) = a,

u(τ+
k
) = u(τk) + ζk‖x(τk)‖ ≤ (1 + ζk)u(τk).

(3.4)

For t ∈ (τk, τk+1], by (3.4), we obtain

u(t) ≤ u(τ+k )e
b(t−τk) ≤ (1 + ζk)u(τk)eb(t−τk), (3.5)

further,

u(t) ≤ a
∏

0<τk<t

(1 + ζk)ebt, (3.6)

thus,

‖x(t)‖ ≤ a
∏

0<τk<t

(1 + ζk)ebt. (3.7)

For more details the reader can refer to [5, Lemma 1.7.1].
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Now, we consider the following semilinear impulsive periodic system

ẋ(t) = Ax(t) + f(t, x), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk.
(3.8)

and introduce a suitable Poincaré operator and study the T0-periodic PC-mild solutions of
system (3.8).

In order to study the system (3.8), we first consider the associated Cauchy problem

ẋ(t) = Ax(t) + f(t, x), t ∈ [0, T0] \ ˜D,

Δx(τk) = Bkx(τk) + ck, k = 1, 2, . . . , δ,

x(0) = x.

(3.9)

Now, we can introduce the PC-mild solution of the Cauchy problem (3.9).

Definition 3.2. A function x ∈ PC([0, T0];X) is said to be a PC-mild solution of the Cauchy
problem (3.9) corresponding to the initial value x ∈ X if x satisfies the following integral
equation:

x(t) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ))dθ +

∑

0≤τk<t
S(t, τ+k )ck. (3.10)

Remark 3.3. Since one of the main difference of system (3.9) and other ODEs is the middle
“jumping condition,” we need verify that the PC-mild solution defined by (3.10) satisfies
the middle “jumping condition” in (3.9). In fact, it comes from (3.10) and S(τ+

k
, θ) = (I +

Bk)S(τk, θ), for 0 ≤ θ < τk, k = 1, 2, . . . , δ, that

x(τ+k ) = S(τ+k , 0)x +
∫ τ+

k

0
S(τ+k , θ)f(θ, x(θ))dθ +

∑

0≤τk<τ+k
S(τ+k , τ

+
k )ck

= (I + Bk)

(

S(τk, 0)x +
∫ τk

0
S(τk, θ)f(θ, x(θ))dθ +

∑

0≤τk−1<τk
S(τk, τ+k−1)ck

)

+ ck

= (I + Bk)x(τk) + ck.

(3.11)

It shows that Δx(τk) = Bkx(τk) + ck, k = 1, 2, . . . , δ.

In order to show the existence of the PC-mild solution of Cauchy problem (3.9) and
T0-periodic PC-mild solutions for system (3.8), we introduce assumption [H2].

[H2.1]: f : [0,∞)×X → X is measurable for t ≥ 0 and for any x, y ∈ X satisfying ‖x‖, ‖y‖ ≤
ρ, there exists a positive constant Lf(ρ) > 0 such that

‖f(t, x) − f(t, y)‖ ≤ Lf(ρ)‖x − y‖. (3.12)

[H2.2]: There exists a positive constant Mf > 0 such that

‖f(t, x)‖ ≤ Mf(1 + ‖x‖) ∀x ∈ X. (3.13)
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[H2.3]: f(t, x) is T0-periodic in t, that is, f(t + T0, x) = f(t, x), t ≥ 0.

[H2.4]: For each k ∈ Z
+
0 and ck ∈ X, there exists δ ∈ N such that ck+δ = ck.

Now, we state the following result which asserts the existence of PC-mild solution
for Cauchy problem (3.9) and gives the estimate of PC-mild solutions for Cauchy problem
(3.9) by virtue of Lemma 3.1. A similar result for a class of generalized nonlinear impulsive
integral differential equations is given by Xiang and Wei in [17]. Thus, we only sketch the
proof here.

