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Let E be a real q-uniformly smooth Banach space which is also uniformly convex (e.g., Lp or lp
spaces (1 < p < ∞)), and K a nonempty closed convex subset of E. By constructing nonexpansive
mappings, we elicit the weak convergence of Mann’s algorithm for a κ-strictly pseudocontractive
mapping of Browder-Petryshyn type on K in condition thet the control sequence {αn} is chosen
so that (i) μ ≤ αn < 1, n ≥ 0; (ii)

∑∞
n=0(1 − αn)[qκ − Cq(1 − αn)

q−1] = ∞, where μ ∈ [max {0, 1 −
(qκ/Cq)

1/(q−1)}, 1). Moreover, we consider to find a common fixed point of a finite family of
strictly pseudocontractive mappings and consider the parallel and cyclic algorithms for solving
this problem. We will prove the weak convergence of these algorithms.
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any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space and let Jq (q > 1) denote the generalized duality mapping from
E into 2E

∗
given by Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q and ‖f‖ = ‖x‖q−1}, where E∗ denotes the

dual space of E and 〈·, ·〉 denotes the generalized duality pairing. In particular, J2 is called the
normalized duality mapping and it is usually denoted by J. If E∗ is strictly convex then Jq is
single-valued. In the sequel, we will denote the single-valued generalized duality mapping by
jq and F(T) = {x ∈ E : Tx = x}.

Definition 1.1. A mapping T with domain D(T) and range R(T) in E is called strictly pseudo-
contractive of Browder-Petryshyn type [1], if for all x, y ∈ D(T), there exists κ ∈ [0, 1) and
jq(x − y) ∈ Jq(x − y) such that

〈
Tx − Ty, jq(x − y)

〉 ≤ ‖x − y‖q − κ
∥
∥x − y − (Tx − Ty

)∥
∥q. (1.1)

(If (1.1) holds, we also say that T is κ-strictly pseudocontractive.)
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Remark 1.2. If I denotes the identity operator, then (1.1) can be written in the form

〈
(I − T)x − (I − T)y, jq(x − y)

〉 ≥ κ
∥
∥(I − T)x − (I − T)y

∥
∥q. (1.2)

In Hilbert spaces, (1.1) (and hence (1.2)) is equivalent to the inequality

∥
∥Tx − Ty

∥
∥2 ≤ ‖x − y‖2 + k

∥
∥x − y − (Tx − Ty

)∥
∥2, k = (1 − 2κ) < 1, (1.3)

and we can assume also that k ≥ 0, so that k ∈ [0, 1). Note that the class of strictly
pseudocontractive mappings strictly includes the class of nonexpansive mappings which are
mappings T onD(T) such that ‖Tx−Ty‖ ≤ ‖x−y‖ for all x, y ∈ D(T). That is, T is nonexpansive
if and only if T is 0-strictly pseudocontractive.

The class of strictly pseudocontractive mappings has been studied by several authors
(see, e.g., [1–7]). However their iterative methods are far less developed though Browder
and Petryshyn [1] initiated their work in 1967. As a matter of fact, strictly pseudocontractive
mappings have more powerful applications in solving inverse problems (see Scherzer
[8]). Therefore it is interesting to develop the theory of iterative methods for strictly
pseudocontractive mappings.

Browder and Petryshyn proved the following theorem.

Theorem BP (see [1]). Let H be a real Hilbert space and K a nonempty closed convex and bounded
subset of H. Let T : K → K be a κ-strictly pseudocontractive map. Then for any fixed γ ∈ (1 − κ, 1),
the sequence {xn} generated from an arbitrary x1 ∈ K by

xn+1 = γxn + (1 − γ)Txn, n ≥ 1 (1.4)

converges weakly to a fixed point of T.

Recently Marino and Xu [9] have extended Browder and Petryshyn’s above-mentioned
result by proving that the sequence {xn} generated by the following Mann’s algorithm [10]:

xn+1 = αnxn +
(
1 − αn

)
Txn, n ≥ 0. (1.5)

Theorem MX (see [9]). Let K be a closed convex subset of a Hilbert space H. Let T : K → K be a
κ-strictly pseudocontractive mapping for some 0 ≤ κ < 1 and F(T)/=∅. Let {xn}∞n=0 be the sequence
generated by Mann’s algorithm (1.5). Assume that the control sequence {αn}∞n=0 is chosen so that κ <
αn < 1 for all n and

∞∑

n=0

(
αn − κ

)(
1 − αn

)
= ∞. (1.6)

Then {xn} converges weakly to a fixed point of T.

