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1. Introduction and Preliminaries

K. Menger introduced the notion of a probabilistic metric space in 1942 and since then
the theory of probabilistic metric spaces has developed in many directions [1]. The idea
of K. Menger was to use distribution functions instead of nonnegative real numbers as
values of the metric. The notion of a probabilistic metric space corresponds to the situations
when we do not know exactly the distance between two points, we know only probabilities
of possible values of this distance. Such a probabilistic generalization of metric spaces
appears to be well adapted for the investigation of physiological thresholds and physical
quantities particularly in connections with both string and E-infinity theory; see [2–5]. It is
also of fundamental importance in probabilistic functional analysis, nonlinear analysis and
applications [6–10].

In the sequel, wewill adopt usual terminology, notation, and conventions of the theory
of Menger probabilistic metric spaces, as in [7, 8, 10]. Throughout this paper, the space of all
probability distribution functions (in short, dfs) is denoted by Δ+ = {F : R ∪ {−∞,+∞} →
[0, 1] : F is left-continuous and nondecreasing on R, F(0) = 0 and F(+∞) = 1}, and the subset
D+ ⊆ Δ+ is the set D+ = {F ∈ Δ+ : l−F(+∞) = 1}. Here l−f(x) denotes the left limit of the
function f at the point x, l−f(x) = limt→x−f(t). The spaceΔ+ is partially ordered by the usual
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pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t in R. The
maximal element for Δ+ in this order is the df given by

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(1.1)

Definition 1.1 (see [1]). A mapping T : [0, 1] × [0, 1] → [0, 1] is t-norm if T is satisfying the
following conditions:

(a) T is commutative and associative;

(b) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d),whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

The following are the four basic t-norms:

TM
(
x, y

)
= min

(
x, y

)
,

TP
(
x, y

)
= x · y,

TL
(
x, y

)
= max

(
x + y − 1, 0

)
,

TD
(
x, y

)
=

⎧
⎨

⎩

min
(
x, y

)
, if max

(
x, y

)
= 1,

0, otherwise.

(1.2)

Each t-norm T can be extended [11] (by associativity) in a unique way to an n-ary
operation taking for (x1, . . . , xn) ∈ [0, 1]n the values T1(x1, x2) = T(x1, x2) and

Tn(x1, . . . , xn+1) = T
(
Tn−1(x1, . . . , xn), xn+1

)
(1.3)

for n ≥ 2 and xi ∈ [0, 1], for all i ∈ {1, 2, . . . , n + 1}.
We also mention the following families of t-norms.

Definition 1.2. It is said that the t-norm T is of Hadžić-type (H-type for short) and T ∈ H if
the family {Tn}n∈N

of its iterates defined, for each x in [0, 1], by

T0(x) = 1, Tn+1(x) = T(Tn(x), x), ∀n ≥ 0, (1.4)

is equicontinuous at x = 1, that is,

∀ε ∈ (0, 1)∃δ ∈ (0, 1) such that x > 1 − δ =⇒ Tn(x) > 1 − ε, ∀n ≥ 1. (1.5)

There is a nice characterization of continuous t-norm T of the class H [12].

(i) If there exists a strictly increasing sequence (bn)n∈N in [0, 1] such that limn→∞bn = 1
and T(bn, bn) = bn ∀n ∈ N, then T is of Hadžić-type.
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(ii) If T is continuous and T ∈ H, then there exists a sequence (bn)n∈N
as in (i).The

t-norm TM is an trivial example of a t-norm of H-type, but there are t-norms T of
Hadžić-type with T /= TM (see, e.g., [13]).

Definition 1.3 (see [13]). If T is a t-norm and (x1, x2, . . . , xn) ∈ [0, 1]n(n ∈ N), then Tn
i=1xi

is defined recurrently by 1, if n = 0 and Tn
i=1xi = T(Tn−1

i=1 xi, xn) for all n ≥ 1. If (xi)i∈N
is a

sequence of numbers from [0, 1], then T∞
i=1xi is defined as limn→∞Tn

i=1xi (this limit always
exists) and T∞

i=nxi as T∞
i=1xn+i. In fixed point theory in probablistic metric spaces there are of

particular interest the t-norms T and sequences (xn) ⊂ [0, 1] such that limn→∞xn = 1 and
limn→∞T∞

i=1xn+i = 1. Some examples of t-norms with the above property are given in the
following proposition.

Proposition 1.4 (see [13]). (i) For T ≥ TL the following implication holds:

lim
n→∞

T∞
i=1xn+i = 1 ⇐⇒

∞∑

n=1

(1 − xn) < ∞. (1.6)

(ii) If T ∈ H, then for every sequence (xn)n∈N
in I such that limn→∞xn = 1, one has

limn→∞T∞
i=1xn+i = 1.

Note [14, Remark 13] that if T is a t-norm for which there exists (xn) ⊂ [0, 1] such that
limn→∞xn = 1 and limn→∞T∞

i=1xn+i = 1, then supt<1T(t, t) = 1. Important class of t-norms is
given in the following example.

Example 1.5. (i) The Dombi family of t-norms (TD
λ
)λ∈[0, ∞] is defined by

TD
λ

(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

TD
(
x, y

)
, λ = 0,

TM
(
x, y

)
, λ = ∞,

1

1 +
(
((1 − x)/x)λ +

(
(1 − y)/y

)λ
)1/λ

, λ ∈ (0, ∞).
(1.7)

(ii) The Aczél-Alsina family of t-norms (TAA
λ )λ∈[0, ∞] is defined by

TAA
λ

(
x, y

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

TD
(
x, y

)
, λ = 0,

TM
(
x, y

)
, λ = ∞,

e
−
(

(− log x)λ+(− log y)λ
)1/λ

, λ ∈ (0, ∞).