Theorem 3.4. Assumptions [H1.1], [H2.1], and [H2.2] hold, and for each k ∈ Z
+
0 , Bk ∈ £b(X),

ck ∈ X be fixed. Let x ∈ X be fixed. Then Cauchy problem (3.9) has a unique PC-mild solution given
by

x(t, x) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<t
S(t, τ+k )ck. (3.14)

Further, suppose x ∈ Ξ ⊂ X, Ξ is a bounded subset of X, then there exits a constantM∗ > 0 such that

‖x(t, x)‖ ≤ M∗ ∀ t ∈ [0, T0]. (3.15)

Proof. Under the assumptions [H1.1], [H2.1], and [H2.2], using the similar method of
[28, Theorem 5.3.3, page 169], Cauchy problem

.
x (t) = Ax(t) + f(t, x), t ∈ [s, τ],

x(s) = x ∈ X,
(3.16)

has a unique mild solution

x(t) = T(t)x +
∫ t

s

T(t − θ)f(θ, x(θ))dθ. (3.17)

In general, for t ∈ (τk, τk+1], Cauchy problem

.
x (t) = Ax(t) + f(t, x), t ∈ (τk, τk+1],

x(τk) = xk ≡ (I + Bk)x(τk) + ck ∈ X
(3.18)

has a unique PC-mild solution

x(t) = T(t − τk)xk +
∫ t

τk

T(t − θ)f(θ, x(θ))dθ. (3.19)

Combining all solutions on[τk, τk+1] (k = 1, . . . , δ), one can obtain the PC-mild solution
of the Cauchy problem (3.9) given by

x(t, x) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<t
S(t, τ+k )ck. (3.20)
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Further, by assumption [H2.2] and (1) of Lemma 2.4, we obtain

‖x(t, x)‖ ≤
(

MT0‖x‖ +MT0MfT0 +MT0

∑

0≤τk<T0
‖ck‖

)

+MT0

∫ t

0
‖x(θ, x)‖dθ. (3.21)

Since x ∈ Ξ ⊂ X, Ξ is a bounded subset of X, using Lemma 3.1, one can obtain

‖x(t, x)‖ ≤
(

MT0‖x‖ +MT0MfT0 +MT0

∑

0≤τk<T0
‖ck‖

)

eMT0T0 ≡ M∗, ∀ t ∈ [0, T0]. (3.22)

Now, we introduce the T0-periodic PC-mild solution of system (3.8).

Definition 3.5. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (3.8) if it is a PC-mild solution of Cauchy problem (3.9) corresponding to some x and
x(t + T0) = x(t) for t ≥ 0.

In order to study the periodic solutions of the system (3.8), we construct a new Poincaré
operator from X to X as follows:

P(x) = x(T0, x) = S(T0, 0)x +
∫T0

0
S(T0, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<T0
S(T0, τ+k )ck, (3.23)

where x(·, x) denote the PC-mild solution of the Cauchy problem (3.9) corresponding to the
initial value x(0) = x.

We can note that a fixed point of P gives rise to a periodic solution as follows.

Lemma 3.6. System (3.8) has a T0-periodic PC-mild solution if and only if P has a fixed point.

Proof. Suppose x(·) = x(· + T0), then x(0) = x(T0) = P(x(0)). This implies that x(0) is a
fixed point of P . On the other hand, if Px0 = x0, x0 ∈ X, then for the PC-mild solution
x(·, x0) of Cauchy problem (3.9) corresponding to the initial value x(0) = x0, we can define
y(·) = x(· + T0, x0), then y(0) = x(T0, x0) = Px0 = x0. Now, for t > 0, we can use (2), (3), and
(4) of Lemma 2.4 and assumptions [H1.2], [H1.3], [H2.3], [H2.4] to obtain

y(t) = x(t + T0, x0)

= S(t + T0, T0)S(T0, 0)x0 +
∫T0

0
S(t + T0, T0)S(T0, θ)f(θ, x(θ, x0))dθ

+
∑

0≤τk<T0
S(t + T0, T0)S(T0, τ+k )ck +

∫ t+T0

T0

S(t + T0, θ)f(θ, x(θ, x0))dθ

+
∑

T0≤τk+δ<t+T0
S(t + T0, τ

+
k+δ)ck+δ

= S(t, 0)

