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1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Recall
that a mapping T of H into itself is called nonexpansive (see [1]) if ||[Tx — Ty|| < ||x — y||
for all x,y € H. We denote by F(T) = {x € C : Tx = x} the set of fixed points of T. Recall
also that a self-mapping f : H — H is a contraction if there exists a constant a € (0, 1) such
that || f(x) = f(y)|| < allx — y||, forall x,y € H. In addition, let B : C — H be a nonlinear
mapping. Let Pc be the projection of H onto C. The classical variational inequality which is
denoted by VI(C, B) is to find u € C such that

(Bu,v-u)>0, VYveC. (1.1)
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For a given z € H, u € C satisfies the inequality

(u-z,v-u)>0, YveC, (1.2)

if and only if u = Pcz. It is well known that Pc is a nonexpansive mapping of H onto C and
satisfies

2
7

(x -y, Pcx - Pcy) > ||Pcx — Pcy Vx,y € H. (1.3)

Moreover, Pcx is characterized by the following properties: Pcx € C and forallx € H,y € C,

(x = Pcx,y — Pcx) <0, (1.4)

llx = y|* 2 llx = Pex|® + ||y - Pex]|. (1.5)

It is easy to see that the following is true:

ueVI(C,B) = u=Pc(u-ABu), A>0. (1.6)

One can see that the variational inequality (1.1) is equivalent to a fixed point problem.
The variational inequality has been extensively studied in literature; see, for instance, [2—
6]. This alternative equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems. Recall the following.

(1) A mapping B of C into H is called monotone if

(Bx-By,x-y)>0, Vx,yeC. (1.7)

(2) A mapping B is called f-strongly monotone (see [7, 8]) if there exists a constant
p > 0 such that

(Bx-By,x-y) > p|lx-vy|’>, vxyeC (1.8)

(3) A mapping B is called k-Lipschitz continuous if there exists a positive real number
k such that

|Bx - By|| <k|x-y|, Vx,yeC (1.9)

(4) A mapping B is called p-inverse-strongly monotone (see [7, 8]) if there exists a
constant > 0 such that

(Bx - By,x - y) > p||Bx - By|’, Vx,yeC. (1.10)



Fixed Point Theory and Applications 3

Remark 1.1. It is obvious that any p-inverse-strongly monotone mapping B is monotone and
1/p-Lipschitz continuous.
(5) An operator A is strongly positive on H if there exists a constant y > 0 with the

property

(Ax,x) >¥|lx|>, VxeH. (1.11)

(6) A set-valued mapping T : H — 2! is called monotone if for all x,y € H, f € Tx,
and g € Ty imply (x-vy, f-g) > 0. Amonotone mapping T : H — 2 is maximal if the graph
of G(T) of T is not properly contained in the graph of any other monotone mapping. It is
known that a monotone mapping T is maximal if and only if for (x, f) € HxH, (x-y, f-g) >
0 for every (y,g) € G(T) implies f € Tx. Let B be a monotone map of C into H, and let Ncv
be the normal cone to C atv € C, thatis, Ncv ={w € H : (u—v,w) >0, forall ue C},.

Tv =

Bv+ Ncou, ve C,
(1.12)

@, vg C.

Then T is the maximal monotone and 0 € Tv if and only if v € VI(C, B); see [9].
(7) Let F be a bifunction of C x C into R, where R is the set of real numbers. The
equilibrium problem for F : C x C — Ris to find x € C such that

F(x,y) >0, VyeC. (1.13)

The set of solutions of (1.13) is denoted by EP(F). Given a mapping T : C — H, let
F(x,y) = (Tx,y — x) for all x,y € C. Then, z € EP(F) if and only if (Tz,y —z) > 0
for all y € C. Numerous problems in physics, saddle point problem, fixed point problem,
variational inequality problems, optimization, and economics are reduced to find a solution
of (1.13). Some methods have been proposed to solve the equilibrium problem; see, for
instance, [10-16]. Recently, Combettes and Hirstoaga [17] introduced an iterative scheme
of finding the best approximation to the initial data when EP(F) is nonempty and proved a
strong convergence theorem.
In 1976, Korpelevich [18] introduced the following so-called extragradient method:

xo=x€C,
Yn = Pc(x, — ABxy), (1.14)

Xns1 = Pc (xn - )‘Byn)

forall n > 0, where A € (0,1/k),C is a closed convex subset of R”, and B is a monotone and
k-Lipschitz continuous mapping of C into R”. He proved that if VI(C, B) is nonempty, then
the sequences {x,} and {y,}, generated by (1.14), converge to the same point z € VI(C, B).
For finding a common element of the set of fixed points of a nonexpansive mapping and
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the set of solution of variational inequalities for f-inverse-strongly monotone, Takahashi and
Toyoda [19] introduced the following iterative scheme:

xo € C chosen arbitrary,
(1.15)
Xn1 = AnXy + (1 = an)SPc(xy, — AyBxy,), VYn2>0,

where B is f-inverse-strongly monotone, {a,} is a sequence in (0, 1), and {1\, } is a sequence
in (0,2p). They showed that if F(S)NVI(C, B) is nonempty, then the sequence {x,} generated
by (1.15) converges weakly to some z € F(S)NVI(C, B) . Recently, liduka and Takahashi [20]
proposed a new iterative scheme as follows:

xo =x € C chosen arbitrary,
(1.16)
Xnt1 = apx + (1 —a,)SPc(x, — \,Bx,), VYn>0,

where B is -inverse-strongly monotone, {a,} is a sequence in (0, 1), and {1\, } is a sequence
in (0,2p6). They showed that if F(S)NVI(C, B) is nonempty, then the sequence {x,} generated
by (1.16) converges strongly to some z € F(S) N VI(C, B).

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [21-24] and the references therein. Convex
minimization problems have a great impact and influence in the development of almost all
branches of pure and applied sciences. A typical problem is to minimize a quadratic function
over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

min1<Ax,x> - (x,b), (1.17)
xeC 2

where A is a linear bounded operator, C is the fixed point set of a nonexpansive mapping
S on H, and b is a given point in H. Moreover, it is shown in [25] that the sequence {x;,}
defined by the scheme

Xn+1 = €nY f (Xn) + (1 — €2 A)Sxy (1.18)

converges strongly to z = Pr5(I — A + yf)(z). Recently, Plubtieng and Punpaeng [26]
proposed the following iterative algorithm:

F(un,y) + l<y— Un, Un — %) 20, Yy €H,
n (1.19)

Xn+l = Gan(xn) + (I - €,A)Suy.

They prove that if the sequences {¢,} and {r,} of parameters satisfy appropriate condition,
then the sequences {x,} and {u,} both converge to the unique solution z of the variational
inequality

((A-yf)q,q9-p) 20, peF(S)NEP(F), (1.20)
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which is the optimality condition for the minimization problem

xeF(S)mrElP(F)Z x,x) = h(x), (1.21)

where h is a potential function for yf (i.e., h/(x) = y f(x) for x € H).

