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1. Introduction and Preliminaries

Let (X, ‖ · ‖) be a Banach space and T a self-map of X. Let xn+1 = f(T, xn) be some iteration
procedure. Suppose that F(T), the fixed point set of T , is nonempty and that xn converges to
a point q ∈ F(T). Let {yn} ⊆ X and define εn = ‖yn+1 − f(T, yn)‖. If lim εn = 0 implies that
limyn = q, then the iteration procedure xn+1 = f(T, xn) is said to be T -stable. Without loss of
generality, we may assume that {yn} is bounded, for if {yn} is not bounded, then it cannot
possibly converge. If these conditions hold for xn+1 = Txn, that is, Picard’s iteration, then we
will say that Picard’s iteration is T -stable.

Theorem 1.1 (see [1]). Let (X, ‖ · ‖) be a Banach space and T a self-map of X satisfying

∥
∥Tx − Ty

∥
∥ ≤ L‖x − Tx‖ + α

∥
∥x − y

∥
∥ (1.1)

for all x, y ∈ X, where L ≥ 0, 0 ≤ α < 1. Suppose that T has a fixed point p. Then, T is Picard
T -stable.

Various kinds of analytical methods and numerical methods [2–10] were used to
solve integral equations. To illustrate the basic idea of the method, we consider the general
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nonlinear system:

L[u(t)] +N[u(t)] = g(t), (1.2)

where L is a linear operator,N is a nonlinear operator, and g(t) is a given continuous function.
The basic character of the method is to construct a functional for the system, which reads

un+1(x) = un(x) +
∫ t

0
λ(s)

[

Lun(s) +Nũn(s) − g(s)
]

ds, (1.3)

where λ is a Lagrange multiplier which can be identified optimally via variational theory, un

is the nth approximate solution, and ũn denotes a restricted variation; that is, δũn = 0.
Now, we consider the Fredholm integral equation of second kind in the general case,

which reads

u(x) = f(x) + λ

∫b

a

K(x, t)u(t)dt, (1.4)

where K(x, t) is the kernel of the integral equation. There is a simple iteration formula for
(1.4) in the form

un+1(x) = f(x) + λ

∫b

a

K(x, t)un(t)dt. (1.5)

Now, we show that the nonlinear mapping T , defined by

un+1(x) = T(un(x)) = f(x) + λ

∫b

a

K(x, t)un(t)dt, (1.6)

is T -stable in L2[a, b].
First, we show that the nonlinear mapping T has a fixed point. For m,n ∈ N we have

‖T(um(x)) − T(un(x))‖ = ‖um+1(x) − un+1(x)‖

=

∥
∥
∥
∥
∥
λ

∫b

a

K(x, t)(um(t) − un(t))dt

∥
∥
∥
∥
∥

≤ |λ|
[∫∫b

a

K2(x, t)dxdt

]1/2

‖um(x) − un(x)‖.

(1.7)
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Therefore, if

|λ| <
[∫∫b

a

K2(x, t)dxdt

]−1/2
, (1.8)

then, the nonlinear mapping T has a fixed point.
Second, we show that the nonlinear mapping T satisfies (1.1). Let (1.6) hold. Putting

L = 0 and α = |λ|[∫∫baK2(x, t)dxdt]
1/2

shows that (1.1) holds for the nonlinear mapping T .
All of the conditions of Theorem 1.1 hold for the nonlinear mapping T and hence it is

T -stable. As a result, we can state the following theorem.

Theorem 1.2. Use the iteration scheme

u0(x) = f(x),

un+1(x) = T(un(x)) = f(x) + λ

∫b

a

K(x, t)un(t)dt,
(1.9)

for n = 0, 1, 2, . . . , to construct a sequence of successive iterations {un(x)} to the solution of (1.4). In
addition, if

|λ| <
[∫∫b

a

K2(x, t)dxdt

]−1/2
, (1.10)

L = 0 and α = |λ|[∫ba
∫b

aK
2(x, t)dxdt]

1/2
. Then the nonlinear mapping T , in the norm of L2(a, b), is

T -stable.