{

S(T0, 0)x0 +
∫T0

0
S(T0, θ)f(θ, x(θ, x0))dθ +

∑

0≤τk<T0
S(T0, τ+k )ck

}

+
∫ t

0
S(t + T0, s + T0)f(s + T0, x(s + T0, x0))ds +

∑

0≤τk<t
S(t, τ+k )ck

= S(t, 0)y(0) +
∫ t

0
S(t, s)f(s, y(s, y(0)))ds +

∑

0≤τk<t
S(t, τ+k )ck.

(3.24)
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This implies that y(·, y(0)) is a PC-mild solution of Cauchy problem (3.9) with initial value
y(0) = x0. Thus, the uniqueness implies that x(·, x0) = y(·, y(0)) = x(· + T0, x0) so that x(·, x0)
is a T0-periodic.

Next, we show that the operator P is continuous.

Lemma 3.7. Assumptions [H1.1], [H2.1], and [H2.2] hold. Then, operator P is a continuous operator
of x on X.

Proof. Let x, y ∈ Ξ ⊂ X, where Ξ is a bounded subset of X. Suppose x(·, x) and x(·, y) are the
PC-mild solutions of Cauchy problem (3.9) corresponding to the initial value x and y ∈ X,
respectively, given by

x(t, x) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<t
S(T0, τ+k )ck;

x(t, y) = S(t, 0)y +
∫ t

0
S(t, θ)f(θ, x(θ, y))dθ +

∑

0≤τk<t
S(T0, τ+k )ck.

(3.25)

Thus, by assumption [H2.2] and (1) of Lemma 2.4, we obtain

‖x(t, x)‖ ≤
(

MT0‖x‖ +MT0MfT0 +MT0

∑

0≤τk<T0
‖ck‖

)

+MT0

∫ t

0
‖x(θ, x)‖dθ;

‖x(t, y)‖ ≤
(

MT0‖y‖ +MT0MfT0 +MT0

∑

0≤τk<T0
‖ck‖

)

+MT0

∫ t

0
‖x(θ, y)‖dθ.

(3.26)

By Lemma 3.1, one can verify that there exist constants M∗
1 andM∗

2 > 0 such that

‖x(t, x)‖ ≤ M∗
1, ‖x(t, y)‖ ≤ M∗

2. (3.27)

Let ρ = max{M∗
1,M

∗
2} > 0, then ‖x(·, x)‖, ‖x(·, y)‖ ≤ ρ. By assumption [H2.1] and (1) of

Lemma 2.4, we obtain

‖x(t, x) − x(t, y)‖ ≤ ‖S(t, 0)‖‖x − y‖ +
∫ t

0
‖S(t, θ)‖‖f(θ, x(θ, x)) − f(θ, x(θ, y))‖dθ

≤ MT0‖x − y‖ +MT0Lf(ρ)
∫ t

0
‖x(θ, x) − x(θ, y)‖dθ.

(3.28)

By Lemma 3.1 again, one can verify that there exists a constant M > 0 such that

‖x(t, x) − x(t, y)‖ ≤ MMT0‖x − y‖ ≡ L‖x − y‖, ∀ t ∈ [0, T0], (3.29)

which implies that

‖P(x) − P(y)‖ = ‖x(T0, x) − x(T0, y)‖ ≤ L‖x − y‖. (3.30)

Hence, P is a continuous operator of x on X.
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In the sequel, we need to prove the compactness of operator P , so we assume the
following.

Assumption [H3]: The semigroup {T(t), t ≥ 0} is compact on X.
Now, we are ready to prove the compactness of operator P defined by (3.23).

Lemma 3.8. Assumptions [H1.1], [H2.1], [H2.2], and [H3] hold. Then, the operator P is a compact
operator.

