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1. Introduction and Preliminaries

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let C be a nonempty
subset ofH. A mapping T : C → C is said to be Lipschitzian if there exists a positive constant
L such that

∥
∥Tx − Ty

∥
∥ ≤ L‖x − y‖, ∀x, y ∈ C. (1.1)

In this case, T is also said to be L-Lipschitzian. Throughout the paper, we assume that
every Lipschitzian mapping is L-Lipschitzian with L ≥ 1. If L = 1, then T is known as
a nonexpansive mapping. We denote by F(T) the set of fixed points of T . There are many
methods for approximating the fixed points of a nonexpansive mapping. In 1953, Mann [1]
introduced the following iteration method:

xn+1 = αnxn +
(

1 − αn

)

Txn, (1.2)
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where the initial guess element x0 ∈ C is arbitrary, and {αn} is a real sequence in [0,1].
Mann iteration has been extensively investigated for nonexpansive mappings. One of the
fundamental convergence results is proved by Qin and Su [2]. In an infinite-dimensional
Hilbert space, Mann iteration could conclude only weak convergence [3]. Attempts tomodify
the Mann iteration method (1.2) so that strong convergence is guaranteed have recently
been made. Nakajo and Takahashi [4] proposed the following modification of Mann iteration
method(1.2):

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

)

Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

,

Qn =
{

z ∈ C :
〈

xn − z, x0 − xn

〉 ≥ 0
}

,

xn+1 = PCn∩Qn

(

x0
)

,

(1.3)

where PK denotes the metric projection from H onto a closed convex subset K of H. The
iterative method (1.3) is said to be hybrid method or CQ method. In recent years, the hybrid
method (1.3) has been modified by many authors for other nonlinear operators [2, 5–10].

In 2008, Nilsrakoo and Saejung [11] used the hybrid method to obtain a strong
convergence theorem for countable Lipschitzian mappings {Tn}∞n=0 as follows.

Theorem NS. Let C be a nonempty bounded closed convex subset of a real Hilbert space H. Let
{Tn}∞n=0 be a sequence of Ln-Lipschitzian mappings from C into itself with Ln ≥ 1 and let

⋂∞
n=0F(Tn)

be nonempty. Assume that {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Let {xn} be a
sequence in C defined as follows:

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

)

Tnxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ∥

∥xn − z
∥
∥
2 + θn

}

,

Qn =
{

z ∈ C :
〈

xn − z, x0 − xn

〉 ≥ 0
}

,

xn+1 = PCn∩Qn

(

x0
)

,

(1.4)

where

θn =
(

1 − αn

)(

L2
n − 1

)

(diamC)2 −→ 0, (1.5)

as n → ∞. Let
∑∞

n=1 sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞ for any bounded subset B of C, and
let T be a mapping of C into itself defined by Tz = limn→∞Tnz, for all z ∈ C and suppose that
F(T) =

⋂∞
n=0F(Tn), then {xn} converges strongly to PF(T)x0.

Nilsrakoo and Saejung also apply the aforementioned result to obtain an applied result
for equilibrium problems.
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The purpose of this paper is to propose a modified hybrid method in mathematical
programming and to obtain some strong convergence theorems for common fixed points
of a countable family of Lipschitzian mappings. Finally, we apply our results to solve the
equilibrium and optimization problems. The results of this paper improved and extended
the Nilsrakoo and Saejung results in some respects.

Recall that given a closed convex subset K of a real Hilbert space H, the nearest point
projection PK from H onto K assigns to each x ∈ H its nearest point denoted by PKx in K
from x to K; that is, PKx is the unique point in K with the property

∥
∥x − PKx

∥
∥ ≤ ‖x − y‖ ∀y ∈ K. (1.6)

The following lemma is well known.

Lemma 1.1. Let K be a closed convex subset of a real Hilbert space H. Given x ∈ H and z ∈ K.
Then z = PKx if and only if there holds the relation:

〈x − z, y − z〉 ≤ 0 ∀y ∈ K. (1.7)

Definition 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let
{Tn}∞n=0 be a sequence of Ln-Lipschitzian mappings from C into itself with Ln ≥ 1. {Tn}∞n=0 is
said to satisfy the (SU) condition, if the following conditions hold:

(1) for any strong convergence sequence {xn} ⊂ C, the sequence {Tnxn} is also strong
convergent;

(2) the common fixed points set
⋂∞

n=0F(Tn) is nonempty;

(3) F(T) =
⋂∞

n=0F(Tn), where T : C → C is defined by Tx = limn→∞Tnx, for all x ∈ C,
F(T) denotes the fixed points set of T .