Theorem 1.3 (see [11]). Use the iteration scheme

u0(x) = f(x),

un+1(x) = f(x) + λ

∫b

a

K(x, t)un(t)dt,
(1.11)

for n = 0, 1, 2, . . . , to construct a sequence of successive iteration {un(x)} to the solution of (1.4). In
addition, let

∫∫b

a

K2(x, t)dxdt = B2 < ∞, (1.12)

and assume that f(x) ∈ L2(a, b). Then, if |λ| < 1/B, the above iteration converges, in the norm of
L2(a, b) to the solution of (1.4).
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Corollary 1.4. Consider the iteration scheme

u0(x) = f(x),

un+1(x) = T(un(x)) = f(x) + λ

∫b

a

K(x, t)un(t)dt,
(1.13)

for n = 0, 1, 2, . . . . If

|λ| <
[∫∫b

a

K2(x, t)dxdt

]−1/2
, (1.14)

L = 0 and α = |λ|[∫ba
∫b

aK
2(x, t)dxdt]

1/2
, then stability of the nonlinear mapping T in the norm of

L2(a, b) is a coefficient condition for the above iteration to converge in the norm of L2(a, b), and to the
solution of (1.4).

2. Test Examples

In this sectionwe present some test examples to show that the stability of the iterationmethod
is a coefficient condition for the convergence in the norm of L2(a, b) to the solution of (1.4).
In fact the stability interval is a subset of converges interval.

Example 2.1 (see [12]). Consider the integral equation

u(x) =
√
x + λ

∫1

0
xtu(t)dt. (2.1)

The iteration formula reads

un+1(x) =
√
x + λ

∫1

0
xtun(t)dt, (2.2)

u0(x) =
√
x. (2.3)

Substituting (2.3) into (2.2), we have the following results:

u1(x) =
√
x + λ

∫1

0
xt
√
tdt =

√
x +

2λx
5

,

u2(x) =
√
x + λ

∫1

0
xt

[√
t +

2λt
5

]

dt =
√
x +

[

2λ
5

+
2λ2

15

]

x,

u3(x) =
√
x + λ

∫1

0
xt

[√
t +

(

2λ
5

+
2λ2

15

)

t

]

dt =
√
x +

[

2λ
5

+
2λ2

15
+
2λ3

45

]

x.

(2.4)
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Continuing this way ad infinitum, we obtain

un(x) =
√
x +

[
2

5.30
λ +

2
5.31

λ2 +
2

5.32
λ3 + · · ·

]

x, (2.5)

then

un(x) =
√
x +

(

2
5

n∑

i=1

λi

3i−1

)

x. (2.6)

The above sequence is convergent if |λ| < 3, and the exact solution is

lim
n→∞

un(x) =
√
x +

6λ
5(3 − λ)

x = u(x). (2.7)

On the other hand we have

[∫∫b

a

K2(x, t)dxdt

]1/2

=

[∫∫1

0
(xt)2dxdt

]1/2

=
1
3
. (2.8)

Then if |λ| < 3 for mapping

un+1(x) = T(un(x)) =
√
x + λ

∫1

0
xtun(t)dt, (2.9)

we have

‖T(um(x)) − T(un(x))‖ = ‖um+1(x) − un+1(x)‖

=

∥
∥
∥
∥
∥
λ

∫1

0
xt(um(t) − un(t))dt

∥
∥
∥
∥
∥

≤ |λ|
[∫∫1

0
(xt)2dxdt

]1/2

‖um(x) − un(x)‖

≤ |λ|
3
‖um(x) − un(x)‖,

(2.10)

which implies that T has a fixed point. Also, putting L = 0 and α = |λ|/3 shows that (1.1)
holds for the nonlinear mapping T . All of the conditions of Theorem 1.1 hold for the nonlinear
mapping T and hence it is T -stable.
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Example 2.2 (see [12]). Consider the integral equation

u(x) = x + λ

∫1

0
(1 − 3xt)u(t)dt, (2.11)

its iteration formula reads

un+1(x) = x + λ

∫1

0
(1 − 3xt)un(t)dt,

u0(x) = x.

(2.12)

Then we have

un(x) = x +
n∑

j=1

λj
∫∫1

0
· · ·

∫1

0
(1 − 3xt1)(1 − 3t1t2) · · ·

(

1 − 3tj−1tj
)

tjdtj · · ·dt1. (2.13)

By (2.13), we have the following results:

u1(x) = x + λ

∫1

0
(1 − 3xt)tdt = (1 − λ)x +

1
2
λ,

u2(x) = x + λ

∫1

0
(1 − 3xt)

[

(1 − λ)t +
1
2
λ

]

dt

= (1 − λ)x +
1
2
λ +

λ2

4
x,

u3(x) = x + λ

∫1

0
(1 − 3xt)

[

(1 − λ)t +
1
2
λ +

λ2

4
t

]

dt

= (1 − λ)x +
λ2

4
(1 − λ)x +

1
2
λ +

λ3

8
.

