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1. Introduction and preliminaries

Let (M,d) be a metric space and let Aand B be nonempty subsets of M. Let g : A → A
and let F : A � B be a set-valued map. Now, (g(a), F(a)) is called a best proximity pair for
F with respect to g if d(g(a), F(a)) = d(A,B), where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
Best proximity pair theorems establish conditions under which the problem of minimizing
the real-valued function x → d(g(x), F(x)) has a solution. In the setting of normed linear
spaces, the best proximity pair problem has been studied by many authors for g = I, see
[1–5]. Very recently, Al-Thagafi and Shahzad [1] proved some existence theorems for a finite
family of Kakutani set-valued maps in a normed space setting. In the present paper, our aim
is to prove new results in hyperconvexmetric spaces. In the rest of this section, we recall some
definitions and theorems which are used in Section 2.

Let X and Y be topological spaces with A ⊆ X and B ⊆ Y . Let F : X � Y be a set-
valued map with nonempty values. The image of A under F is the set F(A) =

⋃
x∈AF(x) and

the inverse image of B under F is F−(B) = {x ∈ X : F(x) ∩ B /=∅}. Now, F is said to be upper
semicontinuous, if for each closed set B ⊆ Y , F−(B) = {x ∈ X : F(x) ∩ B /=∅} is closed in X.
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A topological space X is said to be contractible if the identity map IX of X is homotopic to a
constant map and acyclic if all of its reduced Čech homology groups over the rationals vanish.
Note that a contractible space is acyclic. For topological spaces X and Y, we define

F ∈ V(X,Y ) ⇐⇒ F : X � Y is an acyclic map; that is,

F is upper semicontinuous with compact acyclic values.
(1.1)

We denote by Vc(X,Y ) the set of all finite composites of maps in V(X,Y ). Let (M,d) be a
metric space and let B(x, r) = {y ∈ M : d(x, y) ≤ r} denote the closed ball with center x and
radius r. Let

co(A) =
⋂

{B ⊆ M : B be a closed ball in M such that A ⊆ B}. (1.2)

If A = co(A), we say that A is admissible subset of M. Note that co(A) is admissible and the
intersection of any family of admissible subsets of M is admissible. The following definition
of a hyperconvex metric space is due to Aronszajn and Pantichpakdi [6].

Definition 1.1. A metric space (M,d) is said to be a hyperconvex metric space if for any
collection of points xα of M and any collection rα of nonnegative real numbers with
d(xα, xβ) ≤ rα + rβ, one has

⋂

α

B(xα, rα)/=∅. (1.3)

The simplest examples of hyperconvex spaces are finite dimensional real Banach
spaces endowed with the maximum norm. For other examples of hyperconvex metric spaces
which are not linear spaces, see [7]. Note that an admissible subset of a hyperconvex metric
space is hyperconvex and contractible [8]. Let A be a subset of M. The r-parallel of A is
defined as

A + r =
⋃

a∈A
B(a, r). (1.4)

The following result is due to Sine [9].

Lemma 1.2. The r-parallel sets of an admissible subset of a hyperconvex metric space are also
admissible sets.

For A ⊆ M, the set PA(x) = {a ∈ A : d(a, x) = d(x,A)} is called the set of best
approximations in A to x ∈ M. The map PA : M � A is called the metric projection on A.
The following lemma is well known. We give its proof for completeness.

Lemma 1.3. Let A be a nonempty, admissible, and compact subset of a hyperconvex metric space
(M,d). Then PA ∈ V(M,A).



A. Amini-Harandi et al. 3

Proof. Since A is compact, then PA is nonempty. We now show that PA is contractible and so
is acyclic. To see this, notice that

PA(x) = A ∩ {a ∈ M : d(a, x) ≤ d(x,A)} = A ∩ B(x, d(x,A)). (1.5)

Then PA(x) is admissible (note that A is admissible) and therefore is contractible. Now, we
show that PA is upper semicontinuous. LetC be a closed subset ofA, xn ∈ {x : PA(x)∩C/=∅},
and xn → x0. Then there exists a sequence an ∈ PA(xn) ∩ C such that d(an, xn) = d(xn,A).
SinceA is compact and an ∈ A, without loss of generality, wemay assume that an → a. Thus,

d(a, x0) = lim
n→∞

d(an, xn) = lim
n→∞

d(xn,A) = d(x0, A). (1.6)

Therefore, x0 ∈ {x : PA(x) ∩ C/=∅} and the set {x : PA(x) ∩ C/=∅} is closed.

To prove our main result, we need the following fixed point theorem, which is
particular form of Theorem 4 in [10].

Theorem 1.4. Let X be a nonempty compact admissible subset of a hyperconvex metric space (M,d)
and F ∈ Vc(X,X). Then F has a fixed point.