In Section 3 of this paper, we will give an important example of sequence of Ln-
Lipschitzian mappings which satisfies the (SU) condition.

Lemma 1.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let {Tn}∞n=0 be
a sequence of Ln-Lipschitzian mappings from C into itself with Ln ≥ 1. If {Tn}∞n=0 satisfies the (SU)
condition. Then

(1) {Ln} is bounded implies T is uniformly continuous on the C;

(2) limn→∞Ln = L implies T is L-Lipschitzian;

(3) limn→∞Ln = 1 implies T is nonexpansive.

Proof. Observe that, for all x, y ∈ C, we have

∥
∥Tx − Ty

∥
∥ = lim

n→∞
∥
∥Tnx − Tny

∥
∥ ≤ lim

n→∞
Ln‖x − y‖. (1.8)

The results (1)–(3) are easy to prove.
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2. Main Results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn}∞n=0 be a
sequence of Ln-Lipschitzian mappings from C into itself with Ln → 1, as n → ∞. Assume {Tn}∞n=0
satisfies the (SU) condition and {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Let {xn}∞n=0 be
a sequence in C defined as follows:

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

)

Tnxn,

Cn =
{

z ∈ Cn−1
⋂

Qn−1 :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥ + θn

}

, n ≥ 1,

C0 =
{

z ∈ C :
∥
∥y0 − z

∥
∥ ≤ ∥

∥x0 − z
∥
∥ + θ0

}

,

Qn =
{

z ∈ Cn−1
⋂

Qn−1 :
〈

xn − z, x0 − xn

〉 ≥ 0
}

, n ≥ 1,

Q0 = C,

xn+1 = PCn∩Qn

(

x0
)

,

(2.1)

where

θn =
(

1 − αn

)(

L2
n − 1

)
(

sup
z∈A

∥
∥xn − z

∥
∥

)2

,

A =
{

y ∈ F(T) :
∥
∥y − PF(T)x0

∥
∥ ≤ 1

}

.

(2.2)

Then {xn} converges strongly to PF(T)x0, where PK is the metric projection fromH onto closed convex
subset K.

Proof. We first prove that Cn andQn are closed and convex for each n ≥ 0. From the definition
of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex for each n ≥ 0. We
prove that Cn is convex. Since ‖yn − z‖ ≤ ‖xn − z‖ + θn is equivalent to

2
〈

xn − yn, z
〉 ≤ ∥

∥xn

∥
∥
2 − ∥

∥yn

∥
∥
2 + θn, (2.3)

it follows that Cn is convex. Next, we show that F(T) ⊂ Cn, for all n ≥ 0. For any p ∈ F(T), we
have

∥
∥yn − p

∥
∥
2 =

∥
∥αnxn +

(

1 − αn

)

Tnxn − p
∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 +

(

1 − αn

)∥
∥Tnxn − p

∥
∥
2

= αn

∥
∥xn − p

∥
∥
2 +

(

1 − αn

)

L2
n

∥
∥xn − p

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 +

(

1 − αn

)(

L2
n − 1

)∥
∥xn − p

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 + θn,

(2.4)
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so that p ∈ Cn, therefore, we have F(T) ⊂ Cn, for all n ≥ 0. Next, we show that F(T) ⊂ Qn,
for all n ≥ 0. We prove this by induction. For n = 0, we have F(T) ⊂ C = Q0. Suppose that
F(T) ⊂ Qn, then F(T) ⊂ Cn ∩ Qn and there exists a unique element xn+1 ∈ Cn ∩ Qn such that
xn+1 = PCn∩Qnx0. By using Lemma 1.1, we have

〈

xn+1 − z, x0 − xn+1
〉 ≥ 0, (2.5)

for all z ∈ Cn ∩Qn. In particular,

〈

xn+1 − p, x0 − xn+1
〉 ≥ 0, (2.6)

for all p ∈ F(T). It follows from the definition ofQn+1 that F(T) ⊂ Qn+1. By using the principle
of induction, we claim that F(T) ⊂ Qn, for all n ≥ 0. Therefore, we have F(T) ⊂ Cn ∩ Qn, for
all n ≥ 0. Now the sequence {xn} is well defined.

It follows from the definition of Qn that xn = PQnx0. Therefore, we have

∥
∥xn − x0

∥
∥ ≤ ∥

∥z − x0
∥
∥, (2.7)

for all z ∈ F(T) ⊂ Qn. This implies that the {‖xn − x0‖} is bounded. On the other hand, from
xn+1 = PCn∩Qnx0 ∈ Qn, we have

‖xn − x0‖ ≤ ‖xn+1 − x0‖, (2.8)

for all n ≥ 0. Therefore, {‖xn − x0‖} is nondecreasing and bounded. So that limn→∞‖xn − x0‖
exists.