Proof. We only need to verify that P takes a bounded set into a precompact set on X. Let Γ
is a bounded subset of X. Define K = PΓ = {P(x) ∈ X | x ∈ Γ}. For 0 < ε < t ≤ T0, define
Kε = PεΓ = S(T0, T0 − ε){x(T0 − ε, x) | x ∈ Γ}.

Next, we show that Kε is precompact on X. In fact, for x ∈ Γ fixed, we have

‖x(T0 − ε, x)‖ =

∥

∥

∥

∥

∥

S(T0 − ε, 0)x +
∫T0−ε

0
S(T0 − ε, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<T0−ε
S(T0 − ε, τ+k )ck

∥

∥

∥

∥

∥

≤ MT0‖x‖ +MT0MfT0 +
∫T0

0
‖x(θ, x)‖dθ +MT0

∑

0≤τk<T0
‖ck‖

≤ MT0‖x‖ +MT0MfT0 + T0ρ +MT0

δ
∑

k=1

‖ck‖.

(3.31)

This implies that the set {x(T0 − ε, x) | x ∈ Γ} is bounded.
By assumption [H3] and (5) of Lemma 2.4, S(T0, T0 − ε) is a compact operator. Thus,

Kε is precompact on X.
On the other hand, for arbitrary x ∈ Γ,

Pε(x) = S(T0, 0)x +
∫T0−ε

0
S(T0, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<T0−ε
S(T0, τ+k )ck, (3.32)

thus, combined with (3.23), we have

‖Pε(x) − P(x)‖ ≤
∥

∥

∥

∥

∫T0−ε

0
S(T0, θ)f(θ, x(θ))dθ −

∫T0

0
S(T0, θ)f(θ, x(θ))dθ

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

0≤τk<T0−ε
S(T0, τ+k )ck −

∑

0≤τk<T0
S(T0, τ+k )ck

∥

∥

∥

∥

∥

≤
∫T0

T0−ε
‖S(T0, θ)‖‖f(θ, x(θ))‖dθ +MT0

∑

T0−ε≤τk<T0
‖ck‖

≤ 2MT0Mf(1 + ρ)ε +MT0

∑

T0−ε≤τk<T0
‖ck‖.

(3.33)

It is showing that the set K can be approximated to an arbitrary degree of accuracy by a
precompact setKε. Hence,K itself is precompact set onX. That is, P takes a bounded set into
a precompact set on X. As a result, P is a compact operator.
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After showing the continuity and compactness of operator P , we can follow and derive
periodic PC-mild solutions for system (3.8). In the sequel, we define the following definitions.
The following definitions are standard, we state them here for convenient references. Note
that the uniform boundedness and uniform ultimate boundedness are not required to obtain
the periodic PC-mild solutions here, so we only define the (local) boundedness and ultimate
boundedness.

Definition 3.9. PC-mild solutions of Cauchy problem (3.9) are said to be bounded if for each
B1 > 0, there is a B2 > 0 such that ‖x‖ ≤ B1 implies ‖x(t, x)‖ ≤ B2 for t ≥ 0.

Definition 3.10. PC-mild solutions of Cauchy problem (3.9) are said to be locally bounded if
for each B1 > 0 and k0 > 0, there is a B2 > 0 such that ‖x‖ ≤ B1 implies ‖x(t, x)‖ ≤ B2 for
0 ≤ t ≤ k0.

Definition 3.11. PC-mild solutions of Cauchy problem (3.9) are said to be ultimate bounded
if there is a bound B > 0, such for each B3 > 0, there is a k > 0 such that ‖x‖ ≤ B3 and t ≥ k
imply ‖x(t, x)‖ ≤ B.

We also need the following results as a reference.

Lemma 3.12 (see [11, Theorem 3.1]). Local boundedness and ultimate boundedness implies
boundedness and ultimate boundedness.

