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1. Introduction

Let E be a Banach space and let C be a closed convex subset of E. Let f be a bifunction from
C × C to R, where R is the set of real numbers. The equilibrium problem is to find

x̂ ∈ C such that f(x̂, y) ≥ 0, ∀y ∈ C. (1.1)

The set of such solutions x̂ is denoted by EP(f).
A mapping S of C into E is called nonexpansive if

‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C. (1.2)

We denote by F(S) the set of fixed points of S.
Numerous problems in physics, optimization, and economics reduce to find a solution

of the equilibrium problem. Some methods have been proposed to solve the equilibrium prob-
lem in a Hilbert space; see, for instance, Blum and Oettli [1], Combettes and Hirstoaga [2], and
Moudafi [3]. On the other hand, there are some methods for approximation of fixed points of
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a nonexpansive mapping; see, for instance, [4–10]. Recently, Tada and Takahashi [11, 12] and
S. Takahashi and Takahashi [13] obtained weak and strong convergence theorems for find-
ing a common element of the set of solutions of an equilibrium problem and the set of fixed
points of a nonexpansive mapping in a Hilbert space. In particular, Tada and Takahashi [12]
established a strong convergence theorem for finding a common element of two sets by using
the hybrid method introduced in Nakajo and Takahashi [14]. The authors also proved such
a strong convergence theorem in a uniformly convex and uniformly smooth Banach space.
Very recently, Takahashi et al. [15] proved the following theorem by a hybrid method which
is different from Nakajo and Takahashi’s hybrid method. We call such a method the shrinking
projection method.

Theorem 1.1 (Takahashi et al. [15]). LetH be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T be a nonexpansive mapping of C into H such that F(T)/=∅ and let x0 ∈ H. For
C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:

yn = αnun +
(

1 − αn

)

Tun,

Cn+1 =
{

z ∈ Cn :
∥

∥yn − z
∥

∥ ≤ ∥

∥un − z
∥

∥

}

,

un+1 = PCn+1x0, n ∈ N,

(1.3)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then, {un} converges strongly to z0 = PF(T)x0.

In this paper, motivated by Takahashi et al. [15], we prove a strong convergence theo-
rem for finding a common element of the set of solutions of an equilibrium problem and the
set of fixed points of a relatively nonexpansive mapping in a Banach space by using the shrink-
ing projection method. Using this theorem, we obtain two new strong convergence results for
finding a solution of an equilibrium problem and a fixed point of a relatively nonexpnasive
mapping in a Banach space.

2. Preliminaries

Throughout this paper, all the Banach spaces are real. We denote by N and R the sets of positive
integers and real numbers, respectively. Let E be a Banach space and let E∗ be the topological
dual of E. For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by 〈x, x∗〉. Then, the duality
mapping J on E is defined by

J(x) =
{

x∗ ∈ E∗ :
〈

x, x∗〉 = ‖x‖2 = ∥

∥x∗∥
∥

2
}

(2.1)

for every x ∈ E. By the Hahn-Banach theorem, J(x) is nonempty; see [16] for more details.
We denote the strong convergence and the weak convergence of a sequence {xn} to x in E by
xn → x and xn ⇀ x, respectively. We also denote the weak∗ convergence of a sequence {x∗

n} to
x∗ in E∗ by x∗

n
∗
⇀ x∗. A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x /= y. It is also said to be uniformly convex if for each ε ∈ (0, 2], there
exists δ > 0 such that ‖x + y‖/2 ≤ 1 − δ for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. A
uniformly convex Banach space has the Kadec-Klee property, that is, xn ⇀ x and ‖xn‖ → ‖x‖
imply xn → x. The space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.2)
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exists for all x, y ∈ S(E) = {z ∈ E : ‖z‖ = 1}. It is also said to be uniformly smooth if the limit
exists uniformly in x, y ∈ S(E). We know that if E is smooth, strictly convex, and reflexive,
then the duality mapping J is single valued, one to one, and onto; see [17] for more details.

Let E be a smooth, strictly convex, and reflexive Banach space and let C be a nonempty
closed convex subset of E. Throughout this paper, we denote by φ the function defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉 + ‖x‖2, ∀y, x ∈ E. (2.3)

Following Alber [18], the generalized projection ΠC from E onto C is defined by

ΠC(x) = argmin
y∈C

φ(y, x), ∀x ∈ E. (2.4)

The generalized projectionΠC from E onto C is well defined, single valued and satisfies

(‖x‖ − ‖y‖)2 ≤ φ(y, x) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E. (2.5)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 and ΠC is the metric projection of H onto C. We
know the following lemmas for generalized projections.