Furthermore, for finding approximate common fixed points of an infinite countable
family of nonexpansive mappings {T,} under very mild conditions on the parameters.
Wangkeeree [27] introduced an iterative scheme for finding a common element of the set of
solutions of the equilibrium problem (1.13) and the set of common fixed points of a countable
family of nonexpansive mappings on C. Starting with an arbitrary initial x; € C, define a
sequence {x,} recursively by

F(un,y) + %(y—un,un—x@ >0, Vyec,

Yn = Pc(uy, — AyBuy,), (1.22)
Xns1 = Qnf (Xn) + PuXn + YaSnPc(tn — \uBys), V¥n>1,
where {ay}, {fn}, and { Yn} are sequences in (0,1). It is proved that under certain appropriate

condltlons 1mposed on {a,},{Pu}, {yn}, and {r,}, the sequence {x,} generated by (1.22)
strongly converges to the unique solutlon q € N¥,F(S,) n VI(C,B) N EP(F), where p =
Pre F(S,)aVI(CB)NEP(F) f(g) which extend and improve the result of Kumam [14].

Definition 1.2 (see [21]). Let {T,} be a sequence of nonexpansive mappings of C into itself,
and let {1, } be a sequence of nonnegative numbers in [0,1]. For each n > 1, define a mapping
W,, of C into itself as follows:

un,n+1 = I/
un,n = ﬂnTnun,nH + (1 - ,un)I/

un,n—l = ﬂn—lTn—l un,n + (1 - ﬂn—l)L

Ui = px Tl e + (1 - pic) L, (1.23)
Upj-1 = pe-1TiecaUnpe + (1= pier) 1,

Upo = ool + (1 - o)1,
Wn = un,1 = /11T1un,2 + (1 —#1)1.

Such a mapping W, is nonexpansive from C to C, and it is called the W-mapping generated
by T, Ty, ..., T, and p1, pa, . .., in.
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On the other hand, Colao et al. [28] introduced and considered an iterative scheme for
finding a common element of the set of solutions of the equilibrium problem (1.13) and the
set of common fixed points of infinitely many nonexpansive mappings on C. Starting with an
arbitrary initial xo € C, define a sequence {x,} recursively by

F(un,y) + l<y— Un, U — Xy) 20, Yy € H,
T (1.24)

Xn+1 = ean(xn) + ﬁxn + ((1 - ﬂ)I - enA)Wnun/

where {¢,} is a sequence in (0, 1). It is proved [28] that under certain appropriate conditions
imposed on {e,} and {r,}, the sequence {x,} generated by (1.24) strongly converges to z €
N, F(T,,) N EP(F), where z is an equilibrium point for F and is the unique solution of the
variational inequality (1.20), thatis, z = Pm;lﬁ;lp(Tn)mEp(F)(I -(A-7f))z.

In this paper, motivated by Wangkeeree [27], Plubtieng and Punpaeng [26], Marino
and Xu [25], and Colao, et al. [28], we introduce a new iterative scheme in a Hilbert space H
which is mixed by the iterative schemes of (1.18), (1.19), (1.22), and (1.24) as follows.

Let f be a contraction of H into itself, A a strongly positive bounded linear operator on
H with coefficient y > 0, and B a p-inverse-strongly monotone mapping of C into H; define
sequences {x,}, {yx}, {kn}, and {u,} recursively by

x1 =x € C chosen arbitrary,

F(un,y) + %W—umun—xn) >0, Vye(C,

Yn = Pc(uy, — AyBuy,), (1.25)

kn = anuty + (1 — ay) P (un — AnByy),
X1 = EnY f (Xn) + Puxn + (1= )] — €,A)Wyk,, Yn>1,

where {W,} is the sequence generated by (1.23), {e,}, {a,}, and {f,} C (0,1) and {r,} C
(0, 00) satisfying appropriate conditions. We prove that the sequences {x,}, {y.}, {k.} and
{u,} generated by the above iterative scheme (1.25) converge strongly to a common element
of the set of solutions of the equilibrium problem (1.13), the set of common fixed points of
infinitely family nonexpansive mappings, and the set of solutions of variational inequality
(1.1) for a p-inverse-strongly monotone mapping in Hilbert spaces. The results obtained in
this paper improve and extend the recent ones announced by Wangkeeree [27], Plubtieng
and Punpaeng [26], Marino and Xu [25], Colao, et al. [28], and many others.

2. Preliminaries

We now recall some well-known concepts and results.

Let H be a real Hilbert space, whose inner product and norm are denoted by (-, -) and
I - |I, respectively. We denote weak convergence and strong convergence by notations — and
—, respectively.
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A space H is said to satisfy Opial’s condition [29] if for each sequence {x,} in H which
converges weakly to point x € H, we have

liminf||x, — x|| < liminf||x, - y|, VyeH, y#x. (2.1)

Lemma 2.1 (see [25]). Let C be a nonempty closed convex subset of H, let f be a contraction of
H into itself with a € (0,1), and let A be a strongly positive linear bounded operator on H with
coefficient’y > 0. Then , for 0 <y <¥/a,

(x-y, (A-v)x=(A-y/)y) > G-ay)|x-y|’, xyeH. (2.2)

That is, A — y f is strongly monotone with coefficient y — ya.

Lemma 2.2 (see [25]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0 and 0 < p < ||A||™". Then ||I - pA|| <1 - pY.

For solving the equilibrium problem for a bifunction F : C x C — R, let us assume
that F satisfies the following conditions:

(A1) F(x,x) =0forall x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0Oforall x,y € C;
(A3) foreach x,y,z € C lim;oF(tz+ (1 - t)x,y) < F(x,y);

(A4) for each x € C,y — F(x, y) is convex and lower semicontinuous.

The following lemma appears implicitly in [30].

Lemma 2.3 (see [30]). Let C be a nonempty closed convex subset of H and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists z € C such that

F(z,y)+%<y—z,z—x>20 Vy e C. (2.3)

The following lemma was also given in [17].

Lemma 2.4 (see [17]). Assume that F : C x C — R satisfies (A1)—(A4). For r > 0 and x € H,
define a mapping T, : H — C as follows:

T,(x):{zeC:F(z,y)+%<y—z,z—x>20, VyeC} (2.4)

forall z € H. Then, the following holds:

(1) T, is single-valued;
(2) T, is firmly nonexpansive, that is, for any x,y € H,

|| Tx - Try”2 <(T,x-T,y,x-y); (2.5)
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(38) F(Ty) = EP(F);
(4) EP(F) is closed and convex.

For each n,k € N, let the mapping U, be defined by (1.23). Then we can have the
following crucial conclusions concerning W,. You can find them in [31]. Now we only need
the following similar version in Hilbert spaces.

Lemma 2.5 (see [31]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1,Ts,... be nonexpansive mappings of C into itself such that N>, F(T,) is nonempty, and let
Ui, M, . .. be real numbers such that 0 < p, < b < 1 for every n > 1. Then, for every x € C and
k € N, the limit lim,, _, ..U, kx exists.