Lemma 3.13 (see [10, Lemma 3.1], Horn’s fixed point theorem). Let E0 ⊂ E1 ⊂ E2 be convex
subsets of Banach spaceX, with E0 and E2 compact subsets and E1 open relative to E2. Let P : E2 → X
be a continuous map such that for some integerm, one has

Pj(E1) ⊂ E2, 1 ≤ j ≤ m − 1,

P j(E1) ⊂ E0, m ≤ j ≤ 2m − 1,
(3.34)

then P has a fixed point in E0.

With these preparations, we can prove our main result in this paper.

Theorem 3.14. Let assumptions [H1], [H2], and [H3] hold. If the PC-mild solutions of Cauchy
problem (3.9) are ultimate bounded, then system (3.8) has a T0-periodic PC-mild solution.

Proof. By Theorem 3.4 and Definition 3.10, Cauchy problem (3.9) corresponding to the initial
value x(0) = x has a PC-mild solution x(·, x) which is locally bound. From ultimate
boundedness and Lemma 3.12, x(·, x) is bound. Next, let B > 0 be the bound in the definition
of ultimate boundedness. Then, by boundedness, there is a B1 > B such that ‖x‖ ≤ B
implies ‖x(t, x)‖ ≤ B1 for t ≥ 0. Furthermore, there is a B2 > B1 such that ‖x‖ ≤ B1 implies
‖x(t, x)‖ ≤ B2 for t ≥ 0. Now, using ultimate boundedness again, there is a positive integer m
such that ‖x‖ ≤ B1 implies ‖x(t, x)‖ ≤ B for t ≥ (m − 2)T0.

Define y(·, y(0)) = x(· + T0, x), then y(0) = x(T0, x) = P(x). From (3.24) in Lemma 3.6,
we obtain P(y(0)) = y(T0, y(0)) = x(2T0, x). Thus, P 2(x) = P(P(x)) = P(y(0)) = x(2T0, x).
Suppose there exists integer m − 1 such that Pm−1(x) = x((m − 1)T0, x). By induction, we get
the following:

Pm(x) = Pm−1(P(x)) = Pm−1(y(0)) = y((m − 1)T0, y(0)) = x(mT0, x). (3.35)
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Thus, we obtain

‖Pj−1(x)‖ = ‖x((j − 1)T0, x)‖ < B2, j = 1, 2, . . . , m − 1, ‖x‖ < B1;

‖Pj−1(x)‖ = ‖x((j − 1)T0, x)‖ < B, j ≥ m, ‖x‖ < B1.
(3.36)

It comes from Lemma 3.8 that P(x) = x(T0, x) on X is compact. Now let

H = {x ∈ X : ‖x‖ < B2}, E2 = cl.(cov.(P(H))),

W = {x ∈ X : ‖x‖ < B1}, E1 = W ∩ E2,

G = {x ∈ X : ‖x‖ < B}, E0 = cl.(cov.(P(G))),

(3.37)

where cov.(Y ) is the convex hull of the set Y defined by cov.(Y ) = {∑n
i=1λiyi | n ≥ 1, yi ∈

Y, λi ≥ 0,
∑n

i=1λi = 1}, and cl. denotes the closure. Then, we see that E0 ⊂ E1 ⊂ E2 are convex
subset of X with E0, E2 compact subsets, and E1 open relative to E2, and from (3.36), one has

Pj(E1) ⊂ Pj(W) = PPj−1(W) ⊂ P(H) ⊂ E2, j = 1, 2, . . . , m − 1;

Pj(E1) ⊂ Pj(W) = PPj−1(W) ⊂ P(G) ⊂ E0, j = m,m + 1, . . . , 2m − 1.
(3.38)

We see that P : E2 → X is a continuous map continuous from Lemma 3.7. Consequently,
from Horn’s fixed-point theorem, we know that the operator P has a fixed point x0 ∈ E0 ⊂
X. By Lemma 3.6, we know that the PC-mild solution x(·, x0) of Cauchy problem (3.9),
corresponding to the initial value x(0) = x0, is just T0-periodic. Therefore, x(·, x0) is a T0-
periodic PC-mild solution of system (3.8). This proves the theorem.