Lemma 2.1 (Alber [18] and Kamimura and Takahashi [19]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space E. Then

φ
(

x,ΠCy
)

+ φ
(

ΠCy, y
) ≤ φ(x, y), ∀x ∈ C, y ∈ E.

Lemma 2.2 (Alber [18] and Kamimura and Takahashi [19]). Let C be a nonempty closed convex
subset of a smooth, strictly convex and reflexive Banach space, let x ∈ E and let z ∈ C. Then

z = ΠCx ⇐⇒ 〈y − z, Jx − Jz〉 ≤ 0, ∀y ∈ C. (2.6)

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E, let T be a mapping from C into itself. We denoted by F(T) the set of fixed
points of T . A point p ∈ C is said to be an asymptotic fixed point of T [20, 21] if there exists
{xn} in C which converges weakly to p and limn→∞‖xn − Txn‖ = 0. We denote the set of all
asymptotic fixed points of T by ̂F(T). Following Matsushita and Takahashi [22], a mapping T
is said to be relatively nonexpansive if the following conditions are satisfied:

(1) F(T) is nonempty;

(2) φ(u, Tx) ≤ φ(u, x), for all u ∈ F(T), x ∈ C;

(3) ̂F(T) = F(T).

The following lemma is due to Matsushita and Takahashi [22].

Lemma 2.3 (Matsushita and Takahashi [22]). LetC be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E, and let T be a relatively nonexpansive mapping from C
into itself. Then F(T) is closed and convex.

We also know the following lemmas.
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Lemma 2.4 (Kamimura and Takahashi [19]). Let E be a smooth and uniformly convex Banach space
and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If limnφ(xn, yn) = 0,
then limn‖xn − yn‖ = 0.

Lemma 2.5 (Xu [23] and Zălinescu [24, 25]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous, and convex function g : [0, 2r] → R such
that g(0) = 0 and

∥

∥tx + (1 − t)y
∥

∥

2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g
(‖x − y‖) (2.7)

for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.6 (Kamimura and Takahashi [19]). Let E be a smooth and uniformly convex Banach space
and let r > 0. Then there exists a strictly increasing, continuous and convex function g : [0, 2r] → R

such that g(0) = 0 and

g
(‖x − y‖) ≤ φ(x, y) (2.8)

for all x, y ∈ Br .

For solving the equilibrium problem, let us assume that a bifunction f satisfies the fol-
lowing conditions:

(A1) f(x, x) = 0 for allx ∈ C;

(A2) f is monotone, that is,f(x, y) + f(y, x) ≤ 0 for allx, y ∈ C;

(A3) for allx, y, z ∈ C,

lim sup
t↓0

f
(

tz + (1 − t)x, y
) ≤ f(x, y); (2.9)

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E∗ and define

f(x, y) = 〈Ax, y − x〉, ∀x, y ∈ C. (2.10)

Then, f satisfies (A1)–(A4). The following result is in Blum and Oettli [1].

Lemma 2.7 (Blum and Oettli [1]). Let C be a closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), let r > 0 and let
x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.11)

We also know the following lemmas.
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Lemma 2.8 (Takahashi and Zembayashi [26]). Let C be a closed convex subset of a uniformly
smooth, strictly convex and reflexive Banach space E, and let f be a bifunction fromC×C to R satisfying
(A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → 2C as follows:

Tr(x) =
{

z ∈ C : f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}

(2.12)

for all x ∈ E. Then, the following holds:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [27], that is, for all x, y ∈ E,

〈

Trx − Try, JTrx − JTry
〉 ≤ 〈

Trx − Try, Jx − Jy
〉

; (2.13)

(3) F(Tr) = ̂F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.9 (Takahashi and Zembayashi [26]). Let C be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let f be a bifunction from C × C to R satisfying (A1)–(A4).
Then for r > 0, x ∈ E, and q ∈ F(Tr),

φ
(

q, Trx
)

+ φ
(

Trx, x
) ≤ φ(q, x). (2.14)

3. Strong convergence theorem

In this section, we prove a strong convergence theorem for finding a common element of the set
of solutions of an equilibrium problem and the set of fixed points of a relatively nonexpansive
mapping in a Banach space by using the shrinking projection method.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and
let S be a relatively nonexpansive mapping from C into itself such that F(S) ∩ EP(f)/=∅. Let {xn} be
a sequence generated by x0 = x ∈ C, C0 = C and

yn = J−1
(

αnJxn +
(

1 − αn

)

