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1. Introduction

In [1], the author introduced the notion of compatible mappings in metric spaces and
proved some fixed-point theorems. This concept of compatible mappings was frequently
used to show the existence of common fixed points. However, the study of the existence
of common fixed points for noncompatible mappings is, also, very interesting. In [2], the
author initially proved some common fixed-point theorems for noncompatible mappings.
In [3], the authors gave a notion (E-A) which generalizes the concept of noncompatible
mappings in metric spaces, and they proved some common fixed-point theorems for
noncompatible mappings under strict contractive conditions. In [4], the authors proved
some common fixed-point theorems for strict contractive noncompatible mappings in metric
spaces. Recently, in [5] the authors extended the results of [3, 4] to symmetric(semimetric)
spaces under tight conditions. In [6], the author gave a common fixed-point theorem for
noncompatible self-mappings in a symmetric spaces under a contractive condition of integral
type.

In this paper, we give some common fixed-point theorems in symmetric(semimetric)
spaces and give counterexamples for the results of Imdad et al. [5].

In order to obtain common fixed-point theorems in symmetric spaces, some axioms
are needed. In [5], the authors assumed axiom (W3), and in [6] the author assumed axioms
(W3), (W4), and (H.E); see Section 2 for definitions.

mailto:shcho@hanseo.ac.kr


2 Fixed Point Theory and Applications

We give another axiom for symmetric spaces and study their relationships in Section 2.
We give common fixed-point theorems of four mappings in symmetric spaces and give some
examples which justifies the necessity of axioms in Section 3.

2. Axioms on symmetric spaces

A symmetric on a set X is a function d : X ×X → [0,∞) satisfying the following conditions:

(i) d(x, y) = 0, if and only if x = y for x, y ∈ X,

(ii) d(x, y) = d(y, x), for all x, y ∈ X.

Let d be a symmetric on a setX. For x ∈ X and ε > 0, let B(x, ε) = {y ∈ X : d(x, y) < ε}.
A topology τ(d) on X defined as follows: U ∈ τ(d) if and only if for each x ∈ U, there exists
an ε > 0 such that B(x, ε) ⊂ U. A subset S of X is a neighbourhood of x ∈ X if there exists
U ∈ τ(d) such that x ∈ U ⊂ S. A symmetric d is a semimetric if for each x ∈ X and each ε > 0,
B(x, ε) is a neighbourhood of x in the topology τ(d).

A symmetric (resp., semimetric) space (X, d) is a topological space whose topology τ(d)
on X is induced by symmetric(resp., semi-metric) d.

The difference of a symmetric and ametric comes from the triangle inequality. Actually
a symmetric space need not be Hausdorff. In order to obtain fixed-point theorems on a
symmetric space, we need some additional axioms. The following axioms can be found in [7].

(W3) for a sequence {xn} in X, x, y ∈ X, limn→∞ d(xn, x) = 0 and limn→∞ d(xn, y) = 0
imply x = y.

(W4) for sequences {xn}, {yn} inX and x ∈ X, limn→∞ d(xn, x) = 0 and limn→∞d(yn, xn) =
0 imply limn→∞ d(yn, x) = 0.

Also the following axiom can be found in [6].
(H.E) for sequences {xn}, {yn} in X and x ∈ X, limn→∞ d(xn, x) = 0 and

limn→∞ d(yn, x) = 0 imply limn→∞ d(xn, yn) = 0.
Now, we add a new axiom which is related to the continuity of the symmetric d.
(C.C) for sequences {xn} in X and x, y ∈ X, limn→∞ d(xn, x) = 0 implies

limn→∞ d(xn, y) = d(x, y).
Note that if d is a metric, then (W3), (W4), (H.E), and (C.C) are automatically satisfied.

And if τ(d) is Hausdorff, then (W3) is satisfied.

Proposition 2.1. For axioms in symmetric space (X, d), one has

(1) (W4)⇒ (W3),

(2) (C.C)⇒ (W3).