Using Lemma 2.5, one can define a mapping W of C into itself as follows:

Wx = lim Wyx = lim U, 1x (2.6)

n—oo

for every x € C. Such a W is called the W-mapping generated by T1,T5,... and pi, ya, . . ..
Throughout this paper, we will assume that 0 < y,, < b < 1 for every n > 1. Then, we have the
following results.

Lemma 2.6 (see [31]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T1,Ty, ... be nonexpansive mappings of C into itself such that N°, F(T,) is nonempty, and let
U1, M2, . .. be real numbers such that 0 < p, < b <1 for every n > 1. Then, F(W) = N%  F(T,).

Lemma 2.7 (see [32]). If {x,} is a bounded sequence in C, then lim,, _, ,[|[Wx,, — Wyx,|| = 0.
Lemma 2.8 (see [33]). Let {x,} and {z,} be bounded sequences in a Banach space X, and let {f,} be
a sequence in [0,1] with 0 < liminf, _, B, < limsup, B, < 1. Suppose xps1 = (1= Pu)zn + PnXn

for all integers n > 0 and limsup,, ___ (Iyus1 ~ Zall = [Xns1 —xall) < 0. Then, lim, - oo |z — x| = 0.

Lemma 2.9 (see [34]). Assume that {a,} is a sequence of nonnegative real numbers such that
a1 <(1-1L,)a,+o,, n>0, (2.7)

where {1} is a sequence in (0,1) and {o,} is a sequence in R such that
(1) X1 ln = o0;
(2) limsup, , 0x/l, <00r 377 |og] < 0.
Then lim,, _, wa, = 0.
Lemma 2.10. Let H be a real Hilbert space. Then for all x,y € H,
(1) llx + yl? < llxl? + 2(y, x + y);
2) llx + yI? 2 llxl* + 2(y, x).
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3. Main Results

In this section, we prove the strong convergence theorem for infinitely many nonexpansive
mappings in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let F be a bifunction
from C x C to R satisfying (A1)-(A4), let {T,} be an infinitely many nonexpansive of C into itself,
and let B be an p-inverse-strongly monotone mapping of C into H such that © = n* F(T,) N
EP(F)nVI(C,B) #0. Let f be a contraction of H into itself with a € (0,1), and let A be a strongly
positive linear bounded operator on H with coefficient y > 0 and 0 < y < y/a. Let {x,}, {ya},
{ky}, and {u,} be sequences generated by (1.25), where {W,} is the sequence generated by (1.23),
{en}), {an}, and {B,} are three sequences in (0, 1), and {r,} is a real sequence in (0, oo) satisfying the
following conditions:

(i) imy— o€ = 0, Dy €4 = 0;

(ii) limy, — o0, = 0 and 3774 &y = o0;

)

)
(iii) 0 < liminf, , B, < limsup, | B, <1;
(iv) iminf, _, 1, > 0 and limy, _, |yt — 7] = 0;
)

(v) {An/B} C (1,1 -0) for some 7,6 € (0,1) and lim, _, ;.\, = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x)>0, VxeO. (3.1)

Equivalently, one has z = Po(I - A+ yf)(z).

Proof. Note that from the condition (i), we may assume, without loss of generality, that e, <
(1= B)IIA|™" for all n € N. From Lemma 2.2, we know that if 0 < p < ||A| ™}, then ||T - pA]| <
1-py. We will assume that ||I- A|| < 1-7. First, we show that I -\, B is nonexpansive. Indeed,
from the f-inverse-strongly monotone mapping definition on B and condition (v), we have

1 = uB)x = (I = LB)y||* = || (x = ) = Aa(Bx - By) |’
= |lx = y||* = 2Au(x — y, Bx - By) + 2| | Bx - By||®
< |lx = y||* - 24|| Bx - By||* + A3||Bx - By||? (3.2)

= [lx = yI* + A (Au ~ 28) || Bx ~ By ||*

2
7

<|x-y

which implies that the mapping I — A,B is nonexpansive. On the other hand, since A is a
strongly positive bounded linear operator on H, we have

[All = sup{[{Ax, x)[ : x € H, ||x|| = 1}. (3.3)
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Observe that
(((1=Pn)] - e,A)x,x) =1 - P, — €,(Ax, x)
> 1= pn—enllAl (3.4)

>0,
and this show that (1 — ,)I — €, A is positive. It follows that

|(1=Bu)I - enA| =sup{|{((1-Bu)] -€e,A)x,x)|:x € H,|x| =1}
=sup{l -, —e.(Ax,x) : x € H,||x|| =1} (3.5)
Sl_ﬂn_en?-

Let Q = Po, where © := N F(T,) N EP(F) N VI(C, B). Note that f is a contraction of H into
itself with & € (0,1). Then, we have

[QU-A+yf)(x)-QU-A+yf)(W)[| = [Po(T- A+Yf)(x) - Po(I - A+Yf)(y)]
<NI-A+yf)0)-T-A+yf) (W)l
<= Allllx =yl + [l fx) - FW)
<(@-Plx-yll +yallx-yl
= (1-7+ya)|lx -yl
=(1-QG-ra)llx-yll. vxyeH.
(3.6)

Since 0 < 1 - (y — ya) < 1, it follows that Q(I — A + yf) is a contraction of H into itself.
Therefore by the Banach Contraction Mapping Principle, which implies that there exists a
unique element z € H such that z=Q(I - A+yf)(z) = Po(I - A+7yf)(2).

We will divide the proof into five steps.

Step 1. We claim that {x,} is bounded. Indeed, pick any p € ©. From the definition of T;, we
note that u, = T, x,. If follows that

llun = || = |20 = T p|| < |20 = p]|- (3.7)

Since I — A,,B is nonexpansive and p = Pc(p — A, Bp) from (1.6), we have

ly = pll = | Pc(un = \uBun) = Pe(p ~ AuBp) ||
< || (un = AnAun) = (p ~ 1uBp) || 59
= ”(I - )lnA)un - (I - -)‘nB)p”

< Nluw = p|| < |0 =Pl
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Put v, = Pc(u, — A,Byy,). Since p € VI(C,B), we have p = Pc(p — A,Bp). Substituting x =
U, — A Ay, and y = p in (1.5), we can write

llon = pII* < [l = 1aByn = pl|* = [|ttn = 1uByn = va®
= Nl = pII* = 20 (Byw, e — p) + 22| By
— Nt = 0all? + 24 (BYn, thn — 0) = 12| By ||* 5o
= \lttn = pI = l1ttn = 0all® + 220 ( By, p — 1)
= [[tn = PI* = It = 0al1* + 22( By = Bp, p = )
+ 20:(Bp, P = Yn) + 200 BYn, Yn — Un).

