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1. Introduction

Let I = [a,b], ] = [c,d] be closed, bounded, and nondegenerate (i.e., neither of them consists
of a single point) real intervals, and let f : I — I, F: ] — ] be continuous functions. The
aim of this paper is to discuss, under some additional assumptions on the maps f and F, the
problem of (topological) conjugacy of f and F. More precisely, we investigate the existence
and uniqueness of solutions ¢ : I — ] of the following functional equation:

p(f(x)) =F(p(x)), xel (1.1)

Let us recall that a homeomorphism ¢ : I — ] satisfying (1.1) is said to be a topological
conjugacy between f and F (f and F are then called topologically conjugate), whereas an
arbitrary function ¢ : I — ] fulfilling (1.1) is called a conjugacy between them (so the
conjugacy needs not to be continuous, surjective, or injective).

A continuous function f : I — I is said to be a horseshoe map (see [1]) if there exist an
integer n > 1 and a sequence (t;);-, of reals such that

a=ty<thi<---<t,=b, (1.2)
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and for every i € {0,...,n -1}, fi[,.) is @ homeomorphism of the interval [t;,¢;.1] (which is
called a lap of f) onto I. We say that horseshoe maps f : I — I'and F : | — ] having that
the same number of laps are of the same type if f and F are of the same type of monotonicity
on their leftmost laps.

It is known (see [1, 2]) that two horseshoe maps of the same type and without
homtervals (i.e., intervals on which all their iterates are monotone) are topologically
conjugate. So are also transitive horseshoe maps having two laps each, and, in this case,
topological conjugacy is only one (see [3]). Moreover, if f is transitive and F : [0,1] — [0,1]
is an arbitrary function, then every increasing, continuous, and surjective solution ¢ : I —
[0,1] of (1.1) is homeomorphic (see [4]). We will show (Example 3.7) that if we omit the
assumption of the transitivity of f, then such a solution needs not to be injective even if F is
continuous and transitive and f is continuous and piecewise monotone.

However, the main purpose of this paper is to find some regularity conditions on f and
F ensuring the uniqueness of conjugacy between them as well as implying that conjugacy is
topological. The following fixed point principle plays a crucial role in the proof of our main
result (Theorem 3.1).

Theorem 1.1 (see [5, Theorem 1.2, page 8] and also [6, Theorem 3.2, page 12]). Let (X, d) bea
complete metric spaceand T : X — X. If

d(T(x),T(y)) <y(d(x,y)), xyeX (1.3)
for a nondecreasing function y : [0,+00) — [0, +00) such that

lim y"(t) =0, t>0, (1.4)
then T has a unique fixed point.

2. Preliminaries

We begin by recalling the basic definitions and introducing some notation.
Throughout the paper E stands for the integer part function.
Let (X, d) be a metric space. A function T : X — X is called strictly contractive if

d(T(x),T(y)) <d(x,y), x,yeX x#y. (2.1)
Given a nondecreasing function y : [0, +o0) — [0, +00) such that

lim y"(t) =0, (2.2)

fort > 0 and a selfmap T of X, we say that T is y-contractive if it satisfies condition (1.3).
Given horseshoe maps f: I — I, F: ] — ] having laps

[ti/ti+1]/ [xi/xi+1]/ l S {0/"'rn_1}/ (23)
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respectively, for every i € {0,...,n -1} put
Ii = [ti, tia], Ji = [xi, xi:1], fi = fin, F;:=Fj,. (2.4)

A horseshoe map f : I — I having n laps [t;,ti+1] is said to be piecewise expansive (resp.,
piecewise y-expansive) if for every i € {0,...,n — 1}, fi‘1 is strictly contractive (resp., y-
contractive fora y : [0,+00) — [0, +00)).

We start with the following.

Proposition 2.1. Let f : I — I and F : | — ] be horseshoe maps having n laps [t;,ti.1] and
[xi, xi1], respectively. Assume also that ¢ : I — ] is a monotone and surjective solution of (1.1).
If ¢ is increasing, then

o) =x;, i€{0,...,n}, (2.5)

and @[L;] = Ji fori € {0,...,n—1}.
If ¢ is decreasing, then

p(t;) =x,, 1€{0,...,n}, (2.6)

and @[I;] = Ju-i-1 forie {0,...,n—1}.