Meanwhile, Marino and Xu raised the open question: whether Theorem MX can be
extended to Banach spaces which are uniformly convex and have a Frechet differentiable norm.
As a partial affirmative answer, Osilike and Udomene [2] proved the following theorem.
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TheoremOU. Let E be a real q-uniformly smooth Banach space which is also uniformly convex. LetK
be a nonempty closed convex subset of E and let T : K → K be a κ-strictly pseudocontractive mapping
with F(T)/=∅. Let {αn} be a real sequence satisfying the conditions:

(i∗) 0 ≤ αn ≤ 1, n ≥ 0;

(ii∗) 0 < a ≤ αn ≤ b < (qκ/Cq)
1/(q−1), n ≥ 0 and for some constants a, b ∈ (0, 1).

Then, the sequence {xn} is generated by the Mann’s algorithm:

xn+1 =
(
1 − αn

)
xn + αnTxn, (1.7)

converges weakly to a fixed point of T.

We would like to point out that Osilike’s and Udomene’s condition (ii∗) excludes the
natural choice 1 − 1/n for αn. This is overcome by our paper. We prove that if αn satisfies the
conditions

μ ≤ αn < 1;
∞∑

n=0

(
1 − αn

)[
qκ − Cq

(
1 − αn

)q−1] = ∞;
(1.8)

where μ ∈ [max{0, 1 − (qκ/Cq)
1/(q−1)}, 1), then the iterative sequence (1.5) converges weakly

to a fixed point of T.
Moreover, we are concerned with the problem of finding a point x such that

x ∈
N⋂

i=1

F
(
Ti
)
, (1.9)

where N ≥ 1 is a positive integer and {Ti}Ni=1 are N strictly pseudocontractive mappings
defined on a closed convex subset K of a real Banach space E which is q-uniformly smooth
and uniformly convex. Assume that {λi}Ni=1 is a finite sequence of positive numbers such that
∑N

i=1λi = 1.Wewill show that the sequence {xn} generated by the following parallel algorithm:

xn+1 = αnxn +
(
1 − αn

) N∑

i=1

λiTixn, n ≥ 0 (1.10)

will converge weakly to a solution to the problem (1.9).
We will consider a more general situation by allowing the weights {λi}Ni=1 in (1.10) to

depend on n, the number of steps of the iteration. That is we consider the algorithm which
generates a sequence {xn} in the following way:

xn+1 = αnxn +
(
1 − αn

) N∑

i=1

λ
(n)
i Tixn, n ≥ 0. (1.11)

Under appropriate assumptions on the sequences of the weights {λ(n)i }Ni=1 we will also prove
the weak convergence, to a solution of the problem (1.9), of the algorithm (1.11).

Another approach to the problem (1.9) is the cyclic algorithm [11]. (For convenience, we
relabel the mappings {Ti}Ni=1 as {Ti}N−1

i=0 .) This means that beginning with an x0 ∈ K, we define
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the sequence {xn} cyclically by

xn+1 = αnxn +
(
1 − αn

)
T[n]xn, n ≥ 0, (1.12)

where T[n] = Ti,with i = n(modN), 0 ≤ i ≤ N−1.Wewill show that this cyclic algorithm (1.12)
is also weakly convergent if the sequence {αn} of parameters is appropriately chosen.

We will use the notations:

(1) ⇀ for weak convergence;

(2) ωW(xn) = {x : ∃xnj
⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

Let E be a real Banach space. The modulus of smoothness of E is the function ρE : [0,∞) →
[0,∞) defined by

ρE(τ) = sup
{
1
2
(‖x + y‖ + ‖x − y‖) − 1 : ‖x‖ ≤ 1, ‖y‖ ≤ τ

}

. (2.1)

E is uniformly smooth if and only if limτ→0(ρE(τ)/τ) = 0.
Let q > 1. E is said to be q-uniformly smooth (or to have a modulus of smoothness of

power type q > 1) if there exists a constant c > 0 such that ρE(τ) ≤ cτq. Hilbert spaces, Lp

(or lp) spaces (1 < p < ∞), and the Sobolev spaces, Wp
m (1 < p < ∞) are q-uniformly smooth.

Hilbert spaces are 2 uniformly smooth, while

Lp

(
or lp

)
or Wp

m is

⎧
⎨

⎩

p-uniformly smooth if 1 < p ≤ 2,

2-uniformly smooth if p ≥ 2.
(2.2)

TheoremHKX (see [12, page 1130]). Let q > 1 and let E be a real q-uniformly smooth Banach space.
Then there exists a constant Cq > 0 such that for all x, y ∈ E,

‖x + y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+ Cq‖y‖q . (2.3)

E is said to have a Frechet differentiable norm if for all x ∈ U = {x ∈ E : ‖x‖ = 1}

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.4)

exists and is attained uniformly in y ∈ U. In this case there exists an increasing function b : [0,∞) →
[0,∞) with limt→0b(t) = 0 such that for all x, h ∈ E,

1
2
‖x‖2 + 〈h, j(x)〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, j(x)〉 + b

(‖h‖). (2.5)

It is well known (see, e.g., [13, page 107]) that q-uniformly smooth Banach space has a Frechet dif-
ferentiable norm.
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Lemma 2.1 (see [2]). Let E be a real q-uniformly smooth Banach space which is also uniformly convex.
Let K be a nonempty closed convex subset of E and T : K → K a strictly pseudocontractive mapping
of Browder-Petryshyn type. Then (I − T) is demiclosed at zero, that is, {xn} ⊂ D(T) such that {xn}
converges weakly to x ∈ D(T) and {(I − T)xn} converges strongly to 0, then Tx = x.

