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A lot of authors have proved various common fixed-point results for pairs of self-mappings under
strict contractive conditions in metric spaces. In the case of cone metric spaces, fixed point results
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obtained results are proper extensions of the existing ones.
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1. Introduction and Preliminaries

Cone metric spaces were introduced by Huang and Zhang in [1], where they investigated the
convergence in cone metric spaces, introduced the notion of their completeness, and proved
some fixed point theorems for contractive mappings on these spaces. Recently, in [2–6], some
common fixed point theorems have been proved for maps on cone metric spaces. However,
in [1–3], the authors usually obtain their results for normal cones. In this paper we do not
impose the normality condition for the cones.

We need the following definitions and results, consistent with [1], in the sequel.
Let E be a real Banach space. A subset P of E is a cone if

(i) P is closed, nonempty and P /= {0};
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply ax + by ∈ P ;

(iii) P ∩ (−P) = {0}.
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Given a cone P ⊂ E, we define the partial ordering ≤ with respect to P by x ≤ y if and
only if y − x ∈ P . We write x < y to indicate that x ≤ y but x /=y, while x � y stands for
y − x ∈ intP (the interior of P).

There exist two kinds of cones: normal and nonnormal cones. A cone P ⊂ E is a normal
cone if

inf
{∥∥x + y

∥
∥ : x, y ∈ P, ‖x‖ =

∥
∥y

∥
∥ = 1

}
> 0, (1.1)

or, equivalently, if there is a number K > 0 such that for all x, y ∈ P ,

0 ≤ x ≤ y implies ‖x‖ ≤ K
∥
∥y

∥
∥. (1.2)

The least positive number satisfying (1.2) is called the normal constant of P . It is clear that
K ≥ 1.

It follows from (1.1) that P is nonnormal if and only if there exist sequences xn, yn ∈ P
such that

0 ≤ xn ≤ xn + yn, xn + yn −→ 0 butxn � 0. (1.3)

So, in this case, the Sandwich theorem does not hold. (In fact, validity of this theorem is
equivalent to the normality of the cone, see [7].)

Example 1.1 (see [7]). Let E = C1
R
[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ and P = {x ∈ E : x(t) ≥

0 on [0, 1]}. This cone is not normal. Consider, for example,

xn(t) =
1 − sinnt
n + 2

, yn(t) =
1 + sinnt
n + 2

. (1.4)

Then ‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ = 2/(n + 2) → 0.

Definition 1.2 (see [1]). Let X be a nonempty set. Suppose that the mapping d : X × X → E
satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space, because
each metric space is a cone metric space with E = R and P = [0,+∞[ (see [1, Example 1]).

Let {xn} be a sequence in X, and x ∈ X. If, for every c in E with 0 � c, there is an
n0 ∈ N such that for all n > n0, d(xn, x) � c, then it is said that xn converges to x, and this is
denoted by limn→∞xn = x, or xn → x, n → ∞. Completeness is defined in the standard way.

It was proved in [1] that if P is a normal cone, then xn ∈ X converges to x ∈ X if and
only if d(xn, x) → 0, n → ∞.
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Let (X, d) be a cone metric space. Then the following properties are often useful
(particularly when dealing with cone metric spaces in which the cone may be nonnormal):

(p1) if 0 ≤ u � c for each c ∈ intP then u = 0,

(p2) if c ∈ intP , 0 ≤ an and an → 0, then there exists n0 such that an � c for all n > n0.

It follows from (p2) that the sequence xn converges to x ∈ X if d(xn, x) → 0 as n → ∞.
In the case when the cone is not necessarily normal, we have only one half of the statements
of Lemmas 1 and 4 from [1]. Also, in this case, the fact that d(xn, yn) → d(x, y) if xn → x
and yn → y is not applicable.

2. Compatible and Noncompatible Mappings in Cone Metric Spaces

In the sequel we assume only that E is a Banach space and that P is a cone in E with
intP /= ∅. The last assumption is necessary in order to obtain reasonable results connected
with convergence and continuity. In particular, with this assumption the limit of a sequence
is uniquely determined. The partial ordering induced by the cone P will be denoted by ≤.