Proof. Let us first note that the fact that ¢ : I — ] is monotone and surjective together with
(1.1) gives F(¢(t;)) € {c,d} fori € {0,...,n}, and consequently

p(t) € {x0,...,xn}, 1€{0,...,n}. (2.7)

Suppose that ¢(t;) = ¢@(tis1) forani € {0,...,n —1}. Then, using the fact that ¢ is monotone,
we see that ¢[I;] consists of a single point, and therefore so does F[¢[I;]]. But from (1.1) and
the surjectivity of ¢ it follows that

Flo[L]] = o[f[L]] = o[I] =7, (2.8)
a contradiction. We have thus shown that
@(t) #o(tia), i€1{0,...,n-1}. (2.9)
Assume that ¢ is increasing. Then, by (2.9), we obtain
p(to) <op(t) <~ <g(tn), (2.10)

which together with (2.7) gives (2.5). Hence we immediately see that for any i € {0,...,n-1},
olLi] = Ji.
The rest of the proof runs as before. O
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Proposition 2.2. Assume that

(H) f:I - Iand F: ] — ] are horseshoe maps of the same type and having n laps [t;,ti1]
and [x;, xis1], respectively,

and F is piecewise expansive. If ¢ : I — ] is a continuous and nonconstant solution of (1.1), then ¢
is surjective. If, moreover, n is even and ¢ is injective, then ¢ is strictly increasing.

Proof. Let a, p with a <  be such that [a, p] = ¢[I]. Then, by (1.1), we have
F[[a,f]] = [ B]- (2.11)

This and the fact that for every i € {0,...,n— 1}, F;! is strictly contractive shows that & and
are not in the same interval J;. Therefore, ¢ € F[[a, f]] or d € F[[a, f]], and consequently, by
(211),a=corp=d.

Assume that a = ¢ € Jy. Since B¢ Jo, Jo C [a, B], (2.11) now gives

[c,d] = F[Jo] € F[[a, B]] = [a, B]- (2.12)

Therefore, f = d. Similarly, = d implies a = c. We have thus shown that ¢ is a surjection.

Now, assume that 7 is even (which obviously yields f(a) = f(b)). Suppose also,
contrary to our claim, that ¢ is decreasing, and let us consider the case when f(a) = a. Then
¢(b) = cand ¢(a) = d, and (1.1) now gives

d=g¢(a) = ¢(f(a)) = ¢(f (b)) = F(p(b)) = F(c), (2.13)

which contradicts the fact that f and F are of the same type. Similar considerations apply to
the case when f(a) = b.

Lemma 2.3. Let n be odd, and let assumption (H) hold. If ¢ : I — ] is a solution of (1.1) such that
o[L] C Jpmici, i€{0,...,n—-1}, (2.14)
then
p(x) = F;}i_l (p(fi(x))), xel,ief0,...,n—-1}. (2.15)
If, moreover, F is piecewise expansive, then (2.6) holds true.

Conwversely, every function ¢ : I — ] satisfying (2.15) is a solution of (1.1) fulfilling (2.14).

Proof. 1t is obvious that if ¢ : I — ] fulfils (1.1) and (2.14), then (2.15) holds.
Assume that F is piecewise expansive. If f(a) = a, then from (1.1) and (2.14) it follows
that ¢(a) € J,-1 is a fixed point of F,_1, and the strict contractivity of F,'| gives ¢(a) = d.
Next, assume that f(a) = b, which clearly forces f(b) = a, Fal(d) = ¢, and Fr‘:l(c) =d.
Since by (2.14) we obtain ¢(b) € Jo and ¢(a) € J,-1, (1.1) implies F;}l((p(b)) = ¢(a) and
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F;'(p(a)) = ¢(b). If it were true that ¢(a) # d, we would conclude from the strict contractivity
of F;!, and F;' that

lp(®) | 2 |E,L (9®) - .1 (0)|
= |p(a) - d|
(2.16)
> |Fo' (p(a)) - F'(@)]
= lp(b) —c|,

a contradiction.
We have thus shown that ¢(a) = d. In the same manner we can see that ¢(b) = c.
Now, fix an i € {1,...,n — 1}. Suppose that i is even and note that from (1.1), the
equalities ¢(a) = d, p(b) = ¢, and the fact that n — i is odd, we get

F(op(t) = o(f(t:))
w(a), f(a)=a,
i {‘P(b)/ f(a)=b,
d, f(a)=a,
:{a f(a) =b,
= F(x).

