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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concern-
ing the stability of group homomorphisms. Hyers [2] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki [3] for addi-
tive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy
difference. The paper of Rassias [4] has provided a lot of influence in the development of
what we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional
equations. A generalization of the Rassias theorem was obtained by Găvruţa [5] by replac-
ing the unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic function. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [6] for mappings f : X → Y , where X
is a normed space and Y is a Banach space.Cholewa [7] noticed that the theorem of Skof is
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2 Fixed Point Theory and Applications

still true if the relevant domain X is replaced by an Abelian group. Czerwik [8] proved the
generalized Hyers-Ulam stability of the quadratic functional equation and Park [9] proved
the generalized Hyers-Ulam stability of the quadratic functional equation in Banach modules
over a C∗-algebra. The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [10–17]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall the following theorem by Diaz and Margolis.

Theorem 1.1 (see[18]). Let (X, d) be a complete generalized metric space and let J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X, either

d
(
Jnx, Jn+1x

)
= ∞ (1.2)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In this paper, using the fixed point method, we prove the generalized Hyers-Ulam sta-
bility of the following quadratic functional equation:

f(2x + y) = 4f(x) + f(y) + f(x + y) − f(x − y) (1.3)

in Banach spaces.
Throughout this paper, assume that X is a normed vector space with norm ‖·‖ and that

Y is a Banach space with norm ‖·‖.
In 1996, Isac and Rassias [19] were the first to provide applications of stability theory of

functional equations for the proof of new fixed point theorems with applications.

2. Fixed points and generalized Hyers-Ulam stability of quadratic functional equations

For a given mapping f : X → Y , we define

Cf(x, y) := f(2x + y) − 4f(x) − f(y) − f(x + y) + f(x − y) (2.1)

for all x, y ∈ X.
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Proposition 2.1. Let X and Y be vector spaces. A mapping f : X → Y satisfies

f(2x + y) = 4f(x) + f(y) + f(x + y) − f(x − y) (2.2)

if and only if the mapping f : X → Y satisfies

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2.3)

for all x, y ∈ X.

Proof. Assume that f : X → Y satisfies (2.2).
Letting x = y = 0 in (2.2), we get f(0) = 0.
Letting y = 0 in (2.2), we get f(2x) = 4f(x) for all x ∈ X.
Letting x = 0 in (2.2), we get f(−y) = f(y) for all y ∈ X.
Replacing y in (2.2) by −y, we get

f(2x − y) = 4f(x) + f(−y) + f(x − y) − f(x + y) (2.4)

for all x, y ∈ X. It follows from (2.2) and (2.4) that

f(2x + y) + f(2x − y) = 8f(x) + f(y) + f(−y) = 2f(2x) + 2f(y) (2.5)

for all x, y ∈ X. So the mapping f : X → Y satisfies

f(x + y) + f(x − y) = 2f(x) + 2f(y) (2.6)

for all x, y ∈ X.
Assume that f : X → Y satisfies f(x + y) + f(x − y) = 2f(x) + 2f(y) for all x, y ∈ X.
Since

f(2x + y) = f(x + y + x)

= 2f(x + y) + 2f(x) − f(y)
= f(x + y) + f(x + y) + 2f(x) − f(y)
= f(x + y) + 2f(x) + 2f(y) − f(x − y) + 2f(x) − f(y)
= 4f(x) + f(y) + f(x + y) − f(x − y)

(2.7)

for all x, y ∈ X, the mapping f : X → Y satisfies (2.2).

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
quadratic functional equation Cf(x, y) = 0.
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Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function ϕ : X2 →
[0,∞) such that there exists an L < 1 such that ϕ(x, 0) ≤ 4Lϕ(x/2, 0) for all x ∈ X, and

∞∑

j=0

4−jϕ
(
2jx, 2jy

)
<∞, (2.8)

∥∥Cf(x, y)
∥∥ ≤ ϕ(x, y) (2.9)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying(2.2) and

∥∥f(x) −Q(x)
∥∥ ≤ 1

4 − 4L
ϕ(x, 0) (2.10)

for all x ∈ X.