Lemma 2.2 (see [14, 15]). Let {an}∞n=1, {bn}∞n=1, {δn}∞n=1 be nonnegative sequences satisfying the
following inequality

an+1 ≤
(
1 + δn

)
an + bn, ∀n ≥ 1. (2.6)

If
∑∞

n=1δn < ∞ and
∑∞

n=1bn < ∞, then limn→∞an exists.

Lemma 2.3. Let E be a real q-uniformly smooth Banach space which is also uniformly convex and let
K be a nonempty closed convex subset of E. Let T be a self-mapping on K with F(T)/=∅. Let {xn}∞n=0
be the sequence satisfying the following conditions:

(a) limn→∞‖xn − p‖ exists for every p ∈ F(T);

(b) limn→∞‖xn − Txn‖ = 0;

(c) limn→∞‖txn + (1 − t)p1 − p2‖ exists for all t ∈ [0, 1] and for all p1, p2 ∈ F(T).

Then, the sequence {xn} converges weakly to a fixed point of T.

Proof. Since limn→∞‖xn − p‖ exists, then {xn} is bounded. By (b) and Lemma 2.1, we have
ωW(xn) ⊂ F(T). Assume that p1, p2 ∈ ωW(xn) and that {xni

} and {xmj
} be subsequences of

{xn} such that xni
⇀ p1 and xmj

⇀ p2, respectively. Since E is a real q-uniformly smooth
Banach space which is also uniformly convex, then E has a Frechet differentiable norm. Set
x = p1 − p2, h = t(xn − p1) in (2.5), we obtain

1
2
∥
∥p1 − p2

∥
∥2 + t

〈
xn − p1, j

(
p1 − p2

)〉

≤ 1
2
∥
∥txn + (1 − t)p1 − p2

∥
∥2 ≤ 1

2
∥
∥p1 − p2

∥
∥2 + t

〈
xn − p1, j

(
p1 − p2

)〉
+ b
(
t
∥
∥xn − p1

∥
∥
)
,

(2.7)

where b is increasing. Since ‖xn − p1‖ ≤ M, for all n ≥ 0, for some M > 0, then

1
2
∥
∥p1 − p2

∥
∥2 + t

〈
xn − p1, j

(
p1 − p2

)〉

≤ 1
2
∥
∥txn + (1 − t)p1 − p2

∥
∥2 ≤ 1

2
∥
∥p1 − p2

∥
∥2 + t

〈
xn − p1, j

(
p1 − p2

)〉
+ b(tM).

(2.8)

Therefore,
1
2
∥
∥p1 − p2

∥
∥2 + t lim sup

n→∞

〈
xn − p1, j

(
p1 − p2

)〉

≤ 1
2
lim
n→∞
∥
∥txn + (1 − t)p1 − p2

∥
∥2 ≤ 1

2
∥
∥p1 − p2

∥
∥2+t lim inf

n→∞
〈
xn − p1, j

(
p1 − p2

)〉
+b(tM).

(2.9)

Hence lim supn→∞〈xn − p1, j(p1 − p2)〉 ≤ lim infn→∞〈xn − p1, j(p1 − p2)〉 + b(tM)/t. Since
limt→0+b(tM)/t = 0, then limn→∞〈xn − p1, j(p1 − p2)〉 exists. Since limn→∞〈xn − p1, j(p1 − p2)〉 =
〈p − p1, j(p1 − p2)〉, for all p ∈ ωW(xn). Set p = p2.We have 〈p2 − p1, j(p1 − p2)〉 = ‖p2 − p1‖2 = 0,
that is, p2 = p1. Hence ωW(xn) is singleton, so that {xn} converges weakly to a fixed point
of T.
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3. Mann’s algorithm

Theorem 3.1. Let E be a real q-uniformly smooth Banach space which is also uniformly convex and let
K be a nonempty closed convex subset of E. Let T : K → K be a κ-strictly pseudocontractive mapping
with F(T)/=∅. Let {αn} be a real sequence satisfying the condition (1.8). Given x0 ∈ K, let {xn}∞n=0 be
the sequence generated by Mann’s algorithm (1.5). Then the sequence {xn} converges weakly to a fixed
point of T.