(2.17)

Since, by (2.14), ¢(t;), Xn-i € Ju-i-1, the injectivity of F,_i_1 gives now ¢(f;) = x,,—;. As the same
conclusion can be drawn for odd i, the proof of (2.6) is complete.
The rest of the proof is immediate. O

Analysis similar to that in the proof of Lemma 2.3 (due to condition (2.18) it also
applies to the case when 7 is even) gives the following.

Lemma 2.4. Let assumption (H) hold. If ¢ : I — ] is a solution of (1.1) for which
plilcJi, i€{0,...,n-1}, (2.18)
then
o(x) = F' (p(fi(x))), x€l,i€l{0,...,n—1}. (2.19)

If, moreover, F is piecewise expansive, then (2.5) holds true.
Conversely, every function ¢ : I — ] satisfying (2.19) is a solution of (1.1) fulfilling (2.18).
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3. Main Results

We can now formulate our main results.

Theorem 3.1. If assumption (H) holds and F is piecewise y-expansive, then there exists a unique
function ¢ : I — ] satisfying (1.1) and condition (2.18). This function is continuous, surjective and
increasing. If, moreover, f is piecewise expansive, then ¢ is also strictly increasing.

Proof. Put

B:={p:1 — J:9(a)=c, @b)=4d},
C:={p e B: g is continuous}, (3.1)

M= {p e B: ¢y is increasing}.

It is easily seen that all these spaces with the metric d(¢p,¢) = sup,lp(x) — ¢(x)| are
complete.
Fix a ¢ € B, and set

T(p)(x) = F ' (¢(fi(x))), x€lL,i€{0,...,n-1}. (3.2)

We will show that the above formula correctly defines a selfmap of B. In order to do this let
us first fixani € {0,...,n — 1} and observe that we have

F'(p(b)), (iis odd and f(a) = a) or (i is even and f(a) = b)

F (p(fi(t))) = {

F'(¢(a)), (iisodd and f(a) =b) or (i is even and f(a) = a)

F'(d), (iisodd and f(a)=a) or (i is even and f(a) = b) (3.3)
F'(c), (iisodd and f(a) =b) or (iis even and f(a) = a)

= Xj.

In the same manner we can see that Fi‘_ll((p(fi,l(t,-))) =x;forie{l,...,n}. Thus, T: B — B
and, by Lemma 2.4, ¢ : I — ] is a solution of (1.1) fulfilling (2.18) if and only if it is a
fixed point of T. Moreover, it is easily seen that Tic : C — Cand T| 4 : M — _M. Now, fix
¢, ¢ € B, and note that by the facts that for every i € {0,...,n— 1}, F;! is y-contractive and y
is increasing, we get

d(T(p), T(y)) = S;gIT(tp) (x) = T () ()]

= max squT(w) (x) =T () (x)|

i€{0
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= max sup|F 1 (p(£0)) - F (g ()]

ief

max }sullo|1:{1 (p(x)) - F* ((,U(x))|

i€{0,...n-1

< Y<SUIID|(P(X) —qr(x)|>

=y(d(p,))-
(3.4)

Thus, the function T is y-contractive, and Theorem 1.1 now shows that T has a unique fixed
point ¢ € B. Similarly, T¢ has a unique fixed point ¢ € C C B, and T| 4 has a unique fixed
point ¢ 4 € M C B. Therefore, ¢ 4 = ¢ = ¢ and, in consequence, ¢ is a continuous, surjective
and increasing solution of (1.1) fulfilling (2.18).

Assume, additionally, that f is piecewise expansive. We will first show that ¢ is
constant in no neighbourhood of a or b.

To do this, suppose that ¢ is constant on a neighbourhood of a, and denote by [a, a],
where a € (a,b), the maximal interval of constancy of ¢. Since ¢ is surjective and satisfies
(2.18), [a, a] is a proper subset of I). Therefore, f(a) # f (a) and from (1.1) it follows that ¢ is
constant on f[[a, a]] = fo[[a, «]].

If f(a) = a, then

[a, f(@)] = fl[a,a]] C [a,a]. (3.5)

But from the strict contractivity of f;" we also get

la —al <|fo(a) - fola)| = |a- f(a)], (3.6)

a contradiction.