JSxn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ
(

z, un

) ≤ φ
(

z, xn

)}

,

xn+1 = ΠCn+1x

(3.1)

for every n ∈ N ∪ {0}, where J is the duality mapping on E, {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1 −
αn) > 0 and {rn} ⊂ [a,∞) for some a > 0. Then, {xn} converges strongly to ΠF(S)∩EP(f)x, where
ΠF(S)∩EP(f) is the generalized projection of E onto F(S) ∩ EP(f).
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Proof. Putting un = Trnyn for all n ∈ N, we have from Lemma 2.9 that Trn are relatively nonex-
pansive.

We first show that Cn is closed and convex. It is obvious that Cn is closed. Since

φ
(

z, un

) ≤ φ
(

z, xn

) ⇐⇒ ∥

∥un

∥

∥

2 − ∥

∥xn

∥

∥

2 − 2
〈

z, Jun − Jxn

〉 ≥ 0, (3.2)

Cn is convex. So, Cn is a closed convex subset of E for all n ∈ N ∪ {0}.
Next, we show by induction that EP(f) ∩ F(S) ⊂ Cn for all n ∈ N ∪ {0}. From C0 = C, we

have

F(S) ∩ EP(f) ⊂ C0. (3.3)

Suppose that F(S) ∩ EP(f) ⊂ Ck for some k ∈ N ∪ {0}. Let u ∈ F(S) ∩ EP(f) ⊂ Ck. Since Trk and
S are relatively nonexpansive, we have

φ
(

u, uk

)

= φ
(

u, trkyk

) ≤ φ
(

u, yk

)

= φ
(

u, j−1
(

αkjxk +
(

1 − αk

)

jsxk

))

= ‖u‖2 − 2
〈

u, αkjxk +
(

1 − αk

)

jsxk

〉

+
∥

∥αkjxk +
(

1 − αk

)

jsxk

∥

∥

2

≤ ‖u‖2 − 2αk

〈

u, jxk

〉 − 2
(

1 − αk

)〈

u, jsxk

〉

+ αk

∥

∥xk

∥

∥

2 +
(

1 − αk

)∥

∥sxk

∥

∥

2

= αkφ
(

u, xk

)

+
(

1 − αk

)

φ
(

u, sxk

) ≤ φ
(

u, xk

)

.

(3.4)

Hence, we have u ∈ Ck+1. This implies that

F(S) ∩ EP(f) ⊂ Cn, ∀n ∈ N ∪ {0}. (3.5)

So, {xn} is well defined.
From the definition of xn, we have

φ
(

xn, x
)

= φ
(

ΠCn
x, x

) ≤ φ(u, x) − φ
(

u,ΠCn
x
) ≤ φ(u, x) (3.6)

for all u ∈ F(S) ∩ EP(f) ⊂ Cn. Then, φ(xn, x) is bounded. Therefore, {xn} and {Sxn} are
bounded.

From xn+1 ∈ Cn+1 ⊂ Cn and xn = ΠCn
x, we have

φ
(

xn, x
) ≤ φ

(

xn+1, x
)

, ∀n ∈ N ∪ {0}. (3.7)

Thus, {φ(xn, x)} is nondecreasing. So, the limit of {φ(xn, x)} exists. Since

φ
(

xn+1, xn

)

= φ
(

xn+1,ΠCn
x
) ≤ φ

(

xn+1, x
) − φ

(

ΠCn
x, x

)

= φ
(

xn+1, x
) − φ

(

xn, x
)

(3.8)

for all n ∈ N ∪ {0}, we have limn→∞φ(xn+1, xn) = 0. From xn+1 = ΠCn+1x ∈ Cn+1, we have

φ
(

xn+1, un

) ≤ φ
(

xn+1, xn

)

, ∀n ∈ N ∪ {0}. (3.9)
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Therefore, we also have

lim
n→∞

φ
(

xn+1, un

)

= 0. (3.10)

Since limn→∞φ(xn+1, xn) = limn→∞φ(xn+1, un) = 0 and E is uniformly convex and smooth, we
have from Lemma 2.4 that

lim
n→∞

∥

∥xn+1 − xn

∥

∥ = lim
n→∞

∥

∥xn+1 − un

∥

∥ = 0. (3.11)

So, we have

lim
n→∞

∥

∥xn − un

∥

∥ = 0. (3.12)

