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1. Introduction

A mapping T on a metric space (X, d) is called Kannan if there exists α ∈ [0, 1/2) such that

d
(
Tx, Ty

) ≤ αd(x, Tx) + αd(y, Ty) (1.1)

for all x, y ∈ X. Kannan [1] proved that if X is complete, then every Kannan mapping has a
fixed point. It is interesting that Kannan’s theorem is independent of the Banach contraction
principle [2]. Also, Kannan’s fixed point theorem is very important because Subrahmanyam
[3] proved that Kannan’s theorem characterizes the metric completeness. That is, a metric
space X is complete if and only if every Kannan mapping on X has a fixed point. Recently,
Kikkawa and Suzuki proved a generalization of Kannan’s fixed point theorem. See also [4–8].

Theorem 1.1 (see [9]). Define a nonincreasing function ϕ from [0, 1/2) into (1/2, 1] by

ϕ(α) =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ α < √
2 − 1,

1 − α if
√

2 − 1 ≤ α < 1
2
.

(1.2)
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Let T be a mapping on a complete metric space (X, d). Assume that there exists α ∈ [0, 1/2) such that

ϕ(α)d(x, Tx) ≤ d(x, y)implies d
(
Tx, Ty

) ≤ αd(x, Tx) + αd(y, Ty) (1.3)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover limnT
nx = z holds for every x ∈ X.

Remark 1.2. ϕ(α) is the best constant for every α ∈ [0, 1/2).

From this theorem, we can tell that a Kannan mapping with α <
√

2−1 is much stronger
than a Kannan mapping with α ≥ √

2 − 1.
While x and y play the same role in (1.1), x and y do not play the same role in (1.3).

So we can consider “αd(x, Tx) + βd(y, Ty)” instead of “αd(x, Tx) + αd(y, Ty).” And it is a
quite natural question of what is the best constant for each pair (α, β). In this paper, we give
the complete answer to this question.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers and by R the set of all
real numbers.

We use two lemmas. The first lemma is essentially proved in [5].

Lemma 2.1 (see [5, 9]). Let (X, d) be a metric space and let T be a mapping on X. Let x ∈ X satisfy
d(Tx, T2x) ≤ rd(x, Tx) for some r ∈ [0, 1). Then for y ∈ X, either

(1 + r)−1d(x, Tx) ≤ d(x, y) or (1 + r)−1d
(
Tx, T2x

)
≤ d(Tx, y) (2.1)

holds.

The second lemma is obvious. We use this lemma several times in the proof of
Theorem 4.1.

Lemma 2.2. Let a, A, b, and B be four real numbers such that a ≤ A and b ≤ B. Then aB + Ab ≤
ab +AB holds.

3. Fixed Point Theorem

In this section, we prove a fixed point theorem.
We first put Δ and Δj (j = 1, . . . , 4) by

Δ =
{(
α, β
)
: α ≥ 0, β ≥ 0, α + β < 1

}
,

Δ1 =
{(
α, β
) ∈ Δ: α ≤ β, α + β + α2 < 1

}
,
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Figure 1: Δj (j = 1, . . . , 4)

Δ2 =
{(
α, β
) ∈ Δ: α ≥ β, α + β + β2 < 1

}
,

Δ3 =
{(
α, β
) ∈ Δ: α ≥ β, α + β + β2 ≥ 1

}
,

Δ4 =
{(
α, β
) ∈ Δ: α ≤ β, α + β + α2 ≥ 1

}
.

(3.1)

See Figure 1.

Theorem 3.1. Define a nonincreasing function ψ from Δ into (1/2, 1] by

ψ
(
α, β
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
(
α, β
) ∈ Δ1,

1 if
(
α, β
) ∈ Δ2,

1 − β if
(
α, β
) ∈ Δ3,

1 − β
1 − β + α if

(
α, β
) ∈ Δ4.