Using the fact that B is p-inverse-strongly monotone mapping, and p is a solution of the
variational inequality problem VI(C, B), we also have

(BYn—Bp,p—yn) <0,  (Bp,p—yn) <0. (3.10)
It follows from (3.9) and (3.10) that

o = pII” < [l = pI* = = 0l + 20 By, Y — 00
= = pII* = 11 ttn = ) + @ = 2 | + 200 (B, = )
< Motn =PI = Netw = yull” = llyn = 2l (3.11)
- 2<un ~Yn,Yn — vn> + 2)Ln<B]/n/ Yn — Un>

= Nt = pI* = 4 = yull* = 9 = 0alI* + 20 = XuBYss = Y, 00 = y).
Substituting x by u, — A,Bu,, and y = v, in (1.4), we obtain

(un — My Bty = Y, Uy — Y ) < 0. (3.12)

It follows that

<un - -)tnByn - ]/n,"Un - yn> = <un - ')LnBu” - yn/vn - yn>
+ (LBt = 1,BYn, On = Yn)
< (XyBity = X BYn, 0y — Y ) (3.13)
< || Bt = Byal|[|on = v

An
< 5 = nllllon = nll
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Substituting (3.13) into (3.11), we have

1on =PI < lfew =PI = llttn = yall” = 1 = 00 l” + 2t = LB = Y, 00 = i)

2 2 2
< Ml =PI = lltn = yll” = g = 2nll” + 25w = | [ =

)LZ
< ln =l = Mt = yall* = llyn = oull” + |l - yall” + on = vl

(3.14)
2 2 A2 2
= [lun = p[I” = llun = yull” + @ll”n = Yull
)LZ
2 o 2
=l (38 =1 o=
<l =plI* < [la =l
Setting k,, = apu, + (1 — a,)vy,, we can calculate
[[xns1 =Pl = llen(yf (xn) = Ap) + Bu(xn = p) + (1 = Pu) I = €2 A) (Wakn = p) |
< (1= Pu = en¥) llkn = pll + Pullxn = pl| + €nllyf (xn) — Ap||
< (1= B = eny) {tnl|un —p|| + A= an)[|on - pl[}
+ Pullxn = pl| + €nllyf (xn) = Ap|
< (1= B = en¥) {etul|xn —p|| + 1 = an)[|xn - p][}
+ Pullxn = pl| + €nllyf (xn) = Ap| (3.15)
= (1= Bn =) lxn =Pl + Bullxn = pll +eullyf(xn) - Ap]|
= (1=ea))llxn =Pl + enrll f ) = F(P) | + enllyf (p) - Apl
< (L=ea))[lxn = p|l + envalxn —pll + enllyf (p) - Ap|
- - yf(p) - Ap
- (1- (- renllma—pl + (7 ye, L2
By induction,
-A
||xn = 2| Smax{”xl—p”,W}, neN. (3.16)

Hence, {xn} is bounded, so are {un}r {Un}r {Wnkn}r {f(xn)}r {Bun}r {yn}l and {Byn}'

Step 2. We claim that lim,, _, oo || X1 — x| = 0.
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Observing that u,, = T, x, and 141 =T,

a1 Xn+1, We get

F(un,y) +rl<y—un,un—xn> >0 VYyeH (3.17)

1
F(un1,y) + ﬁ(y ~ Un1, Uni1 = Xnr1) 20 Vy € H. (3.18)
n+
Putting v = 1,41 in (3.17) and y = u,, in (3.18), we have

1
F(un, up) + r_<un+l — Up, Uy _xn> >0
n

(3.19)
F (1, un) + X (Un = Uns1, Uns1 — Xns1) 2 0.
n+
So, from (A2) we have
<un+1 —u,, Un = Xn  Un+l — xn+l> >0, (3.20)
n Tn+1
and hence
r
<un+1 —Up,Up — Ups1 T Upsl — Xp — “ (Uns1 — xn+1)> > 0. (3.21)
Tn+l

Without loss of generality, let us assume that there exists a real number ¢ such that r,, > ¢ >0
for all n € N. Then, we have

r
n+l = Un = n+l = Un, An+l — An o n+l = An+l
[|u wa|* < {u Uy, X X+ (1 - (u Xp+1)

Tnt
(3.22)
»
< ttger - unn{nxm sl (1 it - 2l ],
Tn+l
and hence
”un+1 - un” S “xn+1 - xn” + | |rn+1 - rn|||un+1 - xn+1“
" (3.23)

My
<l = x| + T|rn+1 — T,
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where M; = sup{||lu, — x,| : n € N}. Note that

l0ns1 = Onll < || Pc(ns1 = Ans1 Byns1) = Pe(n — XuByn) ||
< |tni1 = Ans1BYnaa = (un — XuBy) ||
= ||(uns1 — A1 Buysr) — (un — A1 Buy)
+ As1 (Bitns1 = Byt = Bun) + 1By ||
<N (ns1 = A1 Buns1) = (un = Ap1 Buy) ||
+ Ayt (| Bunaa |l + || Bynst || + [|1Bunll) + Lul| Byl
< st = snll + Xns (| Bttt [| + || Bynsa || + [ Ball) + Anll Byall,
Ikns1 = knll = llanattner + (1= @ni1)Ons1 = @ity — (1 = ) vy|
= [lans (U1 — un) + (Ans1 — an)ttn
+ (1= ap41) (Uns1 = Un) + (an = Ani1)0nl| (3.24)
< apal[tner = unl| + (1 = an)[[On1 = Onll + |an — s [[|tin + onl|
= Apa|[thn1 — || + (1 — ani1)
* {ttns1 = sl + A1 (1Bt | + || By || + [ Buall)
+ Al Bynll} + ot — atnsa|[|ttn + vnll
= ltpe1 — unll + (1 = A1) A1 (B || + || BYnsa || + |1 Butall)

+ (1 - an+1))‘n”Byn” + |an - an+1|“un + Un”
My
< ||xn+1 - xn” + Tlrnﬂ - rnl + (1= ap1)bnn
X (IIBupsa |l + || Bynsa || + | Buall)

+ (1= ana1) du|| By + lan — apsa|l|1tn + 0n.-

Setting

. xmll_— Z,xn _enyflx) + ((11—_13;31 ~enA)Wakn (3.25)
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we have x,,1 = (1 = fu)zn + Pnxn,n > 1. It follows that

o _ €n+1Yf(xn+1) + ((1 - ,Bn+l)1 - €n+1A) Wiikna
n+1 n 1- ﬂn+1

~ eny f(xn) + (1= Bn)I — €,A)W,ky,
1-pn

_Ent1 f( Xp1) —

= Xn) + Warikna — Wik,
1 ﬁn+ f( ) 1 1~

1- ﬂn (3.26)

€n €n+l
AW, k, - ———— AW, 1k
1- ,Bn nin 1— ,ﬁn+1 n+1An+1

+

€n €n
= T (1 ) = AWntknit) + 720 (AWaks = 1 ()
+ Wiysiknir = Whaky + Wik, — Wy ky,.