If (f, g) is a pair of self-maps on the space X then its well known properties, such as
commutativity, weak-commutativity [8], R-commutativity [9, 10], weak compatibility [11],
can be introduced in the same way in metric and cone metric spaces. The only difference is
that we use vectors instead of numbers. As an example, we give the following.

Definition 2.1 (see [9]). A pair of self-mappings (f, g) on a cone metric space (X, d) is said to
be R-weakly commuting if there exists a real number R > 0 such that d(fgx, gfx) ≤ Rd(fx, gx)
for all x ∈ X, whereas the pair (f, g) is said to be pointwise R-weakly commuting if for each
x ∈ X there exists R > 0 such that d(fgx, gfx) ≤ Rd(fx, gx).

Here it may be noted that at the points of coincidence, R-weak commutativity is
equivalent to commutativity and it remains a necessary minimal condition for the existence
of a common fixed point of contractive type mappings.

Compatible mappings in the setting of metric spaces were introduced by Jungck [11,
12]. The property (E.A) was introduced in [13]. We extend these concepts to cone metric
spaces and investigate their properties in this paper.

Definition 2.2. A pair of self-mappings (f, g) on a cone metric space (X, d) is said to be
compatible if for arbitrary sequence {xn} in X such that limn→∞f(xn) = limn→∞g(xn) = t ∈ X,
and for arbitrary c ∈ P with c ∈ intP , there exists n0 ∈ N such that d(fgxn, gfxn) � c
whenever n > n0. It is said to be weakly compatible if fx = gx implies fgx = gfx.

It is clear that, as in the case ofmetric spaces, the pair (f, iX) (iX—the identitymapping)
is both compatible and weakly compatible, for each self-map f .

If E = R, ‖ · ‖ = | · |, P = [0,+∞[, then these concepts reduce to the respective concepts
of Jungck in metric spaces. It is known that in the case of metric spaces compatibility implies
weak compatibility but that the converse is not true. We will prove that the same holds in the
case of cone metric spaces.

Proposition 2.3. If the pair (f, g) of self-maps on the cone metric space (X, d) is compatible, then it
is also weakly compatible.
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Proof. Let fu = gu for some u ∈ X. We have to prove that fgu = gfu. Take the sequence {xn}
with xn = u for each n ∈ N. It is clear that fxn, gxn → fu = gu. If c ∈ P with c ∈ intP , then
the compatibility of the pair (f, g) implies that d(fgxn, gfxn) = d(fgu, gfu) � c. It follows
by property (p1) that d(fgu, gfu) = 0, that is, fgu = gfu.

Example 2.4. We show in this example that the converse in the previous proposition does not
hold, neither in the case when the cone P is normal nor when it is not.

Let X = [0, 2] and

(1) E1 = R
2, P1 = {(a, b) : a ≥ 0, b ≥ 0} (a normal cone), let d1(x, y) = (|x − y|, α|x − y|),

(α ≥ 0 fixed), (X, d1) is a complete cone metric space,

(2) E2 = C1
R
[0, 1], P2 = {ϕ : ϕ(t) ≥ 0, t ∈ [0, 1]} (a nonnormal cone). Let d2(x, y) =

|x − y|ϕ for some fixed ϕ ∈ P2, for example, ϕ(t) = 2t. (X, d2) is also a complete cone
metric space.

Consider the pair of mappings (f, g) defined as

fx =

⎧
⎨

⎩

2 − x, 0 ≤ x < 1,

2, 1 ≤ x ≤ 2,
gx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2x, 0 ≤ x < 1,

x, 1 ≤ x ≤ 2, x /=
4
3
,

2, x =
4
3
,

(2.1)

and the sequence xn = 2/3 + 1/n ∈ X. It is fxn = 2 − (2/3 + 1/n) = 4/3 − 1/n, gxn =
2(2/3 + 1/n) = 4/3 + 2/n.

In both of the given cone metrics fxn, gxn → 4/3 holds. Namely, in the first case,
d1(fxn, 4/3) = d1(4/3− 1/n, 4/3) = (1/n, α(1/n)) → (0, 0) in the standard norm of the space
R

2. Also, d1(gxn, 4/3) = d1(4/3+ 2/n, 4/3) = (2/n, α(2/n)) → (0, 0) in the same norm (since
in this case the cone is normal, we can use that the cone metric d1 is continuous).