Corollary 1.5. LetX be a nonempty compact admissible subset of a hyperconvex metric space (M,d),
g : X → X a homeomorphism, and F ∈ Vc(X,X). Then there exists an x0 ∈ X such that g(x0) ∈
F(x0).

Proof. Since g is a homeomorphism, then g−1 ◦ F ∈ Vc(X,X). Hence, by Theorem 1.4, g−1 ◦ F
has a fixed point, say x0. Therefore, g(x0) ∈ F(x0).

2. Best proximity theorems

Let A and B be nonempty subsets of M. Define

A0 := {a ∈ A : d(a, b) = d(A,B) for some b ∈ B},
B0 := {b ∈ B : d(a, b) = d(A,B) for some a ∈ A}.

(2.1)

Notice that A0 is nonempty if and only if B0 is nonempty.

Theorem 2.1. Let A and B be nonempty subsets ofM. Then the following statement holds.

(i) If A0 and B are admissible, then B0 is admissible.

(ii) If A0 and B are compact, then B0 is compact.
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Proof. To prove (a), notice that

B0 := {b ∈ B : d(a, b) = d(A,B) for some a ∈ A}

= {b ∈ B : d(a, b) = d(A,B) for some a ∈ A0}

= B ∩ {b ∈ M : d(a, b) ≤ d(A,B) for some a ∈ A0}

= B ∩
(

⋃

a∈A0

B(a, d(A,B))

)

= B ∩ (A0 + d(A,B)).

(2.2)

Since A0 is admissible, then by Lemma 1.2, A0 + d(A,B) is also admissible. Thus, B0 is
admissible (note, that B is admissible).

(b) Let {bn} be a sequence in B0 such that bn → b ∈ B. Then there exists sequence {an}
in A such that d(an, bn) = d(A,B). Since A0 is compact, we may assume that an → a ∈ A0.
Then

d(a, b) = lim
n→∞

d(an, bn) = d(A,B). (2.3)

Thus, b ∈ B0. Therefore, B0 is closed and so compact.

Theorem 2.2. Let (M,d) be a hyperconvex metric space, A ⊆ M and B ⊆ M are admissible. Let
g : A0 → A0 be a homeomorphism, and let F : A � B be an upper semicontinuous set-valued map
with admissible values. Assume that A0 is compact and admissible and F(x) ∩ B0 is nonempty, for
each x ∈ A0. Then there exists a ∈ A0 such that d(g(a), F(a)) = d(A,B).

Proof. We use some ideas from [1, Theorem 3.2]. From [11, Proposition 2.8], A0 is nonempty.
Since A0 and B are admissible, it follows from Theorem 2.1(a) that B0 is admissible. From
Lemma 1.3, PA0 ∈ V(B0, A0) (note, that A0 is nonempty, admissible, and compact and B0 is
hyperconvex since B0 is an admissible subset ofM). DefineG : A0 � B0 byG(x) = F(x)∩B0.
Since F is upper semicontinuous with nonempty admissible values and B0 is admissible, then
G is upper semicontinuous with admissible (in particular acyclic) values. From Lemma 1.3
(see proof), PA0 : B0 � A0 is upper semicontinuous with admissible (in particular acyclic)
values. Since PA0 ◦ G ∈ Vc(A0, A0), it follows from Corollary 1.5 that there exists a ∈ A0

such that g(a) ∈ PA0 ◦ G(a). Thus, there exists b ∈ G(a) such that g(a) ∈ PA0(b). Hence,
g(a) ∈ PA0(b) ⊆ A0 and b ∈ G(a) = F(a) ∩ B0. Since b ∈ B0, there exists a0 ∈ A0 such that
d(a0, b) = d(A,B) and hence

d(A,B) ≤ d(g(a), F(a)) ≤ d(g(a), b) = d(b,A0) ≤ d(a0, b) = d(A,B). (2.4)

Then

d(g(a), F(a)) = d(A,B). (2.5)
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If we take g = IA0 , we get the following corollary.

Corollary 2.3. Let (M,d) be a hyperconvex metric space, A ⊆ M and B ⊆ M are admissible. Let
F : A � B be an upper semicontinuous set-valued map with admissible values. Assume that F(x)∩B0

is nonempty, for each x ∈ A0 and A0 is compact and admissible. Then there exists a ∈ A0 such that
d(a, F(a)) = d(A,B).

Corollary 2.4 (see [8, Corollary 5.6]). Let (M,d) be a hyperconvex metric space and A ⊆ M
nonempty, compact, and admissible. Let F : A � M be an upper semicontinuous set-valued map
with admissible values. Assume that F(x) ∩A is nonempty, for each x ∈ A. Then F has a fixed point.
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