It follows from (3.24) and (3.26) that

€
||Zn+1 - Zn” - ||xn+1 - xn” < ad (”Yf(xnﬂ)” + ||AHn+1kn+1||)
1 _ﬂn+1

€n
1 _ﬂ (”Awnkn” + ”Yf(xn)”) + ||Wn+1kn+1 - Wn+1kn||
n
+ [Whiikn = Wakn || = |Xpe1 = x|

€n
< 2 U f e + 1 AWa k)

€n
-5 (IAWknll + [y £ ) |[) + llknsr = Feull

(3.27)
+ ”Wn+1kn - Wnkn” - ||xn+1 - xn”

< T (Il Gennt) | + 1AWt k)
1 ﬂn+1

+

n M
T (AWKl lly £ Gell) + = =

+

(1 - an+1))‘n+1(”Bun+1” + ||Byn+1|| + ||Bun”)

+

(1 = an1) An|| By || + lon — @ [l + 04|

+

”Wn+1kn - Wnkn”
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Since T; and U,,; are nonexpansive, we have

Whiikn = Waka|l = || 1 Til per ok — pr Til k||
S ||U i1 pkn — U k|
= p1 || p2Tol a1 sk — p2 Tl 3k |
< prp2||U i1 3k — U akyl|

(3.28)
< Hi2 -~ ',un”un+l,n+l kn - un,n+1 kn”
< M2Hlfli/
i=1
where M, > 0 is a constant such that ||U+1,n+1kn — Upne1knl| < My forall n > 0.
Combining (3.27) and (3.28), we have
€n
|zns1 = Zall = |Xns1 = x|l < 1_—[;11(”Yf(xn+1)“ + ||AWn+1kn+1||)
n+
o T (AWl + [ o)) + i =
+ (1= 1) et (Bt | + | Bynea || + [1Bueall) (329)
+ (1= p1) du || By || + |an — s |||t + o]
+ le_[#i,
i=1
which implies that (noting that (i), (ii), (iii), (iv), (v),and 0 < y; <b < 1,forall i > 1)
lim sup(||zn+1 = Zall = |01 — x4l|) <0. (3.30)
Hence, by Lemma 2.8, we obtain
lim ||z, — x,|| = 0. (3.31)

It follows that

nli_)rr;”xnﬂ — x| = nlgr;o(l - ﬁn)“zn = x|l = 0. (3.32)
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Applying (3.32) and (ii), (iv), and (v) to (3.23) and (3.24), we obtain that

lim ||upe1 — uyl| = im ||kps1 — ka|| = 0.
n—oo n— oo

Since xXp+1 = €,Y f(xn) + Pnxn + (1 = po)I — €,A)W,,k,, we have

”xn - Wnkn” < ”xn - xn+1|| + ”xn+1 - Wnkn”

= ”xn - xn+1|| + ||€an(xn) + ﬁnxn + ((1 - ,Bn)I - €nA)Wnkn - Wnkn”

= ”xn - xn+1|| + ||€n (Yf(xn) - AWnkn) + ,Bn(xn - Wnkn)”
< xn = xXpaa || + en(”Yf(xn)” + “AWnkn”) +ﬂn“xn - Wakall,

that is

1 €n
I = Warkiall < =5t = 2l + 7= (I f Can) | + 1AWkl

By (i), (iii), and (3.32) it follows that
lim [|[Wy,k, — x| = 0.

Step 3. We claim that the following statements hold:

(i) limy, — oo [[uy — kull = 0;

(if) 1imy, — o5 [| 20 — 14| = 0.

Forany p € © :=n, F(T,,) N EP(F) N VI(C, B) and (3.14), we have

”kn _p||2 = ”“n(un —P) + (1 —au)(vn - P)||2

< an”un _P“Z +(1- an)”vn _PHZ

;

<l pl = =+ (-1 ) -l
2 A 2
= I+ =) (35 1) i e

iz
<l - (551 )l

17

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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Observe that
1 =PI = 101 = B)T = €0 A) (Wak = p) + Bu(on = p) + €n(y f (xa) = Ap)|*
= [[((1 = B)I = ea A)(Wokis = p) + Bu(t = p)||* + €2l f (xa) - Ap]|®
+ 2Pnen(xn = p, Y f(xn) — Ap)
+2en(((1 = Pu)I = enA) (Wukn = p), v (xn) = Ap)
< [(1 = Bu = e Wik = p|| + Bl 0 = p|I]*
+€2|lyf(xa) - Ap|)®
+ 2pnen(xn = p, Y f(xn) - Ap)
+2en(((1= Pu)] = enA) (Wakn = p), v f (xn) = Ap)
<[ = Bu—enP) Ik = pll + Bullxu = PlII* + ca
< (1= o= 7)o = pI* + B2 120 I (5.58)
+2(1 = Pu =€) Bullkn = p|||xn = p| + cn
< (1= fu =€)’ [Ikn = p|I* + B [0 = I’
+ (1= Bu=enD)Ba (k= plI* + 120 = pII) + s
= [(1-ed)® ~2(1 - e+ B2 Ik = pII* + Bl s - pII
+ (A =em)u=B2) (Ilkn = pIP + %0 = pII) +ca
= (1= &)’ llkn = pl* = (1 - ea?)Bull e~ p
+ (1= e)pllx—pl* e
= (1= e7) (1= B~ ) | kn — pII* + (L= &) Bull o — pII” + s
where
cn = enllyf(xn) = Apl|” + 2Buen(xn — P,y f (xa) = Ap)

(3.39)
+ 26x(((1 = B) I = €nA) (Wakn = p), v f (xn) — Ap)-
It follows from condition (i) that

lim ¢, = 0. (3.40)

n— oo
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Substituting (3.37) into (3.38), and using (v), we have

_ _ A2
s =l < (1= ) (1 By —em{nxn P >(p— . 1> e —ynnZ}

+ (1= ea)Pullxa —pl* +
= (1=ed)’Joen I

_,\2
—;—1>||un—yn||2+cn

+(1—en?)(l—ﬁn—en?)(l—an)<ﬁ

:
O RLRT] S e

It follows that

A%
(1= )6 ||t = v < (1 - ) <1 - E> [0 = |

< len = plI* = llxner = plI* +

= (lxen =pll = 1w = pID) Ul =Pl + |21 =Pl + e

< “xn - xn+1||(”xn _P” + ||xn+1 - P”) + Cp.
Since lim,, _, ..¢,, = 0 and from (3.32), we obtain

lim |2, — ya|| = 0.

n—oo
Note that

kn — Un = an(un — vn).
Since lim,, _, &, = 0, we have

lim ||k, — v,|| = 0.
n— oo

19

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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As B is 1/ p-Lipschitz continuous, we obtain

lon = yaull = | Pe(tn = 1uByn) — P (un — AyBuy) ||
< || (un = \uByn) — (1 — X Buy) ||

= 1B, - By |

< =l
p

then, we get

1im o - ]| =0,
from

ot = Kall < Yt =yl + |y = Onll + 10w = Kl

Applying (3.43), (3.45), and (3.47), we have

im [Juy, = Feu[| = 0.