However, d1(fgxn, gfxn) = d1(f(4/3 + 2/n), g(4/3 − 1/n)) = d1(2, 8/3 − 2/n) =
(|2/3 − 2/n|, α|2/3 − 2/n|). So, taking the fixed vector (2/3, α(2/3)) ∈ P1, we see that
d1(fgxn, gfxn) � c does not hold for each c ∈ intP , for otherwise by (p2) this vector would
reduce to (0, 0). Hence, the pair (f, g) is not compatible.

In the case (2) of a nonnormal cone we have d2(fxn, 4/3) = d2(4/3 − 1/n, 4/3) =
|4/3−1/n−4/3|ϕ = (1/n)2t → 0 in the norm of space E2; d2(gxn, 4/3) = d2(4/3+2/n, 4/3) =
|4/3 + 2/n − 4/3|ϕ = (2/n)ϕ → 0 in the same norm.

However, d2(fgxn, gfxn) = d2(2, 8/3 − 2/n) = |2/3 − 2/n|ϕ = (2/3 − 2/n)2t, n ≥ 4. If
we put un(t) = (2/3 − 2/n)2t, then un(t) � c is impossible since (2/3)2t = un(t) + (2/n)2t �
c/2 + c/2 = c and (2/3)2t /= 0 (null function). This means that it is not un(t) � c, and so the
pair (f, g) is not compatible.

Since f(4/3) = g(4/3) and f2 = g2, in both cases fg(4/3) = gf(4/3) and fg2 = gf2.

Clearly, a pair of self-mappings (f, g) on a cone metric space (X, d) is not compatible
if there exists a sequence {xn} in X such that limn→∞f(xn) = limn→∞g(xn) = t ∈ X for some
t ∈ X but limn→∞d(fgxn, gfxn) is either nonzero or nonexistent.

Definition 2.5. A pair of self-mappings (f, g) on a cone metric space (X, d) is said to enjoy
property (E.A) if there exists a sequence {xn} in X such that limn→∞f(xn) = limn→∞g(xn) = t
for some t ∈ X.
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Clearly, each noncompatible pair satisfies property (E.A). The converse is not true.
Indeed, let X = [0, 1], E = R

2, P = {(a, b) : a ≥ 0, b ≥ 0}, d(x, y) = (|x − y|, α|x − y|), α ≥ 0
fixed, fx = 2x, gx = 3x, xn = 1/n. Then in the given cone metric both sequences fxn and gxn

tend to 0, but

d
(
fgxn, gfxn

)
= d(6xn, 6xn) = (0, 0) � c (2.2)

for each point c = (c1, c2) of intP = {(a, b) : a > 0, b > 0}, that is, the pair (f, g) is compatible.
In other words, the set of pairs with property (E.A) contains all noncompatible pairs, and
also some of the compatible ones.

3. Strict Contractive Conditions and Existence of Common Fixed
Points on Cone Metric Spaces

Let (X, d) be a complete cone metric space, let (f, g) be a pair of self-mappings on X and
x, y ∈ X. Let us consider the following sets:

M
f,g

0

(
x, y

)
=
{
d
(
gx, gy

)
, d

(
gx, fx

)
, d

(
gy, fy

)
, d

(
gx, fy

)
, d

(
gy, fx

)}
,

M
f,g

1

(
x, y

)
=

{

d
(
gx, gy

)
, d

(
gx, fx

)
, d

(
gy, fy

)
,
d
(
gx, fy

)
+ d

(
gy, fx

)

2

}

,

M
f,g

2

(
x, y

)
=

{

d
(
gx, gy

)
,
d
(
gx, fx

)
+ d

(
gy, fy

)

2
,
d
(
gx, fy

)
+ d

(
gy, fx

)

2

}

,

(3.1)

and define the following conditions:
(1◦) for arbitrary x, y ∈ X there exists u0(x, y) ∈ M

f,g

0 (x, y) such that

d
(
fx, fy

)
< u0

(
x, y

)
; (3.2)

(2◦) for arbitrary x, y ∈ X there exists u1(x, y) ∈ M
f,g

1 (x, y) such that

d
(
fx, fy

)
< u1

(
x, y

)
; (3.3)

