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The purpose of this paper is to introduce two implicit iteration schemes for approximating fixed
points of nonexpansive mapping T and a finite family of nonexpansive mappings {Ti}Ni=1, respec-
tively, in Banach spaces and to prove weak and strong convergence theorems. The results presented
in this paper improve and extend the corresponding ones of H.-K. Xu and R. Ori, 2001, Z. Opial,
1967, and others.
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1. Introduction and preliminaries

Let E be a real Banach space, K a nonempty closed convex subset of E, and T : K → K a
mapping. We use F(T) to denote the set of fixed points of T , that is, F(T) = {x ∈ K : Tx = x}.
T is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. In this paper,⇀ and→ denote
weak and strong convergence, respectively. co(A) denotes the closed convex hull of A, where
A is a subset of E.

In 2001, Xu and Ori [1] introduced the following implicit iteration scheme for common
fixed points of a finite family of nonexpansive mappings {Ti}Ni=1 in Hilbert spaces:

xn = αnxn−1 +
(
1 − αn

)
Tnxn, n ≥ 1, (1.1)

where Tn = Tn mod N , and they proved weak convergence theorem.
In this paper, we introduce a new implicit iteration scheme:

xn = αnxn−1 + βnTxn−1 + γnTxn, n ≥ 1, (1.2)
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for fixed points of nonexpansive mapping T in Banach space and also prove weak and strong
convergence theorems. Moreover, we introduce an implicit iteration scheme:

xn = αnxn−1 + βnTnxn−1 + γnTnxn, n ≥ 1, (1.3)

where Tn = Tn mod N , for common fixed points of a finite family of nonexpansive mappings
{Ti}Ni=1 in Banach spaces and also prove weak and strong convergence theorems.

Observe that if K is a nonempty closed convex subset of a real Banach space E and
T : K → K is a nonexpansive mapping, then for every u ∈ K, α, β, γ ∈ [0, 1], and positive
integer n, the operator S = S(α,β,γ,n) : K → K defined by

Sx = αu + βTu + γTx (1.4)

satisfies

‖Sx − Sy‖ = ‖γTx − γTy‖ ≤ γ‖x − y‖ (1.5)

for all x, y ∈ K. Thus, if γ < 1 then S is a contractive mapping. Then S has a unique fixed
point x∗ ∈ K. This implies that, if γn < 1, the implicit iteration scheme (1.2) and (1.3) can be
employed for the approximation of fixed points of nonexpansive mapping and common fixed
points of a finite family of nonexpansive mappings, respectively.

Now, we give some definitions and lemmas for our main results.
A Banach space E is said to satisfy Opial’s condition if, for any {xn} ⊂ E with xn ⇀ x ∈ E,

the following inequality holds:

lim sup
n→∞

∥∥xn − x
∥∥ < lim sup

n→∞

∥∥xn − y
∥∥, ∀y ∈ E, x /=y. (1.6)

Let D be a closed subset of a real Banach space E and let T : D → D be a mapping.
T is said to be demiclosed at zero if Tx0 = 0 whenever {xn} ⊂ D, xn ⇀ x0 and Txn → 0.
T is said to be semicompact if, for any bounded sequence {xn} ⊂ D with limn→∞‖xn −

Txn‖ = 0, there exists a subsequence {xnk
} ⊂ {xn} such that {xnk

} converges strongly to x∗ ∈ D.

Lemma 1.1 (see [2, 3]). Let E be a uniformly convex Banach space, letK be a nonempty closed convex
subset of E, and let T : K → K be a nonexpansive mapping. Then I − T is demiclosed at zero.

Lemma 1.2 (see [4]). Let E be a uniformly convex Banach space and let a, b be two constants with
0 < a < b < 1. Suppose that {tn} ⊂ [a, b] is a real sequence and {xn}, {yn} are two sequences in E.
Then the conditions

lim
n→∞

∥∥tnxn + (1 − tn)yn

∥∥ = d, lim sup
n→∞

∥∥xn

∥∥ ≤ d, lim sup
n→∞

∥∥yn

∥∥ ≤ d (1.7)

imply that limn→∞‖xn − yn‖ = 0, where d ≥ 0 is a constant.