(2.14)

Continuing this way ad infinitum, we obtain

un(x) =
n∑

j=0

3(−1)j − 1
2

(
λ

2

)j

x +

(

1 + (−1)i+1
2

)(
λ

2

)j

. (2.15)

The above sequence is convergent if |λ/2| < 1, that is, −2 < λ < 2 and the exact solution
is

lim
n→∞

un(x) =
2λ

4 − λ2
+
4(1 − λ)
4 − λ2

x = u(x). (2.16)
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On the other hand we have

[∫∫b

a

K2(x, t)dxdt

]1/2

=

[∫∫1

0
(1 − 3xt)2dxdt

]1/2

=
1√
2
. (2.17)

Then if |λ| < √
2, for mapping

un+1(x) = T(un(x)) = x + λ

∫1

0
(1 − 3xt)un(t)dt, (2.18)

we have

‖T(um(x)) − T(un(x))‖ = ‖um+1(x) − un+1(x)‖

=

∥
∥
∥
∥
∥
λ

∫1

0
xt(um(t) − un(t))dt

∥
∥
∥
∥
∥

≤ |λ|
[∫∫1

0
(1 − 3xt)2dxdt

]1/2

‖um(x) − un(x)‖

≤ |λ|√
2
‖um(x) − un(x)‖,

(2.19)

which implies that T has a fixed point. Also, putting L = 0 and α = |λ|/√2 shows that (1.1)
holds for the nonlinear mapping T . All of conditions of Theorem 1.1 hold for the nonlinear
mapping T and hence it is T -stable.

Example 2.3. Consider the integral equation

u(x) = sinax + λ
a

2

∫π/2a

0
cos(ax)u(t)dt, (2.20)

its iteration formula reads

un+1(x) = sinax + λ
a

2

∫π/2a

0
cos(ax)un(t)dt, (2.21)

u0(x) = sinax. (2.22)
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Substituting (2.22) into (2.21), we have the following results:

u1(x) = sinax + λ
a

2

∫π/2a

0
cos(ax) sin(at)dt = sin(ax) +

λ

2
cos(ax),

u2(x) = sin(ax) + λ
a

2

∫π/2a

0
cos(ax)

[

sin(at) +
λ

2
cos(at)

]

dt

= sin(ax) + cos(ax)

[

λ

2
+
λ2

4

]

,

u3(x) = sin(ax) + λ
a

2

∫π/2a

0
cos(ax)

[

sin(at) +

[

λ

2
+
λ2

4

]

cos(at)

]

dt

= sin(ax) + cos(ax)

[

λ

2
+
λ2

4
+
λ3

8

]

.

(2.23)

Continuing this way ad infinitum, we obtain

un(x) = sin(ax) + cos(ax)
∞∑

i=1

(
λ

2

)i

. (2.24)

The above sequence is convergent if |λ/2| < 1; that is, −2 < λ < 2, and the exact solution is

lim
n→∞

un(x) = sin(ax) +
λ

2 − λ
cos(ax) = u(x). (2.25)

On the other hand we have

[∫∫b

a

K2(x, t)dxdt

]1/2

=

[∫∫π/2a

0

(a

2
cos(ax)

)2
dxdt

]1/2

=

√

π2

32
. (2.26)

Then if |λ| < 1/
√

π2/32 ∼= 1.800, for mapping

un+1(x) = T(un(x)) = x + λ
a

2

∫π/2a

0
cos(ax)un(t)dt, (2.27)
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we have

‖T(um(x)) − T(un(x))‖ = ‖um+1(x) − un+1(x)‖

=

∥
∥
∥
∥
∥
λ

∫1

0
xt(um(t) − un(t))dt

∥
∥
∥
∥
∥

≤ |λ|
[∫∫π/2a

0

(a

2
cos(ax)

)2
dxdt

]1/2

‖um(x) − un(x)‖

≤ |λ|
√

π2

32
‖um(x) − un(x)‖,

(2.28)

which implies that T has a fixed point. Also, putting L = 0 and α = |λ|
√

π2/32 shows that
(1.1) holds for the nonlinear mapping T . All of the conditions of Theorem 1.1 hold for the
nonlinear mapping T and hence it is T -stable.
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