(3◦) for arbitrary x, y ∈ X there exists u2(x, y) ∈ M
f,g

2 (x, y) such that

d
(
fx, fy

)
< u2

(
x, y

)
. (3.4)
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These conditions are called strict contractive conditions. Since in metric spaces the
following inequalities hold:

d
(
gx, fy

)
+ d

(
gy, fx

)

2
≤ max

{
d
(
gx, fy

)
, d

(
gy, fx

)}
,

d
(
gx, fx

)
+ d

(
gy, fy

)

2
≤ max

{
d
(
gx, fx

)
, d

(
gy, fy

)}
,

(3.5)

in this setting, condition (2◦) is a special case of (1◦) and (3◦) is a special case of (2◦). This is
not the case in the setting of cone metric spaces, since for a, b ∈ P , if a and b are incomparable,
then also (a + b)/2 is incomparable, both with a and with b.

The following theorem was proved for metric spaces in [13].

Theorem 3.1. Let the pair of weakly compatible mappings (f, g) satisfy property (E.A). If condition
(3◦) is satisfied, fX ⊂ gX, and at least one of fX and gX is complete, then f and g have a unique
common fixed point.

Conditions (1◦) and (2◦) are not mentioned in [13]. We give an example of a pair of
mappings (f, g) satisfying (1◦) and (2◦), but which have no common fixed points, neither in
the setting of metric nor in the setting of cone metric spaces.

Example 3.2. Let X = [0, 1] with the standard metric. Take 0 < a < b < 1 and consider the
functions:

fx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ax, x ∈ (0, 1),

a, x = 0,

0, x = 1,

gx = bx for x ∈ [0, 1]. (3.6)

We have to show that for each (x, y) ∈ X2 there exists u0(x, y) ∈ M
f,g

0 (x, y) such that
d(fx, fy) < u0(x, y) for x /=y.

It is not hard to prove that in all possible five cases one can find a respective u0(x, y):

(1◦) x, y ∈ (0, 1) ⇒ u0(x, y) = d(gx, gy);

(2◦) x = 0, y ∈ (0, 1) ⇒ u0(0, y) = d(f0, g0);

(3◦) x = 1, y ∈ (0, 1) ⇒ u0(1, y) = d(f1, g1);

(4◦) x = 0, y = 1 ⇒ u0(0, 1) = d(g0, g1);

(5◦) x = 1, y = 0 ⇒ u0(1, 0) = d(g1, g0).

Let now xn = 1/n. Then f(xn) = a/n → 0 and g(xn) = b/n → 0. It is clear that
fX = [0, a] ⊂ gX = [0, b] ⊂ X = [0, 1] and all of them are complete metric spaces, so all the
conditions of Theorem 3.1 except (3◦) are fulfilled, but there exists no coincidence point of
mappings f and g.

Using the previous example, it is easy to construct the respective example in the case
of cone metric spaces.
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Let X = [0, 1], E = R
2, P = {(x, y) : x ≥ 0, y ≥ 0}, and let d : X × X → E be defined as

d(x, y) = (|x − y|, α|x − y|), for fixed α ≥ 0. Let f, g be the same mappings as in the previous
case. Now we have the following possibilities:

(1◦) x, y ∈ (0, 1) ⇒ u0(x, y) = d(gx, gy) = (|bx − by|, α|bx − by|);
(2◦) x = 0, y ∈ (0, 1) ⇒ u0(0, y) = d(f0, g0) = d(a, 0) = (a, αa);

(3◦) x = 1, y ∈ (0, 1) ⇒ u0(1, y) = d(f1, g1) = d(0, b) = (b, αb);

(4◦) x = 0, y = 1 ⇒ u0(0, 1) = d(g0, g1) = d(0, b) = (b, αb);

(5◦) x = 1, y = 0 ⇒ u0(1, 0) = d(g1, g0) = d(b, 0) = (b, αb).

Conclusion is the same as in the metric case.

We will prove the following theorem in the setting of cone metric spaces.

Theorem 3.3. Let f and g be two weakly compatible self-mappings of a cone metric space (X, d) such
that

(i) (f, g) satisfies property (E.A);

(ii) for all x, y ∈ X there exists u(x, y) ∈ M
f,g

2 (x, y) such that d(fx, fy) < u(x, y),

(iii) fX ⊂ gX.