For any p € ©, note that T, is firmly nonexpansive (Lemma 2.4), then we have

|2

[ =pII* = I Tr, %0 = T p
S <Trnxn - TrnP, Xn — P>

= (Un —p, Xu —p)

1
= 2 (= I + 1 = I = = ),
and hence

llttw = P11 < (|20 =PI = 110 = all?,

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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which together with (3.38) gives

s = plI* <

<

IN

IN

<

(1= ) (1= Bu = eV lkn = plI* + (1 = €7 ullxn = pII* + 2
(1-ey)(1—ey - Pu)

{11k = all? + [t = pI|* + 20 = 100,100~ p) }

+ (1= en?)Bullxn = pl|* +cn

(1= €aT) (1 = €T = Pu) Ik = 11l

+ (1= ) (1 - en¥ = ) [[un — |’

+ 2(1- &) (1= €y = Bu) lkn = el |40~ p|

+ (1= e) Bullxn — p||” + cn

(1= €T) (1 = €T = Pu) Ik — 11l

+ (1= end) (1= et = B { I = pII* =l —
+ 201 - &x¥) (1= en¥ = Bu) lkn = [l - p |

+ (1= ea¥)fullxn = p|* + ca

(1= ex¥) (1= €a = Bu) [ kn = a]?

+ (1-e)(1-enf = ) |2 - |’

— (1= €a¥) (1 = en¥ — Pu) %0 — unl®

+ 21~ €y) (1~ €Y = Pu) llkn = |||t = |

+ (1= ea) Bullxn = || + cn

(1= en)*[lxn = pII* = (1 = €a¥) (1 = € = ) ll0n = 1l
+ (1-en) (1 - €V = Pu) Ik — tnll”

+ 2(1-enY) (1= €xY = Pu) llkn — nll||en — p|| + cn
[1 =267 + (ea)*] ln - I

— (1= e¥) (1 = e = ) 120 —

+ (1= €n¥) (1= eV = Pu) ke — un®

+2(1 = €xy) (1 = €Y = Bn) llkn — tnll||ttn — p|| + cn
[l = pII* + ()l - I

+ (1= ea¥) (1= €nT = Bu) I kn — 1]

21
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— (1=en7) (1~ en¥ = o) 10 = ual?

+ 2(1 = €x7) (1 = €V = ) 1 kn — ttull|| 4 — p| + Cn-

(3.52)
So
(1= en7) (1~ enT = Pu) 1200 — wnll?
< [l =pI” = lxner = pII* + (&) [0 ~ I’
+ (1= en?) (1~ e = Pu)llkn = unl®
+ 2(1 =€) (1= enY = Bu) Ik = teulll| 10 = || +n
= (I = pll = 1xns = pID) (12w =PI+ [le2 = P
(3.53)
+ (@) llen =PI + (1= en) (1= T = ) len = ]
+ 2(1 = eaY) (1= en¥ = Pu) llkn = wenll || = p || + cn
<t = st | ([l = p | + s =PI + (a7) |20 = P
+ (1= en?) (1~ € = Pu) Ik — unl®
+ 2(1=eny) (1= ey = Bu) llkn — ttal||tn = p|| + cn-
Using €, — 0, ¢, — 0asn — oo, (3.32), and (3.49), we obtain
Jim [l = u | = 0. (3.54)
Since liminf, _, 7, > 0, we obtain
tim [ 2= || = tim L, — ] = 0. (3.55)
n—oo| 1y n—00t),
Observe that
Wity = nl| < [[Wattn = Waknll + [[Wakn = x|l + |20 — 14|
(3.56)

<y = kull + [[Whikn — xall + ||27 — ]|
Applying (3.36), (3.49), and (3.54) to the last inequality, we obtain

lim ||Wyu, — uy,|| = 0. (3.57)
n—oo
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Let W be the mapping defined by (2.6). Since {u,} is bounded, applying Lemma 2.7 and
(3.57), we have

[Wuy, — uy|| < |Wup = Woug|| + [|Watty, —uyl]] = 0 asn — oco. (3.58)

Step 4. We claim that limsup, _, _((A -yf)z,z - x,) <0, where z is the unique solution of
the variational inequality ((A-yf)z,z—x) >0, forall x € ©.

Since z = Po(I — A + yf)(2) is a unique solution of the variational inequality (3.1), to
show this inequality, we choose a subsequence {u,,} of {u,} such that

ilim((A —yf)z,z—uy,) =limsup((A—-yf)z, z — uy). (3.59)

n—oo

Since {u,,} is bounded, there exists a subsequence {u"“f } of {u,,} which converges weakly to

w € C. Without loss of generality, we can assume that u,, — w. From ||Wu, — u,|| — 0, we
obtain Wu,,, — w. Next, We show that w € ©, where © := N>, F(T,,) NEP(F)NVI(C, B). First,
we show that w € EP(F). Since u,, = T, x,, we have

F(un, y) + %(y —Un, Un = Xn) 20, VYyeC. (3.60)
If follows from (A2) that
rl<y — Un, Un — x”> 2 _F(un/y) Z F(y, un)/ (361)

and hence

<y — Up,, un,-r— Xn; > > F(y, uni). (3.62)

Since (up, — xp;) /1o, — 0and u,, — w, it follows by (A4) that F(y,w) <0 for all y € H. For ¢

withO<t<landy € H,lety, =ty + (1 -t)w. Since y € H and w € H, we have y; € H and
hence F(y;, w) < 0. So, from (Al) and (A4) we have

0=F(yuyt) <tF(yny) + A-F(y,w) <tF(yny), (3.63)
and hence F(y;, y) > 0. From (A3), we have F(w, y) > 0 for all y € H and hence w € EP(F).
Next, we show that w € N, F(T,). By Lemma 2.6, we have F(W) = n% F(T,).
Assume w ¢ F(W). Since u,,, = w and w # Ww, it follows by the Opial’s condition that
liminf||lu,, - w| < liminf||u,, - Ww||
1— 00 1— 00
< liminf{{juy, = Wy, || + Wi, - Weol|) (3.64)

< lim infllu,, - w],
1— 00
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which derives a contradiction. Thus, we have w € F(W) = N2, F(T},). By the same argument
as that in the proof of [35, Theorem 2.1, Pages 10-11], we can show that w € VI(C, B). Hence
w € O. Since z = Po(I - A+ yf)(z), it follows that

limsup((A-yf)z z—x,) =limsup((A-yf)z z—uy,)

n—oo n—oo

= li_}m((A—yf)z,z—uni) (3.65)

—(A-1f)z,z-w) <0.
It follows from the last inequality, (3.36), and (3.54) that

limsup(y f(z) - Az, Wk, — z) <0. (3.66)

n—oo

Step 5. Finally, we show that {x,}and {u,} converge strongly to z = Po(I-A+yf)(z). Indeed,
from (1.25) , we have

et — 2]