2. Main results

Theorem 2.1. Let E be a real uniformly convex Banach space which satisfies Opial’s condition, letK be
a nonempty closed convex subset of E, and let T : K → K be a nonexpansive mapping with nonempty
fixed points set F. Let {αn}, {βn}, {γn} be three real sequences in [0, 1] satisfying αn + βn + γn = 1 and
0 < a ≤ γn ≤ b < 1, where a, b are some constants. Then implicit iteration process {xn} defined by (1.2)
converges weakly to a fixed point of T .
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Proof. Firstly, the condition of Theorem 2.1 implies γn < 1, so that (1.2) can be employed for the
approximation of fixed point of nonexpansive mapping.

For any given p ∈ F, we have

∥
∥xn − p

∥
∥ =

∥
∥αnxn−1 + βnTxn−1 + γnTxn − p

∥
∥

=
∥
∥αn

(
xn−1 − p

)
+ βn

(
Txn−1 − p

)
+ γn

(
Txn − p

)∥∥

≤ αn

∥
∥xn−1 − p

∥∥ + βn
∥
∥Txn−1 − p

∥∥ + γn
∥
∥Txn − p

∥∥

≤ (
αn + βn

)∥∥xn−1 − p
∥∥ + γn

∥∥xn − p
∥∥

(2.1)

which leads to

(
1 − γn

)∥∥xn − p
∥∥ ≤ (

αn + βn
)∥∥xn−1 − p

∥∥ =
(
1 − γn

)∥∥xn−1 − p
∥∥. (2.2)

It follows from the condition γn ≤ b < 1 that

∥∥xn − p
∥∥ ≤ ∥∥xn−1 − p

∥∥. (2.3)

Thus limn→∞‖xn − p‖ exists, and so let

lim
n→∞

∥∥xn − p
∥∥ = d. (2.4)

Hence {xn} is a bounded sequence. Moreover, co({xn}) is a bounded closed convex subset of
K. We have

lim
n→∞

∥∥xn − p
∥∥ = lim

n→∞
∥∥αn

(
xn−1 − p

)
+ βn

(
Txn−1 − p

)
+ γn

(
Txn − p

)∥∥

= lim
n→∞

∥∥∥∥
(
1 − γn

)
[

αn

1 − γn

(
xn−1 − p

)
+

βn
1 − γn

(
Txn−1 − p

)
]
+ γn

(
Txn − p

)
∥∥∥∥t = d,

lim sup
n→∞

∥∥Txn − p
∥∥ ≤ lim sup

n→∞

∥∥xn − p
∥∥ = d.

(2.5)

Again, it follows from the condition αn + βn + γn = 1 that

lim sup
n→∞

∥∥∥∥
αn

1 − γn

(
xn−1 − p

)
+

βn
1 − γn

(
Txn−1 − p

)
∥∥∥∥

≤ lim sup
n→∞

(
αn

1 − γn

∥∥xn−1 − p
∥∥ +

βn
1 − γn

∥∥Txn−1 − p
∥∥
)

≤ lim sup
n→∞

(
αn + βn
1 − γn

∥∥xn−1 − p
∥∥
)

= d.

(2.6)

By Lemma 1.2, the condition 0 < a ≤ γn ≤ b < 1, and (2.5)–(2.6), we get

lim
n→∞

∥∥∥∥
αn

1 − γn

(
xn−1 − p

)
+

βn
1 − γn

(
Txn−1 − p

) − (
Txn − p

)
∥∥∥∥ = 0. (2.7)
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This means that

lim
n→∞

∥∥∥∥
αn

1 − γn
xn−1 +

βn
1 − γn

Txn−1 − Txn

∥∥∥∥ = lim
n→∞

(
1

1 − γn

)∥∥αnxn−1 + βnTxn−1 −
(
1 − γn

)
Txn

∥∥ = 0.