4. Application

In this section, an example is given to illustrate our theory. Consider the following boundary
value problem

∂

∂t
x(t, y) = Δx(t, y) +

√

x2(t, y) + 1 + sin(t, y), y ∈ Ω, t /= τi, i = 1, 2, 3, 5, 6, 7, . . . ,

Δx(τi, y) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0.05Ix(τi, y), i = 1,

−0.05Ix(τi, y), i = 2,

0.05Ix(τi, y), i = 3,

y ∈ Ω, τi =
i

2
π, i = 1, 2, 3, 5, 6, 7, . . . ,

x(t, y) = 0, y ∈ ∂Ω, t > 0,

(4.1)

and the associated initial-boundary value problem
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∂

∂t
x(t, y) = Δx(t, y) +

√

x2(t, y) + 1 + sin(t, y), y ∈ Ω, t ∈ (0, 2π] \
{

1
2
π,π,

3
2
π

}

,

Δx(τi, y) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0.05Ix(τi, y), i = 1,

−0.05Ix(τi, y), i = 2,

0.05Ix(τi, y), i = 3,

y ∈ Ω, τi =
i

2
π, i = 1, 2, 3,

x(t, y) = 0, y ∈ ∂Ω, t > 0, x(0, y) = x(2π, y),

(4.2)

where Ω ⊂ R
3 is bounded domain and ∂Ω ∈ C3.

DefineX = L2(Ω),D(A) = H2(Ω)∩H1
0(Ω), andAx = −(∂2x/∂y2

1 +∂
2x/∂y2

2 +∂
2x/∂y2

3)
for x ∈ D(A). Then, A generates a compact semigroup {T(t), t ≥ 0}. Define x(·)(y) = x(·, y),
sin(·)(y) = sin(·, y), f(·, x(·))(y) =

√

x2(·, y) + 1 + sin(·, y), and

Bi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.05I, i = 3m − 2,

−0.05I, i = 3m − 1,

0.05I, i = 3m,

i,m ∈ N, (4.3)

and τi = ((i +m − 1)/2)π, i,m ∈ N.
Thus, problem (4.1) can be rewritten as

ẋ(t) = Ax(t) + f(t, x), t /= τi, i = 1, 2, 3, 5, 6, 7, . . . ,

Δx(t) = Bix(t), t = τi, i = 1, 2, 3, 5, 6, 7, . . . ,
(4.4)

and problem (4.2) can be rewritten as

ẋ(t) = Ax(t) + f(t, x), t ∈ (0, 2π] \
{

1
2
π,π,

3
2
π

}

,

Δx

(

i

2
π

)

= Bix

(

i

2
π

)

, i = 1, 2, 3,

x(0) = x(2π).

(4.5)

If the PC-mild solutions of Cauchy problem (4.5) are ultimate bounded, then all the
assumptions in Theorem 3.14 aremet, our results can be used to system (4.4). That is, problem
(4.1) has a 2π-periodic PC-mild solution x2π(·, y) ∈ PC2π([0 +∞);L2(Ω)), where

PC2π([0,+∞);L2(Ω)) ≡ {x ∈ PC([0,+∞);L2(Ω)) | x(t) = x(t + 2π), t ≥ 0}. (4.6)

Acknowledgments

This work is supported by National Natural Science foundation of China (no. 10661044) and
Guizhou Province Found (no. 2008008). This work is partially supported by undergraduate
carve out project of department of Guiyang City Science and Technology.



14 Fixed Point Theory and Applications

References

[1] D. Baı̆nov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, vol. 66
of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical,
Harlow, UK, 1993.

[2] C. Fabry, J. Mawhin, and M. N. Nkashama, “A multiplicity result for periodic solutions of forced
nonlinear second order ordinary differential equations,” Bulletin of the London Mathematical Society,
vol. 18, no. 2, pp. 173–180, 1986.