Proof. Let βn = (αn − μ)/(1 − μ). Since αn ∈ (μ, 1), then βn ∈ (0, 1). We compute

xn+1 = αnxn +
(
1 − αn

)
Txn =

[
μ + (1 − μ)βn

]
xn + (1 − μ)

(
1 − βn

)
Txn

= βnxn +
(
1 − βn

)[
μxn + (1 − μ)Txn

]
= βnxn +

(
1 − βn

)
Sμxn,

(3.1)

where Sμ = μI + (1 − μ)T. We will show that Sμ is a nonexpansive mapping and that F(Sμ) =
F(T). Indeed, it follows from (1.2) and (2.3) that
∥
∥Sμx − Sμy

∥
∥q =

∥
∥μx + (1 − μ)Tx − [μy + (1 − μ)Ty

]∥
∥q =

∥
∥x − y − (1 − μ)

[
x − y − (Tx − Ty)

]∥
∥q

≤‖x−y‖q−q(1−μ)〈(I−T)x−(I − T)y, jq(x−y)
〉
+Cq(1−μ)q

∥
∥x−y−(Tx − Ty)

∥
∥q

≤ ‖x − y‖q − qκ(1 − μ)
∥
∥x − y − (Tx − Ty)

∥
∥q + Cq(1 − μ)q

∥
∥x − y − (Tx − Ty)

∥
∥q

= ‖x − y‖q − (1 − μ)
[
qκ − Cq(1 − μ)q−1

]∥
∥x − y − (Tx − Ty)

∥
∥q.

(3.2)

When 1 − (qκ/Cq)
1/(q−1) ≤ μ < 1,we have ‖Sμx − Sμy‖q ≤ ‖x − y‖q, that is, Sμ is nonexpansive.

On the other hand, for all x ∈ F(Sμ), x = Sμx = μx + (1 − μ)Tx. Then x = Tx, that is, x ∈ F(T).
Now we show that ‖xn − Sμxn‖ is decreasing. By (3.1), we have

∥
∥xn+1 − Sμxn+1

∥
∥ =
∥
∥βnxn +

(
1 − βn

)
Sμxn − Sμxn+1

∥
∥

=
∥
∥βn
(
xn − Sμxn

)
+ βn

(
Sμxn − Sμxn+1

)
+
(
1 − βn

)(
Sμxn − Sμxn+1

)∥
∥

≤ βn
∥
∥xn − Sμxn

∥
∥ +
∥
∥Sμxn − Sμxn+1

∥
∥ ≤ βn

∥
∥xn − Sμxn

∥
∥ +
∥
∥xn − xn+1

∥
∥

= βn
∥
∥xn − Sμxn

∥
∥ +
(
1 − βn

)∥
∥xn − Sμxn

∥
∥ =
∥
∥xn − Sμxn

∥
∥,

∥
∥xn − Txn

∥
∥ =

1
1 − αn

∥
∥xn+1 − xn

∥
∥ =

1 − βn
1 − αn

∥
∥xn − Sμxn

∥
∥ =

1
1 − μ

∥
∥xn − Sμxn

∥
∥.

(3.3)

It follows from (3.3) that
∥
∥xn − Txn

∥
∥ =

1
1 − μ

∥
∥xn − Sμxn

∥
∥ ≤ 1

1 − μ

∥
∥xn−1 − Sμxn−1

∥
∥ =
∥
∥xn−1 − Txn−1

∥
∥. (3.4)

Hence limn→∞‖xn − Txn‖ exists.
Pick a p ∈ F(T). We then show that the real sequence {‖xn − p‖}∞n=0 is decreasing, hence

limn→∞‖xn − p‖ exists. To see this, using (1.2) and (2.3), we obtain
∥
∥xn+1 − p

∥
∥q =

∥
∥xn − p − (1 − αn

)[
xn − p − (Txn − p

)]∥
∥q

≤ ∥∥xn−p
∥
∥q−q(1−αn

)〈
xn−p−

(
Txn−p

)
, jq
(
xn−p

)〉
+Cq

(
1−αn

)q∥∥xn−p−
(
Txn−p

)∥
∥q

≤ ∥∥xn − p
∥
∥q − qκ

(
1 − αn

)∥
∥xn − p − (Txn − p

)∥
∥q + Cq

(
1 − αn

)q∥∥xn − p − (Txn − p
)∥
∥q

=
∥
∥xn − p

∥
∥q − (1 − αn

)[
qκ − Cq

(
1 − αn

)q−1]∥∥xn − p − (Txn − p
)∥
∥q.