Note again that xn = PQnx0, hence for any positive integerm, we have xn+m ∈ Qn+m−1 ⊂
Qn which implies that 〈xn+m − xn, xn − x0〉 ≥ 0. Therefore, we have

∥
∥xn+m − xn

∥
∥
2 =

∥
∥(xn+m − x0) − (xn − x0)

∥
∥
2

=
∥
∥xn+m − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2 − 2

〈

xn+m − xn, xn − x0
〉

≤ ∥
∥xn+m − x0

∥
∥
2 − ∥

∥xn − x0
∥
∥
2
.

(2.9)

From this inequality, we know that {xn} is a Cauchy sequence inC, so that there exists a point
p ∈ C such that limn→∞xn = p.

Since xn+1 ∈ Cn, then ‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn this together with θn → 0, as
→ ∞, implies that limn→∞yn = p. From lim supn→∞αn < 1, we get

∥
∥xn − Tnxn

∥
∥ ≤ 1

1 − αn

∥
∥yn − xn

∥
∥ −→ 0 (2.10)
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as n → ∞. Since T is nonexpansive, therefore,

∥
∥xn − Txn

∥
∥ ≤ ∥

∥xn − Tnxn

∥
∥ +

∥
∥Tnxn − Txn

∥
∥

≤ ∥
∥xn − Tnxn

∥
∥ +

∥
∥Tnxn − Tnp

∥
∥ +

∥
∥Tnp − Tp

∥
∥ +

∥
∥Tp − Txn

∥
∥

≤ ∥
∥xn − Tnxn

∥
∥ + Ln

∥
∥xn − p

∥
∥ +

∥
∥Tnp − Tp

∥
∥ +

∥
∥p − xn

∥
∥ −→ 0,

(2.11)

as n → ∞. Then limn→∞xn = p ∈ F(T).
Finally, we claim that p = p0 = PF(T)x0. If not, we have ‖x0 − p‖ > ‖x0 − p0‖. There must

exists a positive integer N, if n > N, then ‖x0 − xn‖ > ‖x0 − p0‖, which leads to

∥
∥x0 − p0

∥
∥
2 =

∥
∥x0 − xn + xn − p0

∥
∥
2

=
∥
∥x0 − xn

∥
∥
2 +

∥
∥xn − p0

∥
∥
2 + 2

〈

xn − p0, x0 − xn

〉

.
(2.12)

It follows that 〈xn − p0, x0 − xn〉 < 0 implies that p0/∈Qn This is a contradiction, hence p = p0.
This completes the proof.

The following theorem directly follows from Theorem 2.1.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let {Tn}∞n=0 be a
sequence of nonexpansive mappings from C into itself. Assume {Tn}∞n=0 satisfies the (SU) condition
and {αn} is a sequence in [0, 1) with lim supn→∞αn < 1. Let {xn}∞n=0 be a sequence in C defined as
follows:

x0 ∈ C chosen arbitrarily,

yn = αnxn +
(

1 − αn

)

Tnxn,

Cn =
{

z ∈ Cn−1
⋂

Qn−1 :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

, n ≥ 1,

C0 =
{

z ∈ C :
∥
∥y0 − z

∥
∥ ≤ ∥

∥x0 − z
∥
∥
}

,

Qn =
{

z ∈ Cn−1
⋂

Qn−1 :
〈

xn − z, x0 − xn

〉 ≥ 0
}

, n ≥ 1,

Q0 = C,

xn+1 = PCn∩Qn

(

x0
)

.

(2.13)

Then {xn} converges strongly to PF(T)x0. Where PK is the metric projection fromH onto closed convex
subset K.
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3. Application for Equilibrium and Optimization

Let C be a nonempty closed convex subset of a real Hilbert space H. Let f be a bifunction of
C ×C into R, where R is the set of real numbers. The equilibrium problem for F : C ×C → R
is to find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C. (3.1)

The set of solutions of (3.1) is denoted by EP(F). Given a mapping T : C → H, let f(x, y) =
〈Tx, y − x〉, for all x, y ∈ C. Then, z ∈ EP(f) if and only if 〈Tz, y − z〉 ≥ 0, for all y ∈ C, that
is, z is a solution of the variational inequality. Numerous problems in physics, optimization,
and economics reduce to find a solution of (3.1). Some methods have been proposed to solve
the equilibrium problem; see, for instance, [12–16].