(2.8)

Since 0 < a ≤ γn ≤ b < 1, we have 1/(1 − a) ≤ 1/(1 − γn) ≤ 1/(1 − b). Hence,

lim
n→∞

∥
∥αnxn−1 + βnTxn−1 −

(
1 − γn

)
Txn

∥
∥ = 0. (2.9)

Because

lim
n→∞

∥∥αnxn−1 + βnTxn−1 −
(
1 − γn

)
Txn

∥∥ = lim
n→∞

∥∥xn − γnTxn −
(
1 − γn

)
Txn

∥∥

= lim
n→∞

‖xn − Txn

∥∥,
(2.10)

by (2.9), we get

lim
n→∞

∥∥xn − Txn

∥∥ = 0. (2.11)

Since E is uniformly convex, every bounded closed convex subset of E is weakly com-
pact, so that there exists a subsequence {xnk

} of sequence {xn} ⊆ co({xn}) such that xnk
⇀ q ∈

K. Therefore, it follows from (2.11) that

lim
k→∞

∥∥Txnk
− xnk

∥∥ = 0. (2.12)

By Lemma 1.1, we know that I − T is demiclosed at zero; it is esay to see that q ∈ F.
Now, we show that xn ⇀ q. In fact, this is not true; then there must exist a subsequence

{xni
} ⊂ {xn} such that xni

⇀ q1 ∈ K, q1 /= q. Then, by the same method given above, we can also
prove that q1 ∈ F.

Because, for any p ∈ F, the limit limn→∞‖xn − p‖ exists. Then we can let

lim
n→∞

∥∥xn − q
∥∥ = d1, lim

n→∞
∥∥xn − q1

∥∥ = d2. (2.13)

Since E satisfies Opial’s condition, we have

d1 = lim sup
k→∞

∥∥xnk
− q

∥∥ < lim sup
k→∞

∥∥xnk
− q1

∥∥ = d2,

d2 = lim sup
i→∞

∥∥xni
− q1

∥∥ < lim sup
i→∞

∥∥xni
− q

∥∥ = d1.
(2.14)

This is a contradiction and hence q = q1. This implies that {xn} converges weakly to a fixed
point q of T . This completes the proof.

From the proof of Theorem 2.1, we give the following strong convergence theorem.

Theorem 2.2. Let E be a real uniformly convex Banach space, let K be a nonempty closed convex
subset of E, let T : K → K be a nonexpansive mapping with nonempty fixed points set F, and let T
be semicompact. Let {αn}, {βn}, {γn} be three real sequences in [0, 1] satisfying αn + βn + γn = 1 and
0 < a ≤ γn ≤ b < 1, where a, b are some constants. Then implicit iteration process {xn} defined by (1.2)
converges strongly to a fixed point of T .
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Proof. From the proof of Theorem 2.1, we know that there exists subsequence {xnk
} ⊂ {xn}

such that xnk
⇀ q ∈ K and satisfies (2.11). By the semicompactness of T , there exists a subse-

quence of {xnk
} (we still denote it by {xnk

}) such that limn→∞‖xnk
− q‖ = 0. Because the limit

limn→∞‖xn − q‖ exists, thus we get limn→∞‖xn − q‖ = 0. This completes the proof.

Next, we study weak and strong convergence theorems for common fixed points of a
finite family of nonexpansive mappings {Ti}Ni=1 in Banach spaces.

Theorem 2.3. Let E be a real uniformly convex Banach space which satisfies Opial’s condition, let K
be a nonempty closed convex subset of E, and let {Ti}Ni=1 : K → K be N nonexpansive mappings with
nonempty common fixed points set F. Let {αn}, {βn}, {γn} be three real sequences in [0, 1] satisfying
αn + βn + γn = 1, 0 < a ≤ γn ≤ b < 1, and αn − βn > c > 0, where a, b, c are some constants. Then
implicit iteration process {xn} defined by (1.3) converges weakly to a common fixed point of {Ti}Ni=1.

Proof. Substituing Ti (1 ≤ i ≤ N) to T in the proof of Theorem 2.1, we know that for all i
(1 ≤ i ≤ N),

lim
n→∞

∥∥xn − Tnxn

∥∥ = 0. (2.15)

Now we show that, for any l = 1, 2, . . . ,N,

lim
n→∞

∥∥xn − Tlxn

∥∥ = 0. (2.16)