Since J is uniformly norm-to-norm continuous on bounded sets and limn→∞‖xn − un‖ = 0, we
have

lim
n→∞

∥

∥Jxn − Jun

∥

∥ = 0. (3.13)

Let r = supn∈N
{‖xn‖, ‖Sxn‖}. Since E is a uniformly smooth Banach space, we know that E∗ is a

uniformly convex Banach space. Therefore, from Lemma 2.5, there exists a continuous, strictly
increasing, and convex function g with g(0) = 0 such that

∥

∥αx∗ + (1 − α)y∗∥
∥

2 ≤ α
∥

∥x∗∥
∥

2 + (1 − α)
∥

∥y∗∥
∥

2 − α(1 − α)g
(∥

∥x∗ − y∗∥
∥

)

(3.14)

for x∗, y∗ ∈ B∗
r and α ∈ [0, 1]. So, we have that for u ∈ F(S) ∩ EP(f),

φ
(

u, un

)

= φ
(

u, trnyn

) ≤ φ
(

u, yn

)

= φ
(

u, j−1
(

αnjxn +
(

1 − αn

)

jsxn

))

= ‖u‖2 − 2
〈

u, αnjxn +
(

1 − αn

)

jsxn

〉

+
∥

∥αnjxn +
(

1 − αn

)

jsxn

∥

∥

2

≤ ‖u‖2 − 2αn

〈

u, jxn

〉 − 2
(

1 − αn

)〈

u, jsxn

〉

+ αn

∥

∥xn

∥

∥

2 +
(

1 − αn

)∥

∥sxn

∥

∥

2

− αn

(

1 − αn

)

g
(∥

∥jxn − jsxn

∥

∥

)

= αnφ
(

u, xn

)

+
(

1 − αn

)

φ
(

u, sxn

) − αn

(

1 − αn

)

g
(∥

∥jxn − jsxn

∥

∥

)

≤ φ
(

u, xn

) − αn

(

1 − αn

)

g
(∥

∥jxn − jsxn

∥

∥

)

.

(3.15)

Therefore, we have

αn

(

1 − αn

)

g
(∥

∥Jxn − JSxn

∥

∥

) ≤ φ
(

u, xn

) − φ
(

u, un

)

, ∀n ∈ N ∪ {0}. (3.16)

Since

φ
(

u, xn

) − φ
(

u, un

)

=
∥

∥xn

∥

∥

2 − ∥

∥un

∥

∥

2 − 2
〈

u, jxn − jun

〉

≤ ∣

∣

∥

∥xn

∥

∥

2 − ∥

∥un

∥

∥

2∣
∣ + 2

∣

∣

〈

u, jxn − jun

〉∣

∣

≤ ∣

∣

∥

∥xn

∥

∥ − ∥

∥un

∥

∥

∣

∣

(∥

∥xn

∥

∥ +
∥

∥un

∥

∥

)

+ 2‖u‖∥∥jxn − jun

∥

∥

≤ ∥

∥xn − un

∥

∥

(∥

∥xn

∥

∥ +
∥

∥un

∥

∥

)

+ 2‖u‖∥∥jxn − jun

∥

∥,

(3.17)
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we have

lim
n→∞

(

φ
(

u, xn

) − φ
(

u, un

))

= 0. (3.18)

From lim infn→∞αn(1 − αn) > 0, we have

lim
n→∞

g
(∥

∥jxn − jsxn

∥

∥

)

= 0. (3.19)

Therefore, from the property of g, we have

lim
n→∞

∥

∥Jxn − JSxn

∥

∥ = 0. (3.20)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥

∥xn − Sxn

∥

∥ = 0. (3.21)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ x̂. Since S is
relatively nonexpansive, we have x̂ ∈ ̂F(S) = F(S). On the other hand, from un = Trnyn, (3.4),
and Lemma 2.9, we have that

φ
(

un, yn

)

=φ
(

Trnyn, yn

) ≤ φ
(

u, yn

)−φ(u, Trnyn

) ≤ φ
(

u, xn

) − φ
(

u, Trnyn

)

= φ
(

u, xn

) − φ
(

u, un

)

.