(3.5)
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Then

(
1 − αn

)[
qκ − Cq

(
1 − αn

)q−1]∥∥xn − p − (Txn − p
)∥
∥q ≤ ∥∥xn − p

∥
∥q − ∥∥xn+1 − p

∥
∥q. (3.6)

Since μ ≤ αn < 1 for all n, where μ ∈ [max{0, 1 − (qκ/Cq)
1/(q−1)}, 1), we get (1 − αn)[qκ −

Cq(1 − αn)
q−1] ≥ 0. Therefore, (3.6) implies the sequence {‖xn − p‖} is decreasing (and hence

limn→∞‖xn − p‖ exists). It follows from (3.6) that

∞∑

n=0

(
1 − αn

)[
qκ − Cq

(
1 − αn

)q−1]∥∥xn − p − (Txn − p
)∥
∥q <

∥
∥x0 − p

∥
∥q < ∞. (3.7)

Since
∑∞

n=0(1 − αn)[qκ − Cq(1 − αn)
q−1] = ∞, then (3.7) implies that

lim inf
n→∞

∥
∥xn − Txn

∥
∥ = 0. (3.8)

Thus

lim
n→∞
∥
∥xn − Txn

∥
∥ = 0. (3.9)

Then we prove that for all p1, p2 ∈ F(T), limn→∞‖txn+(1− t)p1−p2‖ exists for all t ∈ [0, 1].
Let an(t) = ‖txn + (1 − t)p1 − p2‖. It is obvious that limn→∞an(0) = ‖p1 − p2‖ and limn→∞an(1) =
limn→∞‖xn − p2‖ exist. So we only need to consider the case of t ∈ (0, 1). Define Tn : K → K by

Tnx = αnx +
(
1 − αn

)
Tx, x ∈ K. (3.10)

Then for all x, y ∈ K,

∥
∥Tnx−Tny

∥
∥q ≤ ‖x−y‖q−q(1−αn

)〈
(I−T)x−(I−T)y, jq(x−y)

〉
+Cq

(
1−αn

)q∥∥x−y−(Tx−Ty)∥∥q

≤ ‖x − y‖q − (1 − αn

)[
qκ − Cq

(
1 − αn

)q−1]∥∥x − y − (Tx − Ty
)∥
∥q.

(3.11)

By the choice of αn, we have (1 − αn)[qκ − Cq(1 − αn)
q−1] ≥ 0, so it follows that ‖Tnx − Tny‖ ≤

‖x − y‖. Set Sn,m = Tn+m−1Tn+m−2 · · · Tn, m ≥ 1. We have

∥
∥Sn,mx − Sn,my

∥
∥ ≤ ‖x − y‖ ∀x, y ∈ K,

Sn,mxn = xn+m, Sn,mp = p ∀p ∈ F(T).
(3.12)

Set bn,m = ‖Sn,m(txn + (1 − t)p1) − tSn,mxn − (1 − t)Sn,mp1‖. Let δ denote the modulus of convexity
of E. If ‖xn − p1‖ = 0 for some n0, then xn = p1 for any n ≥ n0 so that limn→∞‖xn − p1‖ = 0, in
fact {xn} converges strongly to p1 ∈ F(T). Thus we may assume ‖xn − p1‖ > 0 for any n ≥ 0. It
is well known (see, e.g., [16, page 108]) that

∥
∥tx + (1 − t)y

∥
∥ ≤ 1 − 2min

{
t, (1 − t)

}
δ
(‖x − y‖) ≤ 1 − 2t(1 − t)δ

(‖x − y‖) (3.13)
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for all t ∈ [0, 1] and for all x, y ∈ E such that ‖x‖ ≤ 1, ‖y‖ ≤ 1. Set

wn,m =
Sn,mp1 − Sn,m

(
txn + (1 − t)p1

)

t
∥
∥xn − p1

∥
∥

,

zn,m =
Sn,m

(
txn + (1 − t)p1

) − Sn,mxn

(1 − t)
∥
∥xn − p1

∥
∥

.

(3.14)

Then ‖wn,m‖ ≤ 1 and ‖zn,m‖ ≤ 1 so that it follows from (3.13) that

2t(1 − t)δ
(∥
∥wn,m − zn,m

∥
∥
) ≤ 1 − ∥∥twn,m + (1 − t)zn,m

∥
∥. (3.15)

Observe that

∥
∥wn,m − zn,m

∥
∥ =

bn,m

t(1 − t)
∥
∥xn − p1

∥
∥
,

∥
∥twn,m + (1 − t)zn,m

∥
∥ =

∥
∥Sn,mxn − Sn,mp1

∥
∥

∥
∥xn − p1

∥
∥

,

(3.16)

it follows from (3.15) that

2t(1−t)∥∥xn−p1
∥
∥δ

(
bn,m

t(1−t)∥∥xn−p1
∥
∥

)

≤∥∥xn−p1
∥
∥−∥∥Sn,mxn−Sn,mp1

∥
∥ =
∥
∥xn−p1

∥
∥−∥∥xn+m − p1

∥
∥.

(3.17)
Since E is uniformly convex, then δ(s)/s is nondecreasing, and since ‖xn − p‖ is decreasing,
hence it follows from (3.17) that

∥
∥x0 − p1

∥
∥

2
δ

(
4

∥
∥x0 − p1

∥
∥
bn,m

)

≤ ∥∥xn − p1
∥
∥ − ∥∥xn+m − p1

∥
∥
(

since t(1 − t) ≤ 1
4
∀t ∈ [0, 1]

)

.