(3.2)

Let T be a mapping on a complete metric space (X, d). Assume that there exists (α, β) ∈ Δ such that

ψ
(
α, β
)
d(x, Tx) ≤ d(x, y)implies d

(
Tx, Ty

) ≤ αd(x, Tx) + βd(y, Ty) (3.3)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover limnT
nx = z holds for every x ∈ X.

Proof. We put

q :=
β

1 − α ∈ [0, 1), r :=
α

1 − β ∈ [0, 1). (3.4)
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Since ψ(α, β) ≤ 1, ψ(α, β)d(x, Tx) ≤ d(x, Tx) holds. From the assumption, we have

d
(
Tx, T2x

)
≤ αd(x, Tx) + βd

(
Tx, T2x

)
(3.5)

and hence

d
(
Tx, T2x

)
≤ rd(x, Tx) (3.6)

for all x ∈ X. Since

ψ
(
α, β
)
d
(
Tx, T2x

)
≤ d
(
Tx, T2x

)
≤ rd(x, Tx) ≤ d(Tx, x), (3.7)

we have

d
(
T2x, Tx

)
≤ αd

(
Tx, T2x

)
+ βd(x, Tx) (3.8)

and hence

d
(
Tx, T2x

)
≤ qd(x, Tx) (3.9)

for all x ∈ X.
Fix u ∈ X and put un = Tnu for n ∈ N. From (3.6), we have

∞∑

n=1

d(un, un+1) ≤
∞∑

n=1

rnd(u, Tu) <∞. (3.10)

So {un} is a Cauchy sequence in X. Since X is complete, {un} converges to some point z ∈ X.
We next show

d(z, Tx) ≤ βd(x, Tx) ∀x ∈ X \ {z}. (3.11)

Since {un} converges, for sufficiently large n ∈ N, we have

ψ
(
α, β
)
d(un, Tun) ≤ d(un, un+1) ≤ d(un, x) (3.12)

and hence

d(Tun, Tx) ≤ αd(un, Tun) + βd(x, Tx). (3.13)
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Therefore we obtain

d(z, Tx) = lim
n→∞

d(un+1, Tx) = lim
n→∞

d(Tun, Tx)

≤ lim
n→∞

(
αd(un, Tun) + βd(x, Tx)

)
= βd(x, Tx)

(3.14)

for all x ∈ X \ {z}. By (3.11), we have

d(x, Tx) ≤ d(x, z) + d(z, Tx) ≤ d(x, z) + βd(x, Tx) (3.15)

and hence

(
1 − β)d(x, Tx) ≤ d(x, z) ∀x ∈ X \ {z}. (3.16)

Let us prove that z is a fixed point of T . In the case where (α, β) ∈ Δ1, arguing by
contradiction, we assume Tz/= z. Then we have

d
(
Tz, T2z

)
≤ rd(z, Tz) < d(z, Tz) = lim

n→∞
d(Tz, un). (3.17)

So for sufficiently large n ∈ N,

ψ
(
α, β
)
d
(
Tz, T2z

)
= d
(
Tz, T2z

)
≤ d(Tz, un) (3.18)

holds and hence

d
(
T2z, z

)
= lim

n→∞
d
(
T2z, Tun

)

≤ lim
n→∞

(
αd
(
Tz, T2z

)
+ βd(un, Tun)

)
= αd

(
Tz, T2z

)
.

(3.19)

Thus we obtain

d(z, Tz) ≤ d
(
z, T2z

)
+ d
(
Tz, T2z

)
≤ (1 + α)d

(
Tz, T2z

)

≤ (1 + α)rd(z, Tz) =
α + α2

1 − β d(z, Tz)

< d(z, Tz),

(3.20)

which is a contradiction. Therefore we obtain Tz = z.
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In the case where (α, β) ∈ Δ2, if we assume Tz/= z, then we have

d(z, Tz) ≤ d
(
z, T2z

)
+ d
(
Tz, T2z

)
≤ (1 + β

)
d
(
Tz, T2z

)

≤ (1 + β
)
qd(z, Tz) =

β + β2

1 − α d(z, Tz)

< d(z, Tz),

(3.21)

which is a contradiction. Therefore Tz = z holds.
In the case where (α, β) ∈ Δ3, we consider the following two cases.