Proof. Consider the set

S := {g : X −→ Y} (2.11)

and introduce the generalized metric on S as follows:

d(g, h) = inf
{
K ∈ R+ :

∥∥g(x) − h(x)∥∥ ≤ Kϕ(x, 0), ∀x ∈ X}
. (2.12)

It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5 of [20].)
Now we consider the linear mapping J : S→ S such that

Jg(x) :=
1
4
g(2x) (2.13)

for all x ∈ X.
It follows from the proof of Theorem 3.1 of [21] that

d(Jg, Jh) ≤ Ld(g, h) (2.14)

for all g, h ∈ S.
Letting y = 0 in (2.9), we get

∥∥f(2x) − 4f(x)
∥∥ ≤ ϕ(x, 0) (2.15)

for all x ∈ X. So
∥∥∥∥f(x) −

1
4
f(2x)

∥∥∥∥ ≤ 1
4
ϕ(x, 0) (2.16)

for all x ∈ X. Hence d(f, Jf) ≤ 1/4.
By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following.
(1) Q is a fixed point of J , that is,

Q(2x) = 4Q(x) (2.17)
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for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M =
{
g ∈ S : d(f, g) <∞}

. (2.18)

This implies that Q is a unique mapping satisfying (2.17) such that there exists K ∈ (0,∞)
satisfying

∥∥f(x) −Q(x)
∥∥ ≤ Kϕ(x, 0) (2.19)

for all x ∈ X.
(2) d(Jnf,Q) → 0 as n→ ∞. This implies the equality

lim
n→∞

f
(
2nx

)

4n
= Q(x) (2.20)

for all x ∈ X.
(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,Q) ≤ 1
4 − 4L

. (2.21)

This implies that the inequality (2.10) holds.
It follows from (2.8), (2.9), and (2.20) that

∥∥CQ(x, y)
∥∥ = lim

n→∞
1
4n

∥∥Cf
(
2nx, 2ny

)∥∥

≤ lim
n→∞

1
4n
ϕ
(
2nx, 2ny

)

= 0

(2.22)

for all x, y ∈ X. So CQ(x, y) = 0 for all x, y ∈ X. By Proposition 2.1, the mapping Q : X → Y is
quadratic.

Therefore, there exists a unique quadratic mappingQ : X → Y satisfying (2.2) and (2.10),
as desired.

Corollary 2.3. Let p < 2 and θ ≥ 0 be real numbers, and let f : X → Y be a mapping such that

∥∥Cf(x, y)
∥∥ ≤ θ(‖x‖p + ‖y‖p) (2.23)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (2.2) and

∥∥f(x) −Q(x)
∥∥ ≤ θ

4 − 2p
‖x‖p (2.24)

for all x ∈ X.

Proof. The proof follows from Theorem2.2 by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p) (2.25)

for all x, y ∈ X. Then we can choose L= 2p−2 and we get the desired result.
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Remark 2.4. Let f : X → Y be a mapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.9) and f(0) = 0 such that

∞∑

j=0

4jϕ
(
x

2j
,
y

2j

)
<∞ (2.26)

for all x, y ∈ X. By a similar method to the proof of Theorem 2.2, one can show that if there
exists an L < 1 such that ϕ(x, 0) ≤ (1/4)Lϕ(2x, 0) for all x ∈ X, then there exists a unique
quadratic mapping Q : X → Y satisfying (2.2) and

∥
∥f(x) −Q(x)

∥
∥ ≤ L

4 − 4L
ϕ(x, 0) (2.27)

for all x ∈ X.
For the case p > 2, one can obtain a similar result to Corollary 2.3

Theorem 2.5. Let f : X → Y be an even mapping f(0) = 0 for which there exists a function ϕ : X2 →
[0,∞) satisfying (2.8) and (2.9) such that there exists an L < 1 such that ϕ(x,−x) ≤ 4Lϕ(x/2,−x/2)
for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying (2.2) and

∥∥f(x) −Q(x)
∥∥ ≤ 1

4 − 4L
ϕ(x,−x) (2.28)

for all x ∈ X.