If gX or fX is a complete subspace of X, then f and g have a unique common fixed point.

Proof. It follows from (i) that there exists a sequence {xn} satisfying

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X. (3.7)

Suppose that gX is complete. Then limn→∞gxn = ga for some a ∈ X. Also limn→∞fxn = ga.
We will show that fa = ga. Suppose that fa/= ga. Condition (ii) implies that there are

the following three cases.

(1◦) d(fxn, fa) < d(gxn, ga) � c, that is, d(fxn, fa) � c; it follows that limn→∞fxn =
fa and so fa = ga;

(2◦) d(fxn, fa) < (d(fxn, gxn) + d(fa, ga))/2; it follows that 2d(fxn, fa) <
d(fxn, gxn)+d(fa, fxn)+d(fxn, ga), hence d(fxn, fa) < d(fxn, gxn)+d(fxn, ga) �
c/2 + c/2 = c, that is, limn→∞fxn = fa and so fa = ga;

(3◦) d(fxn, fa) < (d(fa, gxn)+d(fxn, ga))/2; it follows that 2d(fxn, fa) < d(fa, fxn)+
d(fxn, gxn)+d(fxn, ga), hence d(fxn, fa) < d(fxn, gxn)+d(fxn, ga) � c/2+c/2 =
c, that is, limn→∞fxn = fa and so fa = ga.

Hence, we have proved that f and g have a coincidence point a ∈ X and a point of
coincidence ω ∈ X such that ω = fa = ga. If ω1 is another point of coincidence, then there is
a1 ∈ X with ω1 = fa1 = ga1. Now,

d(ω,ω1) = d
(
fa, fa1

)
< u2(a, a1), (3.8)
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where

u2 ∈
{

d
(
ga, ga1

)
,
d
(
ga, fa

)
+ d

(
ga1, fa1

)

2
,
d
(
ga, fa1

)
+ d

(
ga1, fa

)

2

}

= {d(ω,ω1), 0}.
(3.9)

Hence, d(ω,ω1) = 0, that is, ω = ω1.
Since ω = fa = ga is the unique point of coincidence of f and g, and f and g are

weakly compatible, ω is the unique common fixed point of f and g by [4, Proposition 1.12].
The proof is similar when fX is assumed to be a complete subspace of X since

fX ⊂ gX.

Example 3.4. Let X = R, E = C1
R
[0, 1], P = {ϕ : ϕ(t) ≥ 0, t ∈ [0, 1]}, d(x, y) = |x − y|ϕ, ϕ is a

fixed function from P , for example, ϕ(t) = 2t.
Consider the mappings f, g : R → R given by fx = αx, gx = βx, 0 < α < β < 1. Then

d
(
fx, fy

)
=
∣∣fx − fy

∣∣ϕ =
∣∣αx − αy

∣∣ϕ = α
∣∣x − y

∣∣ϕ

=
α

β

∣∣βx − βy
∣∣ϕ =

α

β

∣∣gx − gy
∣∣ϕ =

α

β
d
(
gx, gy

)
< d

(
gx, gy

)
,

(3.10)

so the conditions of strict contractivity are fulfilled. Further, gf0 = fg0 = 0 and it is easy to
verify that the sequence xn = 1/n satisfies the conditions fxn → 0, gxn → 0 (even in the
setting of cone metric spaces). All the conditions of the theorem are fulfilled. Taking E = R,
P = [0,+∞[, ‖ · ‖ = | · | we obtain a theorem from [13]. Note that this theorem cannot be
applied directly, since the cone may not be normal in our case. So, our theorem is a proper
generalization of the mentioned theorem from [13].