= leny f (xn) + Buitn + (1 = Bu)] - en AY Wik — z||*

= (1 = )] = ewA) Wik = 2) + u(on = 2) + en(y f (xa) = A2)|[*

= |((1 = BT = €aA) Wik = 2) + Bu(xn = 2)||* + €[l f () = Az]|”
+ 2Pnen(xn — 2,7 f(xn) — Az)
+ 2€n<((1—ﬁn)l—enA)(Wnkn -2),yf(xn) — Az)

< [(1 = Bu = e Wik = 2l + Bulls — 2[1]* + €2l y £ (xn) - Az’
+ 2Pueny(Xn =2, f () = f(2)) +2Puen(xn — 2,7 f(2) - Az)
+ 2(1= Bu)yen(Wakn = 2, f (xa) = £(2)) +2(1 = Bu)en{Waky - 2,y (2) - Az)
— 282(A(Wyk, - 2),7f(2) — Az)

< [ = Bu — enD Wk = 2 + Bullxa = 2l]* + €2l £ (xn) - Az
+ 2Bnenyllxn = ZI || £ (en) = £ @) || + 2Bnen(xn — 2,7 (2) - Az)
+ 2(1= Bu)yenlWakn = 2lI|| f (xa) = f(2) || +2(1 = Bu)en(Wakn = 2,7 f (2) = Az)
- 282(A(Wyk, - 2),7f(2) — Az)
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< [(1= Bu = ez = 2l| + Pulla = 2[1] + €2||y f (xa) - Az
+ 2pnenyal|xn - zl* + 2pnen(xn — z,vf (2) - Az)
+ 2(1 = Bu)yenallxn — z|I* + 2(1 = Bu)en{ Wik, — 2,7 f(2) — Az)
~ 2e2(A(Wyky - 2),yf(2) - Az)
= [(1 - e7)* + 2Buenya+2(1 = B)yenal Iz - 2l + €2y f (xa) - Az’
+ 2Buen(xn —z,7f(z) = Az) +2(1 = Bn)en(Wyk, — 2,y f (z) — Az)
- 282(A(Wyk, - 2),7f(2) — Az)
< [1-2(7 - ay)en] lxn — 2IP + Felllxn — 2| + €2l f (xa) - Az]|?
+ 2Bnen(xn — 2, vf(2) = Az) + 2(1 = Bn)en(Wikn — 2,y f (z) — Az)
+ 263 A(Waky - 2)||||yf(2) - Az
= [1-2(7 - ay)en] l2n — zII* + €n
< { e[l = 27 + Iy f (ea) = Az|]
+ 2||A(W,ky — 2)]| ||yf(z) - Az||] + 2B (xn— 2,v7f(2) - Az)
+ 2(1=Bu) (Waky - 2,y f(2) - Az) ).

(3.67)
Since {x,}, { f(xx)}, and {W,k,} are bounded, we can take a constant M > 0 such that
Vol -2l + [y £ o) - AzIF + 2 AW,ks - DIy f2) - Azl <M (3.68)
for all n > 0. It then follows that
1%ps1 — 2> < [1-2(y —ay)ea]l|lxn - z|]* + €40, (3.69)
where
On = 2PBn(xn — 2,7f(2) = Az) +2(1 = ) (Wiky — 2,7 f(2) - Az) + e, M. (3.70)

Using (i), (3.65), and (3.66), we get limsup, , o, < 0. Applying Lemma 2.9 to (3.69), we
conclude that x, — z in norm. Finally, noticing

lun =zl = Ty, %0 = T, 2l < [l2n = [, (3.71)

we also conclude that #, — z in norm. This completes the proof. O
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Corollary 3.2 ([28, Theorem 3.1]). Let C be nonempty closed convex subset of a real Hilbert space
H, let F be a bifunction from C x C to R satisfying (A1)—(A4), and let {T,} be an infinitely many
nonexpansive of C into itself such that © := 0% F(T,,) N EP(F) #0. Let f be a contraction of H into
itself with a € (0,1), and let A be a strongly positive linear bounded operator on H with coefficient
Y>0and0<y<y/a. Let {x,} and {u,} are the sequences generated by

x1 =x € C chosen arbitrary,
1
F(tn,y) + —(y —ttn,thy = Xy) 20, Yy €C, (3.72)

X1 = EnY f (xn) + P + (1 - B)I — €,A)Wyu,, Yn>1,
where {W,,} is the sequence generated by (1.23), p € (0,1), {€,} is a sequences in (0,1), and {r,} is
a real sequence in (0, oo) satisfying the following conditions:
(i) lim, _ €, =0;
(ii) lim inf, _, 7y, > 0 and lim,, _, o |[ri1 — 7| = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the
variational inequality

((A-yf)z,z-x)>0, VYxeO. (3.73)

Equivalently, one has z = Po(I = A+ yf)(2).

Proof. Put B =0, {f,} =, and {a,} = 0 in Theorem 3.1., then y,, = k,, = u,,. The conclusion of
Corollary 3.2 can obtain the desired result easily. O

Corollary 3.3. Let C be nonempty closed convex subset of a real Hilbert space H, let F be a bifunction

from C x C to R satisfying (A1)—(A4) and let B be an p-inverse-strongly monotone mapping of C into
H such that © := EP(F) N VI(C,B) #0. Let f be a contraction of H into itself with a € (0,1) and
let A be a strongly positive linear bounded operator on H with coefficient y > 0and 0 <y <y/a. Let
{xn}, {yn), {kn), and {u,} be sequences generated by

x1 =x € C chosen arbitrary,

1
F(tn,y) + —(y = thn,ttn = ) 20, Vye€C,

Yn = Pc(uy — AyBuy), (3.74)

kn = anuty + (1 - an) P (un — AnByy),

Xne1 = €nY f (Xn) + Puxn + (1= o) — €,A)kn, Vn2>1,
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where {e,}, {a,}, and {P,} are three sequences in (0,1), and {r,} is a real sequence in (0, o)
satisfying the following conditions:
(i) limy, €, =0and 377 €, = o0;
(ii) imy, o, = 0 and X074 ay = 00;
(iii) 0 < liminf, ., B, < limsup, , _fBn <1;
(iv) liminf, _ 7, > 0 and lim, _, o |11 — 14| = 0;
(v) {An/PB} C (1,1 -0) for some 7,6 € (0,1) and lim, _, ,\,, = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x) >0, Vxe©. (3.75)

Equivalently, one has z = Po(I - A+ yf)(z).