In fact,

∥∥xn − xn−1
∥∥ =

∥∥βnTnxn−1 + γnTnxn −
(
βn + γn

)
xn−1

∥∥

=
∥∥βnTnxn−1 − βnxn + γnTnxn − γnxn +

(
βn + γn

)(
xn − xn−1

)∥∥

≤ βn
∥∥Tnxn−1 − xn

∥∥ + γn
∥∥Tnxn − xn

∥∥ +
(
βn + γn

)∥∥xn − xn−1
∥∥

≤ βn
∥∥Tnxn−1 − Tnxn

∥∥ + βn
∥∥Tnxn − xn

∥∥ + γn
∥∥Tnxn − xn

∥∥ +
(
βn + γn

)∥∥xn − xn−1
∥∥

≤ (
βn + γn

)∥∥Tnxn − xn

∥∥ +
(
2βn + γn

)∥∥xn − xn−1
∥∥

=
(
βn + γn

)∥∥Tnxn − xn

∥∥ +
(
βn + 1 − αn

)∥∥xn − xn−1
∥∥.

(2.17)

By removing the second term on the right of the above inequality to the left, we get

(
αn − βn

)∥∥xn − xn−1
∥∥ ≤ (

βn + γn
)∥∥Tnxn − xn

∥∥. (2.18)

It follows from the condition αn − βn > c > 0 and (2.15) that

lim
n→∞

∥∥xn − xn−1
∥∥ = 0. (2.19)

So, for any i = 1, 2, . . . ,N,

lim
n→∞

∥
∥xn − xn+i

∥
∥ = 0. (2.20)
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Since, for any i = 1, 2, 3, . . . ,N,

∥∥xn − Tn+ixn

∥∥ ≤ ∥∥xn − xn+i
∥∥ +

∥∥xn+i − Tn+ixn+i
∥∥ +

∥∥Tn+ixn+i − Tn+ixn

∥∥

≤ 2
∥
∥xn − xn+i

∥
∥ +

∥
∥xn+i − Tn+ixn+i

∥
∥,

(2.21)

it follows from (2.15) and (2.20) that

lim
n→∞

∥∥Tn+ixn − xn

∥∥ = 0, i = 1, 2, 3, . . . ,N. (2.22)

Because Tn = Tn mod N , it is easy to see, for any l = 1, 2, 3, . . . ,N, that

lim
n→∞

∥∥Tlxn − xn

∥∥ = 0. (2.23)

Since E is uniformly convex, so there exists a subsequence {xnk
} of bounded sequence {xn}

such that xnk
⇀ q ∈ K. Therefore, it follows from (2.23) that

lim
k→∞

∥∥Tlxnk
− xnk

∥∥ = 0, ∀ l = 1, 2, 3, . . . ,N. (2.24)

By Lemma 1.1, we know that I − Tl is demiclosed, it is easy to see that q ∈ F(Tl), so that q ∈ F =⋂N
l=1F(Tl). Because E satisfies Opial’s condition, we can prove that {xn} converges weakly to a

common fixed point q of {Tl}Nl=1 by the same method given in the proof of Theorem 2.1.

Remark 2.4. If N = 1, implicit iteration scheme (1.3) becomes (1.2), so from Theorem 2.1, we
know that assumption αn − βn > c > 0 in Theorem 2.3 can be removed.

Theorem 2.5. Let E be a real uniformly convex Banach space, letK be a nonempty closed convex subset
of E, let {Ti}Ni=1 : K → K be N nonexpansive mappings with nonempty common fixed points set F,
and there exists an l ∈ {1, 2, . . . ,N} such that Tl is semicompact. Let {αn}, {βn}, {γn} be three real
sequences in [0, 1] satisfying αn + βn + γn = 1, 0 < a ≤ γn ≤ b < 1, and αn − βn > c > 0, where a,
b , c are some constants. Then implicit iteration process {xn} defined by (1.3) converges strongly to a
common fixed point of {Ti}Ni=1.

Proof. From the proof of Theorem 2.3, we know that there exists subsequence {xnk
} ⊂ {xn} such

that {xnk
} converges weakly to some q ∈ K and satisfies (2.23). By the semicompactness of Tl,

there exists a subsequence of {xnk
} (we still denote it by {xnk

}) such that limn→∞‖xnk
− q‖ = 0.

Because the limit limn→∞‖xn − q‖ exists, thus we get limn→∞‖xn − q‖ = 0. This completes the
proof.
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