Example 3.5. Let X = [1,+∞[, E = R
2, P = {(x, y) : x ≥ 0, y ≥ 0}, d(x, y) = (|x − y|, α|x − y|),

α ≥ 0.
Take the mappings f, g : X → X given by fx = x2, gx = x3. Then, since x, y ≥ 1, for

x /=y it is

d
(
fx, fy

)
=
(∣∣∣x2 − y2

∣∣∣, α
∣∣∣x2 − y2

∣∣∣
)
<
(∣∣∣x3 − y3

∣∣∣, α
∣∣∣x3 − y3

∣∣∣
)
= d

(
gx, gy

)
, (3.11)

that is, the conditions of strict contractivity are fulfilled. Taking xn = 1 + 1/n we have that in
the cone metric space (X, d), fxn → 1, gxn → 1, and fg1 = gf1 = 1. Indeed,

d
(
fxn, 1

)
=
(∣∣∣∣

1
n2

− 1
∣∣∣∣, α

∣∣∣∣
1
n2

− 1
∣∣∣∣

)
−→ (1, 1),

d
(
gxn, 1

)
=
(∣∣∣∣

1
n3

− 1
∣∣∣∣, α

∣∣∣∣
1
n3

− 1
∣∣∣∣

)
−→ (1, 1),

(3.12)

(in the norm of space E), which means that the pair of mappings (f, g) of the cone metric
space (X, d) satisfies condition (E.A). The conditions of the theorem are fulfilled in the case
of a normal cone P .
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Corollary 3.6. If all the conditions of Theorem 3.3 are fulfilled, except that (ii) is substituted by either
of the conditions

d
(
fx, fy

)
< d

(
gx, gy

)
,

d
(
fx, fy

)
<

1
2
(
d
(
gx, fx

)
+ d

(
gy, fy

))
,

d
(
fx, fy

)
<

1
2
(
d
(
gx, gy

)
+ d

(
gy, fx

))
,

(3.13)

then f and g have a unique common fixed point.

Proof. Formulas in (3.13) are clearly special cases of (ii).

Note that formulas in (3.13) are strict contractive conditions which correspond to the
contractive conditions of Theorems 1, 2, and 3 from [2].

3.1. Cone Metric Version of Das-Naik’s Theorem

The following theorem was proved by Das and Naik in [14].

Theorem 3.7. Let (X, d) be a complete metric space. Let f be a continuous self-map on X and g be
any self-map on X that commutes with f . Further, let fX ⊂ gX and there exists a constant λ ∈ (0, 1)
such that for all x, y ∈ X:

d
(
fx, fy

) ≤ λ · u0
(
x, y

)
, (3.14)

where u0(x, y) = maxMf,g

0 (x, y). Then f and g have a unique common fixed point.

Now we recall the definition of g-quasi-contractions on cone metric spaces. Such
mappings are generalizations of Das-Naik’s quasi-contractions.

Definition 3.8 (see [3]). Let (X, d) be a cone metric space, and let f, g : X → X. Then f is
called a g-quasicontraction, if for some constant λ ∈ (0, 1) and for every x, y ∈ X, there exists
u(x, y) ∈ M

f,g

0 (x, y) such that

d
(
fx, fy

) ≤ λ · u(x, y). (3.15)

The following theorem was proved in [3].

Theorem 3.9. Let (X, d) be a complete cone metric space with a normal cone. Let f, g : X → X, f
is a g-quasicontraction that commutes with g, one of the mappings f and g is continuous, and they
satisfy fX ⊂ gX. Then f and g have a unique common fixed point in X.

Using property (E.A) of the pair (f, g) instead of commutativity and continuity, we can
prove the existence of a common fixed point without normality condition. Then, Theorem 3.7
for metric spaces follows as a consequence.



10 Fixed Point Theory and Applications

Theorem 3.10. Let f and g be two weakly compatible self-mappings of a cone metric space (X, d)
such that

(i) (f, g) satisfies property (E.A);

(ii) f is a g-quasicontraction;

(iii) fX ⊂ gX.

If gX or fX is a complete subspace of X, then f and g have a unique common fixed point.