(i) There exist at least two natural numbers n satisfying un = z.

(ii) un /= z for sufficiently large n ∈ N.

In the first case, if we assume Tz/= z, then {un} cannot be Cauchy. Therefore Tz = z. In the
second case, we have by (3.16), ψ(α, β)d(un, Tun) ≤ d(un, z) for sufficiently large n ∈ N. From
the assumption,

d(z, Tz) = lim
n→∞

d(Tun, Tz) ≤ lim
n→∞

(
αd(un, Tun) + βd(z, Tz)

)
= βd(z, Tz). (3.22)

Since β < 1, we obtain Tz = z.
In the case where (α, β) ∈ Δ4, we note that ψ(α, β) = (1 + r)−1. By Lemma 2.1, either

ψ
(
α, β
)
d(un, Tun) ≤ d(un, z) or ψ

(
α, β
)
d
(
Tun, T

2un
)
≤ d(Tun, z) (3.23)

holds for every n ∈ N. Thus there exists a subsequence {nj} of {n} such that

ψ
(
α, β
)
d
(
unj , Tunj

)
≤ d
(
unj , z

)
(3.24)

for j ∈ N. From the assumption, we have

d(z, Tz) = lim
j→∞

d
(
Tunj , Tz

)
≤ lim

j→∞

(
αd
(
unj , Tunj

)
+ βd(z, Tz)

)
= βd(z, Tz). (3.25)

Since β < 1, we obtain Tz = z. Therefore we have shown Tz = z in all cases.
From (3.11), the fixed point z is unique.

Remark 3.2. We have shown Tz = z, dividing four cases. It is interesting that the four methods
are all different. We can rewrite ψ by

ψ
(
α, β
)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 if α + β + min {α, β}2 < 1,

1 − β
1 − β + min

{
α, β
} if α + β + min {α, β}2 ≥ 1.

(3.26)
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4. The Best Constants

In this section, we prove the following theorem, which informs that ψ(α, β) is the best constant
for every (α, β) ∈ Δ.

Theorem 4.1. Define a function ψ as in Theorem 3.1. For every (α, β) ∈ Δ, there exist a complete
metric space (X, d) and a mapping T on X such that T has no fixed points and

ψ
(
α, β
)
d(x, Tx) < d

(
x, y
)
implies d

(
Tx, Ty

) ≤ αd(x, Tx) + βd(y, Ty) (4.1)

for all x, y ∈ X.

Proof. We put q and r by (3.4).
In the case where (α, β) ∈ Δ1 ∪ Δ2, define a complete subset X of the Euclidean space

R by X = {−1, 1}. We also define a mapping T on X by Tx = −x for x ∈ X. Then T does not
have any fixed points and

ψ
(
α, β
)
d(x, Tx) = 2 ≥ d(x, y) (4.2)

for all x, y ∈ X.
In the case where (α, β) ∈ Δ3, we put

p :=
β

1 − β ∈ (0, 1). (4.3)

We note that ψ(α, β)(1 + p) = 1. Define a complete subset X of the Euclidean space R by

X = {0, 1} ∪ {xn : n ∈ N ∪ {0}}, (4.4)

where xn = (1 − q)(−p)n for n ∈ N ∪ {0}. Define a mapping T on X by T0 = 1, T1 = x0, and
Txn = xn+1 for n ∈ N ∪ {0}. Then we have

d(T1, T0) = q = αd(1, T1) + βd(0, T0) ≤ αd(0, T0) + βd(1, T1),

ψ
(
α, β
)
d(0, T0) > ψ

(
α, β
)
d(xn, Txn) =

(
1 − q)pn = d(0, xn)