Proof. Let {xn} be a sequence in X and x, y ∈ X with limn→∞ d(xn, x) = 0 and
limn→∞ d(xn, y) = 0.

(1) By putting yn = y for each n ∈ N, we have limn→∞ d(xn, yn) = limn→∞ d(xn, y) = 0.
By (W4), we have 0 = limn→∞ d(yn, x) = d(y, x).

(2) By (C.C), limn→∞ d(xn, x) = 0 implies d(x, y) = limn→∞ d(xn, y) = 0.

The following examples show that other relationships in Proposition 2.1 do not hold.
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Example 2.2. (W4) � (H.E) and (W4) � (C.C) and so (W3) � (H.E) and (W3) � (C.C) by
Proposition 2.1 (1).

Let X = [0,∞) and let

d(x, y) =

⎧
⎪⎨

⎪⎩

|x − y| (x /= 0, y /= 0),

1
x

(x /= 0).
(2.1)

Then, (X, d) is a symmetric space which satisfies (W4) but does not satisfy (H.E) for
xn = n, yn = n + 1. Also (X, d) does not satisfy (C.C).

Example 2.3. (H.E) � (W3), and so (H.E) � (W4) and (H.E) � (C.C).
Let X = [0, 1] ∪ {2} and let

d(x, y) =

⎧
⎨

⎩

|x − y| (0 ≤ x ≤ 1, 0 ≤ y ≤ 1),

|x| (0 < x ≤ 1, y = 2)
(2.2)

and d(0, 2) = 1.

Then, (X, d) is a symmetric space which satisfies (H.E). Let xn = 1/n. Then,
limn→∞ d(xn, 0) = limn→∞ d(xn, 2) = 0. But d(0, 2)/= 0 and hence the symmetric space (X, d)
does not satisfy (W3).

Example 2.4. (C.C) � (W4) and so (W3) � (W4) by Proposition 2.1(2).

Let X = {1/n : n = 1, 2, . . .} ∪ {0}, and let d(0, 1/n) = (1/n) (n is odd), d(0, 1/n) = 1 (n
is even) and

d

(
1
m
,
1
n

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∣
∣
∣
∣
1
m

− 1
n

∣
∣
∣
∣ (m + n is even),

∣
∣
∣
∣
1
m

− 1
n

∣
∣
∣
∣

(
m + n is odd and |m − n| = 1

)
,

1
(
m + n is odd and |m − n| > 2).

(2.3)

Then, the symmetric space (X, d) satisfies (C.C) but does not satisfy (W4) for xn =
1/(2n + 1) and yn = 1/2n.

Example 2.5. (C.C) � (H.E).
Let X = {1/n : n = 1, 2, . . .} ∪ {0}, and let

d

(
1
m
,
1
n

)

=

⎧
⎨

⎩

∣
∣
∣
∣
1
m

− 1
n

∣
∣
∣
∣

(|m − n| ≥ 2
)
,

1
(|m − n| = 1

) (2.4)

and d(1/n, 0) = 1/n. Then, (X, d) is a symmetric space which satisfies (C.C). Let xn =
1/n, yn = 1/(n + 1). Then, limn→∞ d(xn, 0) = limn→∞ d(yn, 0) = 0. But limn→∞ d(xn, yn)/= 0.
Hence, the symmetric space (X, d) does not satisfy (H.E).
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3. Common fixed points of four mappings

Let (X, d) be a symmetric(or semimetric) space and let f, g be self-mappings of X. Then, we
say that the pair (f, g) satisfies property (E-A) [3] if there exists a sequence {xn} in X and a
point t ∈ X such that limn→∞ d(fxn, t) = limn→∞ d(gxn, t) = 0.