(3.22)

So, we have from (3.18) that

lim
n→∞

φ
(

un, yn

)

= 0. (3.23)

Since E is uniformly convex and smooth and {un} is bounded, we have from Lemma 2.4 that

lim
n→∞

∥

∥un − yn

∥

∥ = 0. (3.24)

From xnk
⇀ x̂, (3.24) and ‖xn − un‖ → 0, we have ynk

⇀ x̂.
Since J is uniformly norm-to-norm continuous on bounded sets, from (3.24), we have

lim
n→∞

∥

∥Jun − Jyn

∥

∥ = 0. (3.25)

From rn ≥ a, we have

lim
n→∞

∥

∥Jun − Jyn

∥

∥

rn
= 0. (3.26)

By un = Trnyn, we have

f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jyn

〉 ≥ 0, ∀y ∈ C. (3.27)
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Replacing n by nk, we have from (A2) that

1
rnk

〈

y − unk
, Junk

− Jynk

〉 ≥ −f(unk
, y

) ≥ f
(

y, unk

)

, ∀y ∈ C. (3.28)

Since f(x, ·) is convex and lower semicontinuous, it is also weakly lower semicontinuous. So,
letting k → ∞, we have from (3.26) and (A4) that

f(y, x̂) ≤ 0, ∀y ∈ C. (3.29)

For twith 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)x̂. Since y ∈ C and x̂ ∈ C, we have yt ∈ C and
hence f(yt, x̂) ≤ 0. So, from (A1) we have

0 = f
(

yt, yt

) ≤ tf
(

yt, y
)

+ (1 − t)f
(

yt, x̂
) ≤ tf

(

yt, y
)

. (3.30)

Dividing by t, we have

f
(

yt, y
) ≥ 0, ∀y ∈ C. (3.31)

Letting t ↓ 0, from (A3), we have

f(x̂, y) ≥ 0, ∀y ∈ C. (3.32)

Therefore, x̂ ∈ EP(f).
Let w = ΠF(S)∩EP(f)x. From xn = ΠCn

x and w ∈ F(S) ∩ EP(f) ⊂ Cn, we have

φ
(

xn, x
) ≤ φ(w,x). (3.33)

Since the norm is weakly lower semicontinuous, we have

φ(x̂, x) = ‖x̂‖2 − 2〈x̂, Jx〉 + ‖x‖2

≤ lim inf
k→∞

(∥

∥xnk

∥

∥

2 − 2
〈

xnk
, Jx

〉

+ ‖x‖2)

= lim inf
k→∞

φ
(

xnk
, x

)

≤ lim sup
k→∞

φ
(

xnk
, x

) ≤ φ(w,x).

(3.34)

From the definition ofΠF(S)∩EP(f), we have x̂ = w. Hence, limk→∞φ(xnk
, x) = φ(w,x). Therefore,

we have

0 = lim
k→∞

(

φ
(

xnk
, x

) − φ(w,x)
)

= lim
k→∞

(∥

∥xnk

∥

∥

2 − ‖w‖2 − 2
〈

xnk
−w, Jx

〉)

= lim
k→∞

(∥

∥xnk

∥

∥

2 − ‖w‖2).

(3.35)

Since E has the Kadec-Klee property, we have that xnk
→ w = ΠF(S)∩EP(f)x. Therefore, {xn}

converges strongly to ΠF(S)∩EP(f)x.
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As direct consequences of Theorem 3.1, we can obtain two corollaries.

Corollary 3.2. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–(A4).
Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C and

un ∈ C such that f
(

un, y
)

+
1
rn

〈

y − un, Jun − Jxn

〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ
(

z, un

) ≤ φ
(

z, xn

)}

,

xn+1 = ΠCn+1x

(3.36)

for every n ∈ N ∪ {0}, where J is the duality mapping on E and {rn} ⊂ [a,∞) for some a > 0. Then,
{xn} converges strongly to ΠEP(f)x.

Proof. Putting S = I in Theorem 3.1, we obtain Corollary 3.2.

Corollary 3.3. Let E be a uniformly smooth and uniformly convex Banach space, and let C be a
nonempty closed convex subset of E. Let S be a relatively nonexpansive mapping from C into itself.
Let {xn} be a sequence generated by x0 = x ∈ C, C0 = C and

un = πcj
−1(αnjxn +

(

1 − αn

)

jsxn

)

,

cn+1 =
{

z ∈ cn : φ
(

z, un

) ≤ φ
(

z, xn

)}

,

xn+1 = πcn+1x

(3.37)

for every n ∈ N∪{0}, where J is the duality mapping on E and {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1−
αn) > 0. Then, {xn} converges strongly to ΠF(S)x.

Proof. Putting f(x, y) = 0 for all x, y ∈ C and rn = 1 in Theorem 3.1, we obtain Corollary 3.3.

Theorem 1.1 is a simple consequence of this corollary.

References

[1] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” The
Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.