Now, assume that f(a) = b. Then f[[a,a]] = [f(a),b], so ¢ is constant on a
neighbourhood of b. Denote by [f, b], where f§ € (a, b), the maximal interval of constancy of ¢.
Since ¢ is surjective and satisfies (2.18), [, b] is a proper subset of I,,_1. Therefore, f(b) # f(f)
and from (1.1) it follows that ¢ is constant on f[[S, b]] = f.-1[[B, b]].

If f(b) =D, then

[f(B).b] = £11A.b]] < [p,b], (3.7)

which contradicts the strict contractivity of f;'.
Finally, assume that f(b) = a. Then f[[f,b]] = [a, f(B)], so both [f(a),b] and [a, f(f)]

are intervals of constancy of ¢, and therefore

a<f(f)<a<p<f(a)<b. (3.8)



8 Fixed Point Theory and Applications

This together with the strict contractivity of f;! and £, gives

[b—-B[ <|fb) - F(B)]
=la-f(P)|
<la-af
<|f(a) - fa)]
= b~ f(a)]
<[b-pl,

(3.9)

a contradiction.

Analysis similar to the above shows that ¢ is constant in no neighbourhood of b.

Now, suppose that ¢ is constant on a neighbourhood of t; forani € {1,...,n-1}. Then
from (1.1) it follows that ¢ is constant on a neighbourhood of a or b, which is impossible.

We have thus shown that if ¢ is not injective, then any interval of its constancy is
contained in I; for ani € {0,...,n — 1}. Let A be an interval of constancy of ¢ having the
maximal length. By (1.1), ¢ is constant on f[A]. Butsince A C I; forani € {0,...,n -1}, from
the strict contractivity of f;! it follows that the interval f[A] is of greater length than A, a
contradiction. O

Analysis similar to that in the proof of Theorem 3.1 with

B:={p:1 — J:¢(a)=d, ¢(b)=c},
M= {p € B: ¢ is decreasing}, (3.10)

T(p)(x) = F;}i_l((p(fi(x))), xel,i€{0,...,n-1},

and application of Lemma 2.3 instead of Lemma 2.4 gives the following.

Theorem 3.2. If n is odd, assumption (H) holds, and F is piecewise y-expansive, then there exists
a unique function ¢ : I — | satisfying (1.1) and condition (2.14). This function is continuous,
surjective, and decreasing. If, moreover, f is piecewise expansive, then ¢ is also strictly decreasing.

Let us next note that an immediate consequence of Theorems 3.1 and 3.2 and
Proposition 2.1 is what follows.

Corollary 3.3. If assumption (H) holds, F is piecewise y-expansive, and n is odd, then (1.1) has
exactly two monotone and surjective solutions. One of them is increasing, while the other is decreasing.

The following fact follows immediately from Propositions 2.1 and 2.2.

Remark 3.4. If assumption (H) holds, F is piecewise expansive and 7 is even, then (1.1) has
no homeomorphic solution satisfying condition (2.14).
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On the other hand, we also have the following.

Theorem 3.5. If assumption (H) holds and f and F are piecewise expansive, then there exists a
unique function ¢ : I — ] satisfying (1.1) and condition (2.18). This function is an increasing
homeomorphism. If, moreover, n is odd, then there is also exactly one map ¢ : I — ] fulfilling (1.1)
and condition (2.14). This map is a decreasing homeomorphism.

Proof. Put L; := [i/n,(i+1)/n] fori € {0,...,n—1}.If f(a) = a, then we also set

nx—1i, i 1s even,
H(x) := xel;,ief0,...,n-1}, (3.11)
-nx+i+1, iisodd,

while for f(a) = b we put

-nx+i+1, 1iiseven,
H(x) = xel;ief0,...,n-1}. (3.12)
nx —i, iis odd,

By Theorem 3.1 (for every i € {0,...,n -1}, HI_Ll,- is y-contractive with y(x) := (1/2)x for
x € [0,+00), so its assumptions are satisfied) there exist increasing homeomorphisms a : I —
[0,1], B: J — [0,1] such that

a(f(x)) = H(a(x)), xe€l, (3.13)
P(F(x)) = H((x)), x€]. (3.14)

Moreover, by Proposition 2.1,
all[1=L;=p[J;], i€{0,...,n—1}. (3.15)