(3.18)
Since δ(0) = 0 and limn→∞‖xn−p‖ exists, then the continuity of yields limn→∞bn,m = 0 uniformly
for all m. Observe that

an+m(t) ≤
∥
∥txn+m + (1 − t)p1 − p2 +

(
Sn,m

(
txn + (1 − t)p1

) − tSn,mxn − (1 − t)Sn,mp1
)∥
∥

+
∥
∥Sn,m

(
txn + (1 − t)p1

) − tSn,mxn − (1 − t)Sn,mp1
∥
∥

=
∥
∥Sn,m

(
txn + (1 − t)p1

) − Sn,mp2
∥
∥ + bn,m ≤ ∥∥txn + (1 − t)p1 − p2

∥
∥ + bn,m = an(t) + bn,m.

(3.19)

Hence lim supn→∞an(t) ≤ lim infn→∞an(t), this ensures that limn→∞an(t) exists for all t ∈ (0, 1).
Now apply Lemma 2.3 to conclude that {xn} converges weakly to a fixed point of T.

Remark 3.2. In particular, set q = 2, Cq = 1, our result reduces to TheoremMX. Moreover, if T is
nonexpansive, then κ = 0 and our Theorem 3.1. reduces to Reich’s theorem [17].
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4. Parallel algorithm

The following proposition lists some useful properties for strictly pseudocontractive map-
pings.

Proposition 4.1. LetK be a closed convex subset of a Banach space E.Given an integerN ≥ 1, assume,
for each 1 ≤ i ≤ N, Ti : K → K is a κi-strictly pseudocontractive mapping for some 0 ≤ κi < 1.Assume
{λi}Ni=1 is a positive sequence such that

∑N
i=1λi = 1. Then.

(i)
∑N

i=1λiTi is a κ-strictly pseudocontractive mapping, with κ = min{κi : 1 ≤ i ≤ N}.
(ii) Suppose that {Ti}Ni=1 has a common fixed point. Then

F

(
N∑

i=1

λiTi

)

=
N⋂

i=1

F
(
Ti
)
. (4.1)

Proof. To prove (i), we only need to consider the case ofN = 2 (the general case can be proved
by induction). Set G = (1 − λ)T1 + λT2, where λ ∈ (0, 1) and for i = 1, 2, Ti is a κi-strictly
pseudocontractive mapping. Set κ = min{κ1, κ2};
〈
Gx −Gy, jq(x − y)

〉

≤ (1 − λ)
〈
T1x − T1y, jq(x − y)

〉
+ λ
〈
T2x − T2y, jq(x − y)

〉

≤ (1−λ)[‖x−y‖q − κ1
∥
∥
(
I − T1

)
x−(I−T1

)
y
∥
∥q
]
+λ
[‖x − y‖q − κ2

∥
∥
(
I − T2

)
x − (I − T2

)
y
∥
∥q
]

≤ ‖x − y‖q −κ[(1−λ)∥∥(I−T1
)
x−(I−T1

)
y
∥
∥q+λ

∥
∥
(
I−T2

)
x−(I−T2

)
y
∥
∥q
]

≤ ‖x − y‖q − κ
∥
∥(I −G)x − (I −G)y

∥
∥q.

(4.2)

Hence G is a κ-strictly pseudocontractive mapping.
To prove (ii), again we can assume N = 2. It suffices to prove that F(G) ⊂ F(T1) ∩ F(T2),

where G = (1 − λ)T1 + λT2, with λ ∈ (0, 1). Let x ∈ F(G) and take z ∈ F(T1) ∩ F(T2) to deduce
that

‖x − z‖q = (1 − λ)
〈
T1x − z, jq(x − z)

〉
+ λ
〈
T2x − z, jq(x − z)

〉

≤ (1−λ)[‖x−z‖q−κ∥∥(I−T1
)
x−(I−T1

)
z
∥
∥q
]
+λ
[‖x−z‖q − κ

∥
∥
(
I − T2

)
x − (I − T2

)
z
∥
∥q
]

= ‖x − z‖q − κ
[
(1 − λ)

∥
∥
(
I − T1

)
x
∥
∥q + λ

∥
∥
(
I − T2

)
x
∥
∥q
]
.

(4.3)

Since κ > 0, we get (1 − λ)‖(I − T1)x‖q + λ‖(I − T2)x‖q ≤ 0. This together with 0 < λ < 1 implies
that T1x = x and T2x = x. Thus x ∈ F(T1) ∩ F(T2).

Theorem 4.2. Let E be a real q-uniformly smooth Banach space which is also uniformly convex and
let K be a nonempty closed convex subset of E. Let N ≥ 1 be an integer. Let, for each 1 ≤ i ≤ N, Ti :
K → K be a κi-strictly pseudocontractive mapping for some 0 ≤ κi < 1. Let κ = min{κi : 1 ≤ i ≤ N}.
Assume the common fixed point set

⋂N
i=1F(Ti) is nonempty. Assume also {λi}Ni=1 is a finite sequence of

positive numbers such that
∑N

i=1λi = 1. Given x0 ∈ K, let {xn}∞n=0 be the sequence generated by Mann’s
algorithm (1.10):

xn+1 = αnxn +
(
1 − αn

) N∑

i=1

λiTixn, n ≥ 0. (4.4)
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Let {αn}∞n=0 be a real sequence satisfying the conditions (1.8). Then {xn} converges weakly to a common
fixed point of {Ti}Ni=1.