A subset S of a symmetric space (X, d) is said to be d-closed if for a sequence {xn}
in S and a point x ∈ X, limn→∞ d(xn, x) = 0 implies x ∈ S. For a symmetric space (X, d),
d-closedness implies τ(d)-closedness, and if d is a semimetric, the converse is also true.

At first, we prove coincidence point theorems of four mappings satisfying the property
(E-A) under some contractive conditions.

Theorem 3.1. Let (X, d) be a symmetric(semimetric) space that satisfies (W3) and (H.E), and let
A,B, S, and T be self-mappings of X such that

(1) AX ⊂ TX and BX ⊂ SX,

(2) the pair (B, T) satisfies property (E-A) (resp., (A,S) satisfies property (E-A)),

(3) for any x, y ∈ X, d(Ax,By) ≤ m(x, y), where

m(x, y) = max{d(Sx, Ty),min{d(Ax, Sx), d(By, Ty)},min{d(Ax, Ty), d(By, Sx)}}, (3.1)

(4) SX is a d-closed (τ(d)-closed) subset of X (resp., TX is a d-closed(τ(d)-closed) subset of
X).

Then, there exist u,w ∈ X such that Au = Su = Bw = Tw.

Proof. From (2), there exist a sequence {xn} in X, and a point t ∈ X such that
limn→∞ d(Txn, t) = limn→∞ d(Bxn, t) = 0.

From (1), there exists a sequence {yn} in X such that Bxn = Syn and hence
limn→∞ d(Syn, t) = 0. By (H.E), limn→∞ d(Bxn, Txn) = limn→∞ d(Syn, Txn) = 0.

From (4), there exists a point u ∈ X such that Su = t.
From (3), we have

d
(
Au,Bxn

)

≤ max
{
d
(
Su, Txn

)
,min

{
d(Au, Su), d

(
Bxn, Txn

)}
,min

{
d
(
Au, Txn

)
, d

(
Bxn, Su

)}}
.

(3.2)

By taking n → ∞, we have limn→∞ d(Au,Bxn) = 0. By (W3), we get Au = Su.
Since AX ⊂ TX, there exists a point w ∈ X such that Au = Tw.
We show that Tw = Bw. From (3), we have

d(Au,Bw)

≤ max
{
d(Su, Tw),min

{
d(Au, Su), d(Bw, Tw)

}
,min

{
d(Au, Tw), d(Bw,Su)

}}

= max
{
d(Tw, Tw),min

{
d(Au,Au), d(Bw, Tw)

}
,min

{
d(Au,Au), d(Bw,Su)

}}
= 0.
(3.3)

Hence, Au = Bw and hence Au = Su = Bw = Tw.
For the existence of a common fixed point of four self-mappings of a symmetric space,

we need an additional condition, so-called weak compatibility.
Recall that for self-mappings f and g of a set, the pair (f, g) is said to be weakly

compatible [8] if fgx = gfx, whenever fx = gx. Obviously, if f and g are commuting, the
pair (f, g) is weakly compatible.
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Theorem 3.2. Let (X, d) be a symmetric(semimetric) space that satisfies (W3) and (H.E), and let
A,B, S, and T be self-mappings of X such that

(1) AX ⊂ TX and BX ⊂ SX,

(2) the pair (B, T) satisfies property (E-A)(resp., (A,S) satisfies property (E-A)),

(3) the pairs (A,S) and (B, T) are weakly compatible,

(4) for any x, y ∈ X(x /=y), d(Ax,By) < m(x, y),

(5) SX is a d-closed(τ(d)-closed) subset of X (resp., TX is a d-closed (τ(d)-closed) subset of
X).

Then, A,B, S, and T have a unique common fixed point in X.

Proof. From Theorem 3.1, there exist u,w ∈ X such that Au = Su = Tw = Bw. From (3),
ASu = SAu, AAu = ASu = SAu = SSu and BTw = TBw = TTw = BBw.