Proof. Put T,x = x for all n € N and for all x € C. Then W, x = x for all x € C. The conclusion
follows from Theorem 3.1. O

Corollary 3.4. Let C be nonempty closed convex subset of a real Hilbert space H, let {T,} be an
infinitely many nonexpansive of C into itself, and let B be a p-inverse-strongly monotone mapping
of C into H such that © := N% F(T,) N VI(C,B) #0. Let f be a contraction of H into itself with
a € (0,1) and let A be a strongly positive linear bounded operator on H with coefficient y > 0 and
0<y<y/a. Let{x,}, {yn}, and {k,} be sequences generated by

x1=x € C chosen arbitrary,
Yn = Pc (xn - )‘ann)r
(3.76)
kn = ApXy + (1 - an)PC (xn - )LnB]/n)/
X1 = EnY f (Xn) + Puxn + (1= Bu)] — €,A)Wyk,, VYn>1,
where {W,,} is the sequences generated by (1.23), and {e,}, {a,} , {Pn} are three sequences in (0,1)
satisfying the following conditions:
(i) imy, o6y, = 0and X774 €, = o0;
(ii) imy, — 0, = 0 and 377, ay = o0;
(iii) 0 < liminf, ., B, < limsup, ., _fBn <1;
(iv) {L./B} € (7,1 - 6) for some T,6 € (0,1) and lim,, _, .\, = 0.
Then, {x,} converges strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x) >0, VYxeO. (3.77)

Equivalently, one has z = Po(I - A+ yf)(z).
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Proof. Put F(x,y) = 0forall x,y € Cand r,, = 1 for all n € N in Theorem 3.1. Then, we have
Uy = Pcx,, = x,,. So, by Theorem 3.1, we can conclude the desired conclusion easily. O

IfA=Iy=1andy, =1-¢€, - B, in Theorem 3.1, then we can obtain the following
result immediately.

Corollary 3.5. Let C be nonempty closed convex subset of a real Hilbert space H, let F be a bifunction

from CxC to R satisfying (A1)—(A4), let {T,,} be an infinitely many nonexpansive of C into itself, and
let B be an p-inverse-strongly monotone mapping of C into H such that © := 0% F(T,,) N EP(F) N
VI(C,B)#0. Let f be a contraction of H into itself with a € (0,1). Let {x,}, {yn}, {kn}, and {u,}
be sequences generated by

x1=x € C chosen arbitrary,

1
F(un,y) + r—(y—un,un -x,) >0, VyeC,

Yn = Pc(uy — Xy Buy), (3.78)

kp = apiy + (1 - ay)Pe(uy — MyByy),
Xn+l = enf(xn) + ﬂnxn + annkn/ Vn>1,

where {W,,} is the sequences generated by (1.23), {en}, {an}, and {P,} are three sequences in (0,1)
and {ry} is a real sequence in (0, oo) satisfying the following conditions:

() en+Putyn=1
(ii) limy, — o€ = 0and X571 €, = 00;
(iii) limy, — a, =0and X5 a, = oo;
(iv) 0 < liminf, , B, < limsup, B, <1;
(v) iminf, _, o1, > 0 and lim,, _, s |7p41 — 1| = 0,

(vi) {X./B} C (1,1 -6) for some 7,6 € (0,1) and lim,, _, ;.\, = 0.

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution of the
variational inequality

(z—-f(2),z-x)>0, VYxeO. (3.79)

Equivalently, one has z = Po f(2).
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Corollary 3.6. Let C be nonempty closed convex subset of a real Hilbert space H, let F be a bifunction
from C x C to R satisfying (A1)-(A4) and let {T,} be an infinite family of nonexpansive of C into

itself such that © := N F(T,) N EP(F) #0. Let f be a contraction of H into itself with a € (0,1).
Let {x,} and {u,} be sequences generated by

x1 =x € C chosen arbitrary,
1
F(ttn y) + —(y = thn,utn = 22) 20, Yy €C, (3.80)

Xn+1 = €nf(xn) + ﬂnxn + annun/ Vn > 1/
where {€,}, {a,}, and {P,} are three sequences in (0,1), and {r,} is a real sequence in (0, co)
satisfying the following conditions:

(i €n+pn+)’n=1;

)
(if) lim, o€ = 0and X571 €, = 00;
(iii) 0 < liminf, , B, < limsup, B, <1;
)

(iv) liminf, _, 7, > 0 and lim, _, |71 — 1| = 0.
Then, {x,} and {u, } converge strongly to a point z € © which is the unique solution of the variational
inequality

((A-yf)z,z-x) >0, Vxe©. (3.81)

Equivalently, one has z = Po(I - A+ yf)(2).

Proof. Put B = 0 and {a,} = 0 in Corollary 3.5. then y, = k, = u,. The conclusion of
Corollary 3.6 can obtain the desired result easily. O

4. Application for Optimization Problem

In this section, we shall utilize the results presented in the paper to study the following
optimization problem:

min h(x),
(4.1)
xeC.

where h(x) is a convex and lower semicontinuous functional defined on a closed subset C of
a Hilbert space H. We denote by T the set of solution of (4.1). Let F be a bifunction from C xC
to R defined by F(x,y) = h(y) — h(x). We consider the following equilibrium problem, that
is, to find x € C such that

F(x,y) >0, VyeC (4.2)



30 Fixed Point Theory and Applications

It is obvious that EP(F) = T, where EP(F) denotes the set of solution of equilibrium problem
(4.2). In addition, it is easy to see that F(x, y) satisfies the conditions (A1)—(A4) in Section 1.
Therefore, from the Corollary 3.6, we know the following iterative sequence {x,} defined by

x1 € C chosen arbitrary,
h(y) — h(u,) + rl(y—un,un—xn> >0, VYyeC (4.3)
Xn+l = enf(xn) + ﬁnxn + Ynln,

where {€,}, {fn}, and {y,} are three sequences in (0,1), and {r,} is a real sequence in (0, o)
satisfying the following conditions:

(i) €n+ﬁn+)’n =1
(ii) limy, €y = 0and X7 €, = o0;
(iii) 0 < liminf, , B, < limsup, B, <1;
(iv) liminf, ., o1, > 0 and lim,, _, o |7p41 — 7| = 0.
Then, {x,} converges strongly to a point z = Pr f (z) of optimization problem (4.1).

In special case, we pick f(x) =0forallx e Hand , =0,r,=1,¢, =1/2foralln €N,
then x,,.1 = 1/2u,, and from (4.3) we obtain a special iterative scheme

h(y) = h(un) + <y — Up, Up — 1un71> >0, YyeC, n>2,
2 (4.4)

h(y) —h(u1) + (y —u1, w1 —x1) >0, VyeC.

Then, {u,} converges strongly to a solution z = Pr0 of optimization problem (4.1). In fact, the
z is the minimum norm point on the T.

Therefore, we consider a special from of optimization problem (4.1) which is as
follows: (i.e., is taking h(x) = ||x||)

min |[|x|, @s)
x € C. ‘

In fact, the solution of optimization problem (4.4) is named the minimum norm point
on the closed convex set C. From iterative algorithm (4.4) we obtain the following iterative
algorithm (4.5), and {u,} is defined by

”y”_||un||+<]/_un/un—%un—1> ZO, Vyec, 1’122,
(4.6)

lyll = llall + (y — 1,1 = x1) 20, VyeC

for any initial guess x; € H. Then, {u,} converges strongly to a minimum norm point on the
closed convex set C.
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