Proof. Put

A =
N∑

i=1

λiTi. (4.5)

Then by Proposition 4.1, A is a κ-strictly pseudocontractive mapping and F(A) =
⋂N

i=1F(Ti).
We can rewrite the algorithm (1.10) as

xn+1 = αnxn +
(
1 − αn

)
Axn, n ≥ 0. (4.6)

Now apply Theorem 3.1 to conclude that sequence {xn} converges weakly to a fixed
point of A.

Theorem 4.3. Let E be a real q-uniformly smooth Banach space which is also uniformly convex and
let K be a nonempty closed convex subset of E. Let N ≥ 1 be an integer. Let, for each 1 ≤ i ≤ N, Ti :
K → K be a κi-strictly pseudocontractive mapping for some 0 ≤ κi < 1. Let κ = min{κi : 1 ≤ i ≤ N}.
Assume the common fixed point set

⋂N
i=1F(Ti) is nonempty. Assume also for each n, {λ(n)i }Ni=1 is a finite

sequence of positive numbers such that
∑N

i=1λ
(n)
i = 1 for all n and infn≥1λ

(n)
i > 0 for all 1 ≤ i ≤ N.

Given x0 ∈ K, let {xn}∞n=0 be the sequence generated by the algorithm (1.11):

xn+1 = αnxn +
(
1 − αn

) N∑

i=1

λ
(n)
i Tixn, n ≥ 0. (4.7)

Let {αn}∞n=0 be a real sequence satisfying the condition (1.8). Assume also that

∞∑

n=0

(
N∑

i=1

∣
∣λ

(n+1)
i − λ

(n)
i

∣
∣

)

< ∞. (4.8)

Then {xn} converges weakly to a common fixed point of {Ti}Ni=1.

Proof. Write, for each n ≥ 1,

An =
N∑

i=1

λ
(n)
i Ti. (4.9)

By Proposition 4.1, each An is a κ-strictly pseudocontractive mapping with F(An) =
⋂N

i=1F(Ti),
and the algorithm (1.11) can be rewritten as

xn+1 = αnxn +
(
1 − αn

)
Anxn, n ≥ 0. (4.10)

As Theorem 3.1, if set βn = (αn − μ)/(1 − μ), then {xn}∞n=0 can also be generated by the
following algorithm:

xn+1 = βnxn +
(
1 − βn

)
Sμ,nxn, (4.11)

where Sμ,n = μI+(1−μ)An and Sμ,n is a nonexpansivemappingwith F(Sμ,n) = F(An). Similarly,
we can prove that limn→∞‖xn − p‖ exists for every p ∈ ⋂N

i=1F(Ti), and that

lim inf
n→∞

∥
∥xn −Anxn

∥
∥ = 0. (4.12)
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Since we can write An+1xn+1 = Anxn+1 + yn, where yn =
∑N

i=1(λ
(n+1)
i − λ

(n)
i )Tixn+1, then by

(4.11)we obtain
∥
∥xn+1 − Sμ,n+1xn+1

∥
∥ =
∥
∥βnxn +

(
1 − βn

)
Sμ,nxn − Sμ,n+1xn+1

∥
∥

=
∥
∥βn
(
xn−Sμ,nxn

)
+βn
(
Sμ,nxn−Sμ,n+1xn+1

)
+
(
1 − βn

)(
Sμ,nxn−Sμ,n+1xn+1

)∥
∥

≤ βn
∥
∥xn − Sμ,nxn

∥
∥ +
∥
∥Sμ,nxn − Sμ,n+1xn+1

∥
∥

≤ βn
∥
∥xn − Sμ,nxn

∥
∥ +
∥
∥Sμ,nxn − Sμ,nxn+1

∥
∥ +
∥
∥Sμ,nxn+1 − Sμ,n+1xn+1

∥
∥

≤ βn
∥
∥xn − Sμ,nxn

∥
∥ +
∥
∥xn − xn+1

∥
∥ + (1 − μ)

∥
∥Anxn+1 −An+1xn+1

∥
∥

≤ βn
∥
∥xn − Sμ,nxn

∥
∥ +
(
1 − βn

)∥
∥xn − Sμ,nxn

∥
∥ + (1 − μ)

∥
∥yn

∥
∥

=
∥
∥xn − Sμ,nxn

∥
∥ + (1 − μ)

∥
∥yn

∥
∥.