If Au/=w, then from (4) we have

d(Au,AAu)

= d(AAu,Bw)

< max
{
d(SAu, Tw),min

{
d(AAu, SAu), d(Bw, Tw)

}
,min

{
d(AAu, Tw), d(Bw,SAu)

}}

= max
{
d(AAu,Au), 0, d(AAu,Au)

}

= d(AAu,Au)
(3.4)

which is a contradiction.
Similarly, if u/=Bw, we have a contradiction. Thus, Au = w = Su = Tw = Bw = u, and

w is a common fixed point of A,B, S, and T .
For the uniqueness, let z be another common fixed point of A,B, S, and T . If w/= z,

then from (4)we get

d(z,w) = d(Az, Bw)

< max
{
d(Sz, Tw),min

{
d(Az, Sz), d(Bw, Tw)

}
,min

{
d(Az, Tw), d(Bw,Sz)

}

= max
{
d(z,w),min

{
d(z, z), d(w,w)

}
,min

{
d(z,w), d(w, z)

}

= d(z,w)

(3.5)

which is a contradiction. Hence, w = z.

Remark 3.3. In the case of A = B = g and S = T = f in Theorem 3.1 (resp., Theorem 3.2), we
can show that f and g have a coincidence point (resp., f and g have a unique common fixed
point) without making the assumption gX ⊂ fX.

Recently, R. P. Pant and V. Pant [4] obtained the existence of a common fixed point of
the pair of (f, g) in a metric space (X, d) satisfying the condition

(P.P) for any x, y ∈ X,

d(gx, gy) < max
{

d(fx, fy),
k

2
{
d(fx, gx) + d(fy, gy)

}
,
1
2
{
d(fy, gx) + d(fx, gy)

}
}

, (3.6)

where 1 ≤ k < 2.
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Also in [5], the authors tried to extend the result of [4] to symmetric spaces which
satisfy axiom (W3).

Now, we will extend R. P. Pant and V. Pant’s result to symmetric spaces which satisfy
additional conditions (H.E) and (C.C).

Theorem 3.4. Let (X, d) be a symmetric(semimetric) space that satisfies (H.E) and (C.C) and let
A,B, S, and T be self-mappings of X such that

(1) AX ⊂ TX and BX ⊂ SX,

(2) the pair (B, T) satisfies property (E-A) (resp., (A,S) satisfies property (E-A)),

(3) for any x, y ∈ X, d(Ax,By) ≤ m1(x, y), where m1(x, y) = max{d(Sx, Ty), (k/2)
{d(Ax, Sx) + d(By, Ty)}, (k/2){d(Ax, Ty) + d(By, Sx)}}, 0 < k < 2,

(4) SX is a d-closed (τ(d)-closed) subset of X (resp., TX is a d-closed (τ(d)-closed) subset of
X).

Then, there exist u,w ∈ X such that Au = Su = Bw = Tw.

Proof. As in the proof of Theorem 3.1, there exist sequences {xn}, {yn} in X and a point t ∈ X
such that limn→∞ d(Txn, t) = limn→∞ d(Bxn, t)=0 and Bxn=Syn. Hence, limn→∞ d(Syn, t)=0.

From (4), there exists a point u ∈ X such that Su = t.
We show Au = Su. From (3), we have

d
(
Au,Bxn

)

≤ max
{

d
(
Su, Txn

)
,
k

2
{
d(Au, Su) + d

(
Bxn, Txn

)}
,
k

2
{
d
(
Au, Txn

)
+ d

(
Bxn, Su

)}
}

(3.7)

In the above inequality, we take n → ∞, by (C.C) and (H.E), we have

d(Au, Su) ≤ max
{

0,
k

2
d(Au, Su),

k

2
{
d(Au, Su)

}

=
k

2
d(Au, Su).