Proof. Let xn ∈ X be such that fxn → t ∈ X, gxn → t. It follows from (iii) and the
completeness of one of fX, gX that there exists a ∈ X such that ga = t. Hence, fxn, gxn →
ga. We will prove first that fa = ga. Putting x = xn and y = a in (3.15)we obtain that

d
(
fxn, fa

) ≤ λ · u(xn, a), (3.16)

for some u(xn, a) ∈ {d(gxn, ga), d(gxn, fxn), d(gxn, fa), d(ga, fxn), d(ga, fa)}. We have to
consider the following cases:

(1◦) d(fxn, fa) ≤ λ · d(gxn, ga) � λ · c/λ = c;

(2◦) d(fxn, fa) ≤ λ ·d(gxn, fxn) ≤ λd(gxn, fa)+λd(fa, fxn)which implies d(fxn, fa) ≤
(λ/(1 − λ))d(gxn, fa) � (λ/(1 − λ))(c/(λ/(1 − λ))) = c;

(3◦) d(fxn, fa) ≤ λ · d(gxn, fa) ≤ λ · d(gxn, fxn) + λ · d(fxn, fa) which implies
d(fxn, fa) ≤ λ · d(ga, fxn) � λ · c/λ = c;

(4◦) d(fxn, fa) ≤ λd(fxn, ga) � λ(c/λ) = c, since fxn → ga;

(5◦) d(fxn, fa) ≤ λ · d(ga, fa) ≤ λd(ga, fxn) + λd(fa, fxn) which implies d(fxn, fa) ≤
(λ/(1 − λ))d(fxn, ga) � (λ/(1 − λ))(c/(λ/(1 − λ))) = c.

Thus, in all possible cases, d(fxn, fa) � c for each c ∈ intP and so fxn → fa.
The uniqueness of limits (which is a consequence of the condition intP /= ∅ without using
normality of the cone) implies that fa = ga.

Since f and g are weakly compatible it follows that fga = gfa = ffa = gga. Let us
prove that fa = ga is a common fixed point of the pair (f, g). Suppose ffa/= fa. Putting in
(3.15) x = fa, y = a, we obtain that

d
(
ffa, fa

) ≤ λu
(
fa, a

)
, (3.17)

where u(fa, a) ∈ {d(gfa, ga), d(gfa, ffa), d(gfa, fa), d(ga, ffa), d(ga, fa)} = {d(ffa,
fa), d(ffa, ffa), d(ffa, fa), d(fa, ffa), d(fa, fa)} = {d(ffa, fa), 0}. So, we have only two
possible cases:

(1◦) d(ffa, fa) ≤ λd(ffa, fa) implying d(ffa, fa) = 0 and ffa = fa;

(2◦) d(ffa, fa) ≤ λ · 0 = 0 implying d(ffa, fa) = 0 and ffa = fa.

The uniqueness follows easily. The theorem is proved.

Note that in Theorems 3.3 and 3.10 condition that one of the subspaces fX, gX is
complete can be replaced by the condition that one of them is closed in the cone metric space
(X, d).
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Corollary 3.11. The conclusion in Theorem 3.7 remains valid if the conditions of commutativity and
continuity of one of the mappings f, g are replaced by the condition (E.A) for the pair (f, g).

Proof. This follows easily by taking E = R, ‖ · ‖ = | · |, P = [0,+∞[.

Taking into account [15, Theorem 2.1] and results from [5], it can be seen that the
question of existence of fixed points for quasicontractions on complete cone metric spaces
without normality condition is still open in the case when λ ∈ [1/2, 1[. Theorem 3.10 answers
this question when property (E.A) is fulfilled.

Note that the common fixed point problem for a weak compatible pair with property
(E.A) under strict conditions in symmetric spaces was investigated in [16–21]. As an example
we state the following result.

Theorem 3.12 (see [19]). Let (X, d) be a symmetric (semimetric) space that enjoys property (W3)
(the Hausdorffness of the topology τ(d)). Let f and g be two self-mappings on X such that

(i) (f, g) satisfies property (E.A),

(ii) for all x, y ∈ X, x /=y,

d
(
gx, gy

)
< max

{
d
(
fx, fy

)
,
k

2
(
d
(
gx, fx

)
+ d

(
gy, fy

))
,
k

2
(
d
(
gy, fx

)
+ d

(
gx, fy

))
}
,

(3.18)

for some k, 1 ≤ k < 2. If fX is a d-closed (τ(d)-closed) subset of X, then f and g have a point of
coincidence.

This result can be proved in the setting of cone metric spaces putting “∈” instead of
“max,” and also for the symmetric space (X,D) associated with a complete cone metric space
with a normal cone, introduced in [22].