Let us observe that in the case when 7 is odd from Theorem 3.2 and Proposition 2.1 it follows
that we can also take f which is a decreasing homeomorphism such that (3.14) holds true and

PlJil =Ly-is1, i€{0,...,n—-1}. (3.16)

Putting ¢ := ! o a and using (3.13) and (3.14) we obtain
9(f(x) = (H(a(x))) = F(p(x)), xe€l (3.17)
Furthermore, from (3.15) (resp., (3.16)) it follows that condition (2.18) (resp., (2.14)) holds
e We have thus shown that (1.1) has a homeomorphic, increasing solution fulfilling

(2.18) and if, moreover, n is odd, then it also has a homeomorphic, decreasing solution
satisfying (2.14).
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To prove the uniqueness, assume that ¢ : I — ] is a solution of (1.1) fulfilling
condition (2.18) (resp., (2.14)). Then, by (3.14), we get

Bly(f(x)) = P(F(p(x)) = H(B(¢(x))), xe€l, (3.18)

which means that f§ o ¢ satisfies (3.13). Moreover, from (3.15) (resp., (3.16)) it follows that
(Pow)[L;] cLiforie{0,...,n—-1}. Hence, by Theorem 3.1, fo ¢¢ = @ and so ¢ = ¢. O

As an immediate consequence of Theorem 3.5, Proposition 2.1, and Remark 3.4, we get
the following.

Corollary 3.6. Let assumption (H) hold, and let f and F be piecewise expansive. If n is even, then
(1.1) has exactly one homeomorphic solution. This solution is strictly increasing. If n is odd, then (1.1)
has exactly two homeomorphic solutions. One of them is strictly increasing, while the other is strictly
decreasing.

Finally, we give two examples. The first of them shows that if one replaces the
assumption that f is piecewise expansive by

|f[1(x)—f{1(y)| <|lx-y|, xyeli€l{0,...,n-1}, (3.19)

then the last assertion of Theorem 3.1 is no longer true.

Example 3.7. Letn=2,a=c=0,b=d=1,t, =x1 =1/2,

1
2x, X € _0, 5 ,
flx)=q9-x+ ; x€ %g , (3.20)
5
—-4x+4, x€ _6'1_'
and let F be the standard tent map defined by
F(x)=1-12x-1|, x€[0,1]. (3.21)

It is well known (see, e.g., [7] which is also a good survey on transitive maps) that F is
transitive. It is also easily seen that F fulfills the assumption of Theorem 3.1 with y(x) :=
(1/2)x for x € [0,+00) and

|f@) = fW)| 2 [x-y|. xyel,ic{01}. (322)

By Theorem 3.1 there exists a unique (continuous, surjective, and increasing) function ¢
satisfying equation (1.1) and condition (2.18). Put K := [2/3,5/6], and note that f[K] = K.
Furthermore, from (1.1) it follows that F[¢p[K]] = ¢[K]. Therefore, ¢[K] has to be one
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of the intervals: {0}, {2/3}, [0,1]. Consequently, ¢ is not injective, and thus (1.1) has no
homeomorphic solution.

Example3.8. Letn=2,a=c=0,b=d=1,t =x1=1/2,

f(x)=4x(1-x), x€][0,1], (3.23)

and let F be the standard tent map. It is known (see, e.g., [7-9]) that the function ¢ : I — I
given by

2
p(x) = - arcsin/x, x¢€[0,1] (3.24)
is a topological conjugacy between f and F. From Theorem 3.1 it follows that ¢ is the unique
conjugacy between these maps such that ¢[[0,1/2]] ¢ [0,1/2] and ¢[[1/2,1]] c [1/2,1]. In

particular, by Proposition 2.1, ¢ is the only continuous, increasing, and surjective conjugacy
between f and F.

Corollary 3.9. The function ¢ given by (3.24) is the only one satisfying
p(dx(1-x)) =1-|2p(x)-1|, x€[0,1], (3.25)

and such that ¢(x) <1/2 for x <1/2 and ¢(x) > 1/2 for x > 1/2.

Example 3.10. If ] = I and F = f is a horseshoe map, then for any positive integer m the
function ¢ := f™ is a continuous and surjective solution of (1.1). It is obvious that this solution
does not satisfy neither (2.14) nor (2.18). We thus see that in this case (1.1) can even have
infinitely many solutions.
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