(3.8)

Since 0 < k/2 < 1, we get d(Au, Su) = 0 and hence Au = Su.
Since AX ⊂ TX, there exists a point w ∈ X such that Au = Tw.
We show that Tw = Bw. From (3), we have

d(Tw,Bw) = d(Au,Bw)

≤ max
{

d(Su, Tw),
k

2
{
d(Au, Su) + d(Bw, Tw)

}
,
k

2
{
d(Au, Tw) + d(Bw,Su)

}
}

= max
{

d(Tw, Tw),
k

2
{
d(Au,Au) + d(Bw, Tw)

}
,
k

2
{
d(Au,Au) + d(Bw,Su)

}
}

= max
{
k

2
d(Bw, Tw),

k

2
d(Bw,Su)

}

=
k

2
d(Bw, Tw).

(3.9)

Since 0 < k/2 < 1, we get d(Tw,Bw) = 0 and hence Tw = Bw. Therefore, we have
Au = Su = Bw = Tw.
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Theorem 3.5. (X, d) be a symmetric(semimetric) space that satisfies (H.E) and (C.C) and letA,B, S,
and T be self-mappings of X such that

(1) AX ⊂ TX and BX ⊂ SX,

(2) the pair (B, T) satisfies property (E-A) (resp., (A,S) satisfies property (E-A)),

(3) the pairs (A,S) and (B, T) are weakly compatible,

(4) for any x, y ∈ X(x /=y), d(Ax,By) < m2(x, y), where m2(x, y) = max{d(Sx, Ty),
(k/2){d(Ax, Sx) + d(By, Ty)}, (1/2){d(Ax, Ty) + d(By, Sx)}}, 0 < k < 2.

(5) SX is a d-closed (τ(d)-closed) subset of X (resp., TX is a d-closed(τ(d)-closed) subset
of X).

Then A,B, S, and T have a unique common fixed point in X.

Proof. From Theorem 3.4, there exist points u,w ∈ X such that Au = Su = Tw = Bw, AAu =
ASu = SAu = SSu, and BTw = TBw = TTw = BBw.

We show that Au = w. If Au/=w, then from (4) we have

d(Au,AAu)

= d(AAu,Bw)

< max
{

d(SAu, Tw),
k

2
{
d(AAu, SAu) + d(Bw, Tw)

}
,
1
2
{
d(AAu, Tw) + d(Bw,SAu)

}
}

= max
{
d(AAu,Au), 0, d(AAu,Au)

}
= d

(
AAu,Au

)
.

(3.10)

which is a contradiction.
Similarly, if u/=Bw, we have a contradiction. Thus Au = w = Su = Tw = Bw = u.
For the uniqueness, let w be another common fixed point of A,B, S, and T . If w/= z,

then from (4)we get

d(z,w) = d(Az, Bw)

< max
{

d(Sz, Tw),
k

2
{
d(Az, Sz) + d(Bw, Tw)

}
,
1
2
{
d(Az, Tw) + d(Bw,Sz)

}
}

= max
{

d(z,w),
k

2
{
d(z, z) + d(w,w)

}
,
1
2
{
d(z,w) + d(w, z)

}
}

= max
{
d(z,w), 0, d(w, z)

}
= d(z,w).

(3.11)

which is a contradiction. Hence w = z.

Example 3.6. Let X = [0, 1] and d(x, y) = (x − y)2. Define self-mappings A,B, S, and T by
Ax = Bx = (1/2)x and Sx = Tx = x for all x ∈ X. Then, we have the following:

(0) (X, d) is a symmetric space satisfying the properties (H.E) and (C.C),

(1) AX ⊂ TX and BX ⊂ SX,

(2) the pair (B, T) satisfies property (E-A) for the sequence xn = 1/n, n = 1, 2, 3, . . . ,

(3) the pairs (A,S) and (B, T) are weakly compatible,

(4) for any x, y ∈ X(x /=y), d(Ax,By) < d(Sx, Ty) ≤ mi(x, y), i = 1, 2,

(5) SX is a d-closed(τ(d)-closed) subset of X,

(6) A0 = B0 = S0 = T0 = 0.
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Remark 3.7. In the case of A = B = g and S = T = f in Theorem 3.4 (resp., Theorem 3.5), we
can show that f and g have a coincidence point (resp., f and g have a unique common fixed
point) without the condition (1), that is, gX ⊂ fX.