[3] V. Lakshmikantham, D. D. Baı̆nov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6
of Series in Modern Applied Mathematics, World Scientific, Teaneck, NJ, USA, 1989.

[4] X. Liu, “Impulsive stabilization and applications to population growth models,” The Rocky Mountain
Journal of Mathematics, vol. 25, no. 1, pp. 381–395, 1995.

[5] T. Yang, Impulsive Control Theory, vol. 272 of Lecture Notes in Control and Information Sciences, Springer,
Berlin, Germany, 2001.

[6] W. Wang, J. Shen, and J. J. Nieto, “Permanence and periodic solution of predator-prey system with
Holling type functional response and impulses,” Discrete Dynamics in Nature and Society, vol. 2007,
Article ID 81756, 15 pages, 2007.

[7] J. Song, “Global attractivity of positive periodic solutions for an impulsive delay periodic “food
limited” population model,” Discrete Dynamics in Nature and Society, vol. 2006, Article ID 31614, 10
pages, 2006.

[8] J. H. Liu, “Bounded and periodic solutions of differential equations in Banach space,” Applied
Mathematics and Computation, vol. 65, no. 1–3, pp. 141–150, 1994.

[9] J. H. Liu, “Bounded and periodic solutions of semilinear evolution equations,” Dynamic Systems and
Applications, vol. 4, no. 3, pp. 341–350, 1995.

[10] J. H. Liu, “Bounded and periodic solutions of finite delay evolution equations,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 34, no. 1, pp. 101–111, 1998.

[11] J. Liu, T. Naito, and N. Van Minh, “Bounded and periodic solutions of infinite delay evolution
equations,” Journal of Mathematical Analysis and Applications, vol. 286, no. 2, pp. 705–712, 2003.

[12] P. Sattayatham, S. Tangmanee, and W. Wei, “On periodic solutions of nonlinear evolution equations
in Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 276, no. 1, pp. 98–108, 2002.

[13] X. Xiang and N. U. Ahmed, “Existence of periodic solutions of semilinear evolution equations with
time lags,” Nonlinear Analysis: Theory, Methods & Applications, vol. 18, no. 11, pp. 1063–1070, 1992.

[14] N. U. Ahmed, “Some remarks on the dynamics of impulsive systems in Banach spaces,” Dynamics of
Continuous, Discrete & Impulsive Systems. Series A, vol. 8, no. 2, pp. 261–274, 2001.

[15] N. U. Ahmed, K. L. Teo, and S. H. Hou, “Nonlinear impulsive systems on infinite dimensional
spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 54, no. 5, pp. 907–925, 2003.

[16] W.Wei, X. Xiang, and Y. Peng, “Nonlinear impulsive integro-differential equations of mixed type and
optimal controls,” Optimization, vol. 55, no. 1-2, pp. 141–156, 2006.

[17] X. Xiang andW.Wei, “Mild solution for a class of nonlinear impulsive evolution inclusions on Banach
space,” Southeast Asian Bulletin of Mathematics, vol. 30, no. 2, pp. 367–376, 2006.

[18] X. Xiang, W. Wei, and Y. Jiang, “Strongly nonlinear impulsive system and necessary conditions of
optimality,” Dynamics of Continuous, Discrete & Impulsive Systems. Series A, vol. 12, no. 6, pp. 811–824,
2005.

[19] J. Mawhin, “Periodic solutions of nonlinear functional differential equations,” Journal of Differential
Equations, vol. 10, pp. 240–261, 1971.

[20] J. Mawhin and J. R. Ward Jr., “Periodic solutions of some forced Liénard differential equations at
resonance,” Archiv der Mathematik, vol. 41, no. 4, pp. 337–351, 1983.

[21] J. Mawhin, “Periodic solutions of some semilinear wave equations and systems: a survey,” Chaos,
Solitons & Fractals, vol. 5, no. 9, pp. 1651–1669, 1995.

[22] J. Mawhin and H. B. Thompson, “Periodic or bounded solutions of Carathéodory systems of ordinary
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