(4.5)

for n ∈ N ∪ {0}. Since

d(Txn, T1) − (αd(xn, Txn) + βd(1, T1)
)

=
(
1 − q)

(

1 − (−p)n+1 − α

β
pn+1 − β2

1 − α − β

)

≤ (1 − q)
(

1 − β2

1 − α − β

)

+
(
1 − q)pn+1

(
1 − α

β

)
≤ 0,

(4.6)
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we have

d(Txn, T1) ≤ αd(xn, Txn) + βd(1, T1) ≤ αd(1, T1) + βd(xn, Txn) (4.7)

for n ∈ N ∪ {0}. For m,n ∈ N ∪ {0} with m < n, since

d(Txn, Txm) −
(
αd(xn, Txn) + βd(xm, Txm)

)

=
(
1 − q)

(∣
∣
∣(−p)n+1 − (−p)m+1

∣
∣
∣ − α

β
pn+1 − pm+1

)

≤ (1 − q)
(
pn+1 + pm+1 − α

β
pn+1 − pm+1

)
≤ 0,

(4.8)

we have

d(Txn, Txm) ≤ αd(xn, Txn) + βd(xm, Txm) ≤ αd(xm, Txm) + βd(xn, Txn). (4.9)

In the case where (α, β) ∈ Δ4, we note that ψ(α, β)(1 + r) = 1. We also note that r ≥
2−1/2 > 1/2. Let �∞ be the Banach space consisting of all functions f from N into R (i.e., f is a
real sequence) such that ‖f‖ := supn|f(n)| < ∞. Let {en} be the canonical basis of �∞. Define
a complete subset X of �∞ by

X = {0, e1} ∪ {xn : n ∈ N ∪ {0}}, (4.10)

where

xn = (1 − r)rnen+1 − (1 − r)rnen+2 (4.11)

for n ∈ N ∪ {0}. We note that

d(xm, xn) =

⎧
⎨

⎩

(
1 − r2)rm if m + 1 = n,

(1 − r)rm if m + 1 < n,
(4.12)

for m,n ∈ N with m < n. Define a mapping T on X by T0 = e1, Te1 = x0, and Txn = xn+1 for
n ∈ N ∪ {0}. Then we have

d(T0, Te1) = r = αd(0, T0) + βd(e1, Te1) ≤ αd(e1, Te1) + βd(0, T0),

ψ
(
α, β
)
d(0, T0) > ψ

(
α, β
)
d(xn, Txn) = (1 − r)rn = d(0, xn)

(4.13)

for n ∈ N ∪ {0}. Since

d(Te1, Tx0) −
(
αd(e1, Te1) + βd(x0, Tx0)

)
=
(
1 − β)

(
1 − 2r2

)
≤ 0, (4.14)
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we have

d(Te1, Tx0) ≤ αd(e1, Te1) + βd(x0, Tx0) ≤ αd(x0, Tx0) + βd(e1, Te1). (4.15)

Since α + β + α2 ≥ 1, we have

d(Te1, Txn) = 1 − r ≤ αr = αd(e1, Te1)

< αd(e1, Te1) + βd(xn, Txn) ≤ αd(xn, Txn) + βd(e1, Te1)
(4.16)

for n ∈ N. We have

d(Txn, Txn+1) =
(

1 − r2
)
rn+1 = αd(xn, Txn) + βd(xn+1, Txn+1)

≤ αd(xn+1, Txn+1) + βd(xn, Txn)
(4.17)

for n ∈ N ∪ {0}. For m,n ∈ N ∪ {0} with m + 1 < n, we have

ψ
(
α, β
)
d(xm, Txm) = (1 − r)rm = d(xm, xn),

d(Txn, Txm) −
(
αd(xn, Txn) + βd(xm, Txm)

)
< d(Txn, Txm) − βd(xm, Txm)

= rm+1(1 − r) − βrm
(

1 − r2
)

= rm(1 − r)(α − β) ≤ 0.

(4.18)

This completes the proof.
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