(1.8)

(iii) Sugeno-Weber family of t-norms (TSW
λ

)λ∈[−1, ∞] is defined by

TSW
λ

(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

TD
(
x, y

)
, λ = −1,

TP
(
x, y

)
, λ = ∞,

max
(

0,
x + y − 1 + λxy

1 + λ

)

, λ ∈ (−1, ∞).

(1.9)
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In [13] the following results are obtained.

(a) If (TD
λ
)λ∈(0, ∞) is the Dombi family of t-norms and (xn)n∈N

is a sequence of elements
from (0, 1] such that limn→∞xn = 1 then we have the following equivalence:

∞∑

i=1

(1 − xi)
λ < ∞ ⇐⇒ lim

n→∞
(TD

λ )
∞
i=nxi = 1. (1.10)

(b) Equivalence (1.10) holds also for the family (TAA
λ

)λ∈(0, ∞), that is,

∞∑

i=1

(1 − xi)
λ < ∞ ⇐⇒ lim

n→∞
(TAA

λ )
∞
i=nxi = 1. (1.11)

(c) If (TSW
λ )λ∈(−1, ∞] is the Sugeno-Weber family of t-norms and (xn)n∈N

is a sequence
of elements from (0, 1] such that limn→∞xn = 1 then we have the following
equivalence:

∞∑

i=1

(1 − xi) < ∞ ⇐⇒ lim
n→∞

(TSW
λ )

∞
i=nxi = 1. (1.12)

Proposition 1.6. Let (xn)n∈N
be a sequence of numbers from [0, 1] such that limn→∞xn = 1 and

t-norm T is of H-type. Then

lim
n→∞

T∞
i=nxi = lim

n→∞
T∞
i=nxn+i = 1. (1.13)

Definition 1.7. AMenger Probabilistic Quasimetric space (briefly, Menger PQM space) is a triple
(X,F, T), where X is a nonempty set, T is a continuous t-norm, and F is a mapping from
X × X into D+, such that, if Fp,q denotes the value of F at the pair (p, q), then the following
conditions hold, for all p, q, r in X,

(PQM1) Fp,q(t) = Fq,p(t) = ε0(t) for all t > 0 if and only if p = q;

(PQM2) Fp,q(t + s) ≥ T(Fp,r(t), Fr,q(s)) for all p, q, r ∈ X and t, s ≥ 0.

Definition 1.8. Let (X,F, T) be a Menger PQM space.

(1) A sequence {xn}n in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists positive integer N such that Fxn,x(ε) > 1 − λwhenever n ≥ N.

(2) A sequence {xn}n in X is called Cauchy sequence [15] if, for every ε > 0 and λ > 0,
there exists positive integer N such that Fxn,xm(ε) > 1 − λ whenever n ≥ m ≥ N
(m ≥ n ≥ N).

(3) A Menger PQM space (X,F, T) is said to be complete if and only if every Cauchy
sequence in X is convergent to a point in X.

In 1998, Jungck and Rhoades [16] introduced the following concept of weak
compatibility.



Fixed Point Theory and Applications 5

Definition 1.9. Let A and S be mappings from a Menger PQM space (X,F, T) into itself. Then
the mappings are said to be weak compatible if they commute at their coincidence point, that
is, Ax = Sx implies that ASx = SAx.

2. The Main Result

Throughout this section, a binary operation T : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm
and satisfies the condition

lim
n→∞

T∞
i=n

(
1 − ai(t)

)
= 1, (2.1)

where a : R
+ → (0, 1). It is easy to see that this condition implies limn→∞an(t) = 0.

Lemma 2.1. Let (X,F, T) be a Menger PQM space. If the sequence {xn} in X is such that for every
n ∈ N,

Fxn,xn+1(t) ≥ 1 − an(t)(1 − Fx0,x1(t)) (2.2)

for very t > 0, where a : R
+ → (0, 1) is a monotone increasing functions.Then the sequence {xn} is a

Cauchy sequence.

Proof. For every m > n and xn, xm ∈ X, we have

Fxn,xm(t) ≥ T

(

Tm−2
(

Fxn,xn+1

(
t

m − n

)

, . . . , Fxm−2,xm−1

(
t

m − n

))

, Fxm−1,xm

(
t

m − n

))

≥ Tm−1
(

1 − an

(
t

m − n

)(

1 − Fx0,x1

(
t

m − n

))

, 1 − an+1
(

t

m − n

)

×
(

1 − Fx0,x1

(
t

m − n

))

, . . . , 1 − am−1
(

t

m − n

)(

1 − Fx0,x1

(
t

m − n

))

≥ Tm−1
(

1 − an

(
t

m − n

)

, 1 − an+1
(

t

m − n

)

, . . . , 1 − am−1
(

t

m − n

))

≥ Tm−1
(
1 − an(t), 1 − an+1(t), . . . , 1 − am−1(t)

)

= Tm−1
i=n

(
1 − ai(t)

)

≥ T∞
i=n

(
1 − ai(t)

)

> 1 − λ

(2.3)

for each 0 < λ < 1 and t > 0. Hence sequence {xn} is Cauchy sequence.
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Theorem 2.2. Let (X,F, T) be a complete Menger PQM space and let f, g, h : X → X be maps that
satisfy the following conditions:

(a) g(X) ∪ h(X) ⊆ f(X);

(b) the pairs (f, g) and (f, h) are weak compatible, f(X) is closed subset of X;

(c) min{Fg(x),h(y)(t), Fh(x),g(y)(t)} ≥ 1 − a(t)(1 − Ff(x),f(y)(t)