The following example shows that the axioms (H.E) and (C.C) cannot be dropped in
Theorem 3.4.

Example 3.8. Let (X, d) be the symmetric space as in Example 2.2. Then, the symmetric d does
not satisfy both (H.E) and (C.C).

Let S = T = f and A = B = g be self-mappings of X defined as follows:

fx = x(x ≥ 0), gx =

⎧
⎪⎪⎨

⎪⎪⎩

1
3
x (x > 0),

1
3

(x = 0).
(3.12)

Then, the condition (3) (resp., (4)) of Theorem 3.4 (resp., Theorem 3.5) is satisfied for k = 1.
To show this, let n1(x, y) = max{d(fx, fy), (1/2){d(fx, gx) + d(fy, gy)}, (1/2){d(fy,

gx) + d(fx, gy)}}. We consider two cases.

Case 1. x = 0, y > 0,

n1(x, y) = max
{

d(0, y),
1
2

{

d

(

0,
1
3

)

+ d

(

y,
1
3
y

)}

,
1
2

{

d

(

0,
1
3
y

)

+ d

(

y,
1
3

)}}

= max
{
1
y
,
1
2

{

3 +
2
3
y

}

,
1
2

{
3
y
+
∣
∣
∣
∣y − 1

3

∣
∣
∣
∣

}}

≥ 1
2

{

3 +
2
3
y

}

=
y

3
+
3
2
>

1
3
|y − 1| = d

(
1
3
,
1
3
y

)

= d(gx, gy).

(3.13)

Case 2. x > 0, y > 0(x /=y),

n1(x, y) ≥ d(fx, fy) = |x − y| > 1
3
|x − y| = d(gx, gy). (3.14)

Thus, the condition (3) (resp., (4)) of Theorem 3.4 (resp., Theorem 3.5) is satisfied.
Note that fX is a d-closed(τ(d)-closed) subset of X. Also, the pair (f, g) satisfies property
(E-A) for xn = n, but the pair (f, g) has no coincidence points, and also the pair (f, g) has no
common fixed points.

Remark 3.9. Example 3.6 satisfies all conditions of [5, Theorems 2.1 and 2.2] and satisfies also
all conditions of [5, Theorem 2.3].

Let φ : R
+ → R

+ be a function such that

(φ1) φ is nondecreasing on R
+,

(φ2) 0 < φ(t) < t for all t ∈ (0,∞).

Note that from (φ1) and (φ2), we have φ(0) = 0.

On the studying of fixed points, various conditions of φ have been studied by many
different authors [3, 5, 6].
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Remark 3.10. The functions mi(x, y) in Theorems 3.4 and 3.5 can be generalized to the
compositions φ(mi(x, y)) for i = 1, 2.

Example 3.11. Let (X, d) be the symmetric space and A,B, S, and T be the functions as in
Example 3.8. Recall that (X, d) satisfies (W3) but does not satisfy both (H.E) and (C.C). Let
φ(t) = (2/3)t, t ∈ R

+ and k = 3/2. Then, for any x, y ∈ X, d(Ax,By) ≤ φ(mi(x, y)) for i = 1, 2.
Note that the pairs (A,S) and (B, T) satisfy property (E-A), andAX ⊂ TX, BX ⊂ SX, and SX
are d-closed(τ(d)-closed).

Therefore, A,B, S, and T satisfy all conditions of [5, Theorem 2.4] and satisfy also all
conditions of [5, Theorem 2.5]. But the pairs (A,S) and (B, T) have no points of coincidence,
and also the pairs (A,S) and (B, T) have no common fixed points.
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