4. Strict Contractivity and the Hardy-Rogers Theorem

It was proved in [23] (see also [24]) that a self-map f of a complete metric space X has a
unique fixed point if for some nonnegative scalars ai, i = 1, 5 with

∑5
i=1 ai < 1 and for all

x, y ∈ X, the inequality

d
(
fx, fy

) ≤ a1d
(
x, y

)
+ a2d

(
x, fx

)
+ a3d

(
y, fy

)
+ a4d

(
x, fy

)
+ a5d

(
y, fx

)
(4.1)

holds. In [4, Theorem 2.8], this result was proved in the setting of cone metric spaces, but in
a generalized version—for a pair of self-mappings satisfying certain conditions.

Assuming property (E.A), we can prove the following theorem.

Theorem 4.1. Let (X, d) be a cone metric space and let (f, g) be a weakly compatible pair of self-
mappings on X satisfying condition (E.A). Suppose that there exist nonnegative scalars ai, i = 1, 5
such that

∑5
i=1 ai < 1 and that for each x, y ∈ X,

d
(
fx, fy

)
< a1d

(
gx, gy

)
+ a2d

(
gx, fx

)
+ a3d

(
gy, fy

)
+ a4d

(
gx, fy

)
+ a5d

(
gy, fx

)
.
(4.2)
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If fX ⊂ gX and if at least one of fX and gX is a complete subspace of X, then f and g have a unique
common fixed point.

Proof. There exists a sequence xn ∈ X such that fxn → t, gxn → t in the cone metric d, for
some t ∈ X. Let, for example, gX be complete. Then there exists a ∈ X such that fxn and gxn

converge to ga = t. Let us prove that fa = ga. Putting in (4.2) xn and a instead of x and y,
respectively, we obtain

d
(
fxn, fa

)
< a1d

(
gxn, ga

)
+ a2d

(
gxn, fxn

)
+ a3d

(
ga, fa

)

+ a4d
(
gxn, fa

)
+ a5d

(
ga, fxn

)

≤ a1d
(
gxn, ga

)
+ a2d

(
gxn, fxn

)
+ a3d

(
ga, fxn

)
+ a3d

(
fxn, fa

)

+ a4d
(
gxn, fxn

)
+ a4d

(
fxn, fa

)
+ a5d

(
ga, fxn

)
.

(4.3)

Hence,

(1 − a3 − a4)d
(
fxn, fa

)
< a1d

(
gxn, ga

)
+ a2d

(
gxn, fxn

)
+ a3d

(
ga, fxn

)

+ a4d
(
gxn, fxn

)
+ a5d

(
ga, fxn

)
,

(4.4)

that is, denoting ki = ai/(1 − a3 − a4), i = 1, 5,

d
(
fxn, fa

) ≤ k1d
(
gxn, ga

)
+ k2d

(
gxn, fxn

)
+ k3d

(
ga, fxn

)

+ k4d
(
gxn, fa

)
+ k5d

(
ga, fxn

)

� k1
c

5k1
+ k2

c

5k2
+ k3

c

5k3
+ k4

c

5k4
+ k5

c

5k5

= c.

(4.5)

Thus, d(fxn, fa) � c, that is, fxn → fa. The uniqueness of limit in conemetric spaces (when
the cone has nonempty interior) implies that fa = ga.

Since the mappings f , g are weakly compatible, this implies that fga = gfa = ffa =
gga. Hence, we obtain that fa = ga is the unique common fixed point of the mappings f and
g. Namely, suppose that fa/= ffa. Putting in (4.2) a and fa instead of x, y, respectively, we
obtain

d
(
fa, ffa

)
< a1d

(
fa, ffa

)
+ a2d

(
fa, fa

)
+ a3d

(
ffa, ffa

)

+ a4d
(
fa, ffa

)
+ a5d

(
fa, ffa

)

= (a1 + a4 + a5)d
(
fa, ffa

)
< d

(
fa, ffa

)
,

(4.6)

a contradiction.
Since fX ⊂ gX, the proof is the same if we assume that fX is complete.

The version of Hardy-Rogers’ theorem for metric spaces from [24] is obtained taking
E = R, ‖ · ‖ = | · |, P = [0,+∞[, g = iX .
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