For solving the equilibrium problem for a bifunction f : C×C → R, let us assume that
f satisfies the following conditions:

(A1) f(x, x) = 0, for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;

(A3) for each x, y, z ∈ C,

lim
t↓0

f(tz + (1 − t)x, y) ≤ f(x, y); (3.2)

(A4) for each x ∈ C, y �→ f(x, y) is convex and lower semicontinuous.

We need the following lemmas for the proof of our main results.

Lemma 3.1 (see [11–13]). Let C be a nonempty closed convex subset of H and let f be a bifunction
of C × C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such that

f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C. (3.3)

Lemma 3.2 (see [11–13]). Assume that f : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H,
define a mapping Tr : H → C as follows:

Tr(x) =
{

z ∈ C : f(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

, (3.4)

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

∥
∥Trx − Try

∥
∥
2 ≤ 〈

Trx − Try, x − y
〉

; (3.5)
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(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Remark 3.3. Tr is also nonexpansive, for all r > 0.

Now, we prove the following lemma which is very important for the main results of
this section.

Lemma 3.4. Let C be a nonempty closed convex subset of H and let f be a bifunction of C × C into
R satisfying (A1)–(A4). Let {rn} be a positive real sequence such that limn→∞rn = r > 0. Then the
sequence {Trn} satisfies the (SU) condition.

Proof. (1) Let {xn} be a convergent sequence in C. Let zn = Trnxn, for all n, then

f
(

zn, y
)

+
1
r

〈

y − zn, zn − xn

〉 ≥ 0, ∀y ∈ C, (3.6)

f
(

zn+m, y
)

+
1
r

〈

y − zn+m, zn+m − xn+m
〉 ≥ 0, ∀y ∈ C. (3.7)

Putting y = zn+m in (3.6) and y = zn in (3.7), we have

f
(

zn, zn+m
)

+
1
r

〈

zn+m − zn, zn − xn

〉 ≥ 0, ∀y ∈ C,

f
(

zn+m, zn
)

+
1
r

〈

zn − zn+m, zn+m − xn+m
〉 ≥ 0, ∀y ∈ C.

(3.8)

So, from (A2) we have

〈

zn+m − zn,
zn − xn

rn
− zn+m − xn+m

rn+m

〉

≥ 0, (3.9)

and hence

〈

zn+m − zn, zn − xn − rn
rn+m

(

zn+m − xn+m
)
〉

≥ 0. (3.10)

Thus, we have

〈

zn+m − zn, zn − zn+m + zn+m − xn − rn
rn+m

(

zn+m − xn+m
)
〉

≥ 0, (3.11)

which implies that

∥
∥zn+m − zn

∥
∥
2 ≤

〈

zn+m − zn, zn+m − xn − rn
rn+m

(

zn+m − xn+m
)
〉

=
〈

zn+m − zn,

(

1 − rn
rn+m

)

zn+m +
rn

rn+m
(xn+m − xn)

〉

.

(3.12)
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Therefore, we get

∥
∥zn+m − zn

∥
∥ ≤

∣
∣
∣
∣
1 − rn

rn+m

∣
∣
∣
∣

∥
∥zn+m

∥
∥ +

∥
∥
∥
∥

rn
rn+m

xn+m − xn

∥
∥
∥
∥
. (3.13)

On the other hand, for any p ∈ EP(f), from zn = Trnxn, we have

∥
∥zn − p

∥
∥ =

∥
∥Trnxn − p

∥
∥ ≤ ∥

∥xn − p
∥
∥, (3.14)

so that {zn} is bounded. Since limn→∞rn = r > 0, this together with (3.13) implies that the
{zn} is a Cauchy sequence. Hence Trnxn = zn is convergent.

(2) By using Lemma 3.2, we know that

∞⋂

n=0

F
(

Trn
)

= EP(f)/=∅. (3.15)

(3) From (1) we know that, limn→∞Trnx exists, for all x ∈ C. So, we can define a
mapping T from C into itself by

Tx = lim
n→∞

Trnx, ∀x ∈ C. (3.16)

It is obvious that the T is nonexpansive. It is easy to see that

EP(f) =
∞⋂

n=1

F
(

Trn
) ⊂ F(T). (3.17)

On the other hand, let w ∈ F(T), wn = Trnw, we have

f
(

wn, y
)

+
1
r

〈

y −wn,wn −w
〉 ≥ 0, ∀y ∈ C. (3.18)

By (A2) we know

1
r

〈

y −wn,wn −w
〉 ≥ f

(

y,wn

)

, ∀y ∈ C. (3.19)

Since wn → Tw = w and from (A4), we have f(y,w) ≤ 0, for all y ∈ C. Then, for t ∈ (0, 1]
and y ∈ C,

0 = f
(

ty + (1 − t)w, ty + (1 − t)w
)

≤ tf
(

ty + (1 − t)w,y
)

+ (1 − t)f
(

ty + (1 − t)w,w
)

≤ tf
(

ty + (1 − t)w,y
)

.