Proof. Consider the set

S := {g : X −→ Y} (2.29)

and introduce the generalized metric on S as follows:

d(g, h) = inf
{
K ∈ R+ :

∥∥g(x) − h(x)∥∥ ≤ Kϕ(x,−x) ∀x ∈ X}
. (2.30)

It is easy to show that (S, d) is complete. (See the proof of Theorem 2.5 of [20].)
Now we consider the linear mapping J : S→ S such that

Jg(x) :=
1
4
g(2x) (2.31)

for all x ∈ X.
It follows from the proof of Theorem 3.1 of [21] that

d(Jg, Jh) ≤ Ld(g, h) (2.32)

for all g, h ∈ S.
Letting y = −x in (2.9), we get

∥∥f(2x) − 4f(x)
∥∥ ≤ ϕ(x,−x) (2.33)

for all x ∈ X. So
∥∥∥∥f(x) −

1
4
f(2x)

∥∥∥∥ ≤ 1
4
ϕ(x,−x) (2.34)

for all x ∈ X. Hence d(f, Jf) ≤ 1/4.
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By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following.
(1) Q is a fixed point of J , that is,

Q(2x) = 4Q(x) (2.35)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M =
{
g ∈ S : d(f, g) <∞}

. (2.36)

This implies that Q is a unique mapping satisfying (2.35) such that there exists K ∈ (0,∞)
satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ Kϕ(x,−x) (2.37)

for all x ∈ X.
(2) d(Jnf,Q) → 0 as n→ ∞. This implies the equality

lim
n→∞

f
(
2nx

)

4n
= Q(x) (2.38)

for all x ∈ X.
(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,Q) ≤ 1
4 − 4L

. (2.39)

This implies that the inequality (2.38) holds.
It follows from (2.8), (2.9), and (2.38) that

∥∥CQ(x, y)
∥∥ = lim

n→∞
1
4n

∥∥Cf(2nx, 2ny)
∥∥

≤ lim
n→∞

1
4n
ϕ
(
2nx, 2ny

)

= 0

(2.40)

for all x, y ∈ X. So CQ(x, y) = 0 for all x, y ∈ X. By Proposition 2.1, the mapping Q : X → Y is
quadratic.

Therefore, there exists a unique quadratic mappingQ : X → Y satisfying (2.2) and(2.28),
as desired.

Corollary 2.6. Let p < 1 and θ ≥ 0 be real numbers, and let f : X → Y be an even mapping such that

∥∥Cf(x, y)
∥∥ ≤ θ·‖x‖p·‖y‖p (2.41)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying(2.2) and

∥∥f(x) −Q(x)
∥∥ ≤ θ

4 − 4p
‖x‖2p (2.42)

for all x ∈ X.
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Proof. The proof follows from Theorem 2.5 by taking

ϕ(x, y) := θ·||x||p·||y||p (2.43)

for all x, y ∈ X. Then we can choose L= 4p−1 and we get the desired result.

Remark 2.7. Let f : X → Y be an evenmapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.9), (2.26), and f(0) = 0. By a similar method to the proof of Theorem 2.5, one can
show that if there exists an L < 1 such that ϕ(x,−x) ≤ (1/4)Lϕ(2x,−2x) for all x ∈ X, then
there exists a unique quadratic mapping Q : X → Y satisfying (2.2) and

∥∥f(x) −Q(x)
∥∥ ≤ L

4 − 4L
ϕ(x,−x) (2.44)

for all x ∈ X.
For the case p > 1, one can obtain a similar result to Corollary 2.6.
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