(4.13)

Assumption (4.8) implies that

∞∑

n=0

∥
∥yn

∥
∥ < ∞. (4.14)

Using Lemma 2.2, we conclude that limn→∞‖xn−Sμ,nxn‖ exists. Then limn→∞‖xn−Anxn‖ exists.
Thus, by (4.12) we have limn→∞‖xn −Anxn‖ = 0.

If we define Tn : K → K by

Tnx = αnx +
(
1 − αn

)
Anx, x ∈ K. (4.15)

According to the corresponding deductive process of Theorem 3.1, we can prove that
limn→∞‖txn + (1 − t)p1 − p2‖ exists for all t ∈ [0, 1] and for all p1, p2 ∈ F(An).

Consequently, {xn} converges weakly to a common fixed point of {Ti}Ni=1 by Lemma 2.3.

5. Cyclic algorithm

Theorem 5.1. Let E be a real q-uniformly smooth Banach space which is also uniformly convex and let
K be a nonempty closed convex subset of E. Let N ≥ 1 be an integer. Let, for each 0 ≤ i ≤ N − 1, Ti :
K → K be a κi-strictly pseudocontractive mapping for some 0 ≤ κi < 1. Let κ = min{κi : 0 ≤ i ≤
N − 1}. Assume the common fixed point set

⋂N−1
i=0 F(Ti) is nonempty. Given x0 ∈ K, let {xn}∞n=0 be the

sequence generated by the cyclic algorithm (1.12):

xn+1 = αnxn +
(
1 − αn

)
T[n]xn, n ≥ 0, (5.1)

where T[n] = Ti, with i = n(modN), 0 ≤ i ≤ N − 1. Let {αn}∞n=0 be a real sequence satisfying the
condition

μ ≤ αn < 1 − ε (5.2)

for all n and some ε ∈ (0, 1 − μ), where μ ∈ [max{0, 1 − (qκ/Cq)
1/(q−1)}, 1). Then {xn} converges

weakly to a common fixed point of {Ti}N−1
i=0 .



12 Fixed Point Theory and Applications

Proof. Pick a p ∈ F =
⋂N−1

i=0 F(Ti). We first show that the real sequence {‖xn − p‖}∞n=0 is
decreasing, hence limn→∞‖xn − p‖ exists. To see this, using (1.2) and (2.3), we obtain

∥
∥xn+1 − p

∥
∥q =

∥
∥xn − p − (1 − αn

)[
xn − p − (T[n]xn − p

)]∥
∥q

≤ ∥∥xn−p
∥
∥q−q(1−αn

)〈
xn−p−

(
T [n]xn−p

)
, jq
(
xn−p

)〉
+Cq

(
1−αn

)q∥∥xn−p−
(
T[n]xn−p

)∥
∥q

≤ ∥∥xn−p
∥
∥q−qκ(1−αn

)∥
∥xn−p−

(
T[n]xn−p

)∥
∥qCq

(
1−αn

)q∥∥xn−p−
(
T[n]xn−p

)∥
∥q

=
∥
∥xn − p

∥
∥q − (1 − αn

)[
qκ − Cq

(
1 − αn

)q−1]∥∥xn − p − (T[n]xn − p
)∥
∥q.

(5.3)

Since μ ≤ αn < 1 − ε, we get by (5.3)

ε
[
qκ − Cq(1 − μ)q−1

]∥
∥xn − p − (T[n]xn − p

)∥
∥q ≤ ∥∥xn − p

∥
∥q − ∥∥xn+1 − p

∥
∥q. (5.4)

It follows that the sequence {‖xn−p‖} is decreasing (and hence limn→∞‖xn−p‖ exists) and that
limn→∞‖xn − T[n]xn‖ = 0. This implies that

lim
n→∞
∥
∥xn+1 − xn

∥
∥ = lim

n→∞
(
1 − αn

)∥
∥xn − T[n]xn

∥
∥ = 0. (5.5)

Claim: ωW(xn) ⊂ F.
Indeed, assume x∗ ∈ ωW(xn) and xni

⇀ x∗ for some subsequence {xni
} of {xn}. We may

further assume ni = l(modN) for all i. Since by (5.5), we also have xni+j ⇀ x∗ for all j ≥ 0, we
deduce that

∥
∥xni+j − T[l+j]xni+j

∥
∥ =
∥
∥xni+j − T[ni+j]xni+j

∥
∥ −→ 0. (5.6)

Then Lemma 2.1 implies that x∗ ∈ F(T[l+j]) for all j. This ensures that x∗ ∈ F.
If we define Tn : K → K by

Tnx = αnx +
(
1 − αn

)
T[n]x, x ∈ K. (5.7)

According to the corresponding deductive process of Theorem 3.1, we can prove that
limn→∞‖txn + (1 − t)p1 − p2‖ exists for all t ∈ [0, 1] and for all p1, p2 ∈ F.

Consequently, we conclude that {xn} converges weakly to a common fixed point of
{Ti}N−1

i=0 by using Lemma 2.3. This completes the proof.
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