[2] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of Nonlin-
ear and Convex Analysis, vol. 6, no. 1, pp. 117–136, 2005.

[3] A. Moudafi, “Second-order differential proximal methods for equilibrium problems,” Journal of In-
equalities in Pure and Applied Mathematics, vol. 4, no. 1, article 18, pp. 1–7, 2003.

[4] B. Halpern, “Fixed points of nonexpandingmaps,” Bulletin of the AmericanMathematical Society, vol. 73,
no. 6, pp. 957–961, 1967.

[5] W. R.Mann, “Mean valuemethods in iteration,” Proceedings of the AmericanMathematical Society, vol. 4,
pp. 506–510, 1953.

[6] S. Reich, “Weak convergence theorems for nonexpansivemappings in Banach spaces,” Journal of Math-
ematical Analysis and Applications, vol. 67, no. 2, pp. 274–276, 1979.

[7] S. Reich, “Strong convergence theorems for resolvents of accretive operators in Banach spaces,” Journal
of Mathematical Analysis and Applications, vol. 75, no. 1, pp. 287–292, 1980.

[8] S. Reich, “Approximating fixed points of nonexpansive mappings,” PanAmericanMathematical Journal,
vol. 4, no. 2, pp. 23–28, 1994.



W. Takahashi and K. Zembayashi 11

[9] N. Shioji and W. Takahashi, “Strong convergence of approximated sequences for nonexpansive map-
pings in Banach spaces,” Proceedings of the American Mathematical Society, vol. 125, no. 12, pp. 3641–
3645, 1997.

[10] R. Wittmann, “Approximation of fixed points of nonexpansive mappings,” Archiv der Mathematik,
vol. 58, no. 5, pp. 486–491, 1992.

[11] A. Tada and W. Takahashi, “Strong convergence theorem for an equilibrium problem and a nonex-
pansive mapping,” in Nonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka, Eds., pp.
609–617, Yokohama Publishers, Yokohama, Japan, 2007.

[12] A. Tada andW. Takahashi, “Weak and strong convergence theorems for a nonexpansive mapping and
an equilibrium problem,” Journal of Optimization Theory and Applications, vol. 133, no. 3, pp. 359–370,
2007.

[13] S. Takahashi andW. Takahashi, “Viscosity approximationmethods for equilibrium problems and fixed
point problems in Hilbert spaces,” Journal of Mathematical Analysis and Applications, vol. 331, no. 1, pp.
506–515, 2007.

[14] K. Nakajo and W. Takahashi, “Strong convergence theorems for nonexpansive mappings and non-
expansive semigroups,” Journal of Mathematical Analysis and Applications, vol. 279, no. 2, pp. 372–379,
2003.

[15] W. Takahashi, Y. Takeuchi, and R. Kubota, “Strong convergence theorems by hybrid methods for fam-
ilies of nonexpansive mappings in Hilbert spaces,” Journal of Mathematical Analysis and Applications,
vol. 341, no. 1, pp. 276–286, 2008.

[16] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
[17] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 ofMathemat-

ics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
[18] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and applica-

tions,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, A. G. Kartsatos,
Ed., vol. 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15–50, Dekker, New York, NY, USA,
1996.

[19] S. Kamimura andW. Takahashi, “Strong convergence of a proximal-type algorithm in a Banach space,”
SIAM Journal on Optimization, vol. 13, no. 3, pp. 938–945, 2002.

[20] Y. Censor and S. Reich, “Iterations of paracontractions and firmly nonexpansive operators with appli-
cations to feasibility and optimization,” Optimization, vol. 37, no. 4, pp. 323–339, 1996.

[21] S. Reich, “Aweak convergence theorem for the alternatingmethodwith Bregman distances,” in Theory
and Applications of Nonlinear Operators of Accretive and Monotone Type, A. G. Kartsatos, Ed., vol. 178 of
Lecture Notes in Pure and Applied Mathematics, pp. 313–318, Dekker, New York, NY, USA, 1996.

[22] S. Matsushita andW. Takahashi, “Weak and strong convergence theorems for relatively nonexpansive
mappings in Banach spaces,” Fixed Point Theory and Applications, vol. 2004, no. 1, pp. 37–47, 2004.

[23] H.-K. Xu, “Inequalities in Banach spaces with applications,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 16, no. 12, pp. 1127–1138, 1991.

[24] C. Zălinescu, “On uniformly convex functions,” Journal of Mathematical Analysis and Applications,
vol. 95, no. 2, pp. 344–374, 1983.
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