(3.20)
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Therefore, we have

f
(

ty + (1 − t)w,y
) ≥ 0. (3.21)

Letting t ↓ 0 and using (A3), we get

f(w,y) ≥ 0, ∀y ∈ C, (3.22)

and hence w ∈ EP(f). From the aforementioned two respects, we know that F(T) =
⋂∞

n=0F(Trn). This completes the proof.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let f be a
bifunction from C × C into R = (−∞,+∞) satisfying (A1)–(A4) and EP(f)/=∅. Let {xn} and {un}
be sequences generated by x0 ∈ C and

x0 ∈ C chosen arbitrarily,

f
(

un, xn

)

+
1
rn

〈

y − un, un − xn

〉 ≤ 0, ∀y ∈ C,

yn = αnxn +
(

1 − αn

)

un,

Cn =
{

z ∈ Cn−1
⋂

Qn−1 :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

, n ≥ 1,

C0 =
{

z ∈ C :
∥
∥y0 − z

∥
∥ ≤ ∥

∥x0 − z
∥
∥
}

,

Qn =
{

z ∈ Cn−1
⋂

Qn−1 :
〈

xn − z, x0 − xn

〉 ≥ 0
}

, n ≥ 1,

Q0 = C,

xn+1 = PCn∩Qn

(

x0
)

.

(3.23)

Assume limn→∞rn = r > 0 and lim supn→∞αn < 1. Then {xn} converges strongly to PEP(f)x0,
where PEP(f) is the metric projection from H onto EP(f).

Proof. By using Lemma 3.4, we know that {Trn} satisfies the (SU) condition. Then F(T) =
EP(f). By using Theorem 2.2, we obtain the result of Theorem 3.5

Now, we study a kind of optimization problem by using the aforementioned results
of this paper. That is, we will give an iterative algorithm of solution for the following
optimization problem with nonempty set of solutions:

min h(x),

x ∈ C,
(3.24)

where h(x) is a convex and lower semicontinuous functional defined on a closed convex
subset C of a Hilbert space H. We denoted by A the set of solutions of (3.24). Let f be a
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bifunction from C × C to R defined by f(x, y) = h(y) − h(x). We consider the following
equilibrium problem, that is to find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C. (3.25)

It is obvious that EP(F) = A, where EP(F) denotes the set of solutions of equilibrium Problem
(3.25). In addition, it is easy to see that f(x, y) satisfies the conditions (A1)–(A4) in Section 2.
Therefore, from Theorem 3.5, we can obtain the following theorem.

Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let h(x) be a
convex and lower semicontinuous functional defined on C. Let {xn} and {un} be sequences generated
by x0 ∈ C and

x0 ∈ C chosen arbitrarily,

h
(

xn

) − h
(

un

)

+
1
rn

〈

y − un, un − xn

〉 ≤ 0, ∀y ∈ C,

yn = αnxn +
(

1 − αn

)

un,

Cn =
{

z ∈ Cn−1
⋂

Qn−1 :
∥
∥yn − z

∥
∥ ≤ ∥

∥xn − z
∥
∥
}

, n ≥ 1,

C0 =
{

z ∈ C :
∥
∥y0 − z

∥
∥ ≤ ∥

∥x0 − z
∥
∥
}

,

Qn =
{

z ∈ Cn−1
⋂

Qn−1 : 〈xn − z, x0 − xn〉 ≥ 0
}

, n ≥ 1,

Q0 = C,

xn+1 = PCn∩Qn

(

x0
)

.

Assume limn→∞ rn = r > 0 and lim supn→∞αn < 1. Then {xn} converges strongly to PAx0.

Remark 3.7. It is easy to see that this paper has some newmethods and results than the results
of Nilsrakoo and Saejung [11]:

(1) proposed a modified hybrid iterative scheme, so that the new simple method of
proof has been used;

(2) removed the bounded restriction for closed convex set C;

(3) relax the conditions of sequence {Tn};
(4) give an application for optimization problem;

(5) the sequence of sets Cn, Qn satisfy the following relation:

F(T) ⊂ · · ·Cn+1 ∩Qn+1 ⊂ Cn ∩Qn, n ≥ 0, (3.26)

so that to raise the convergence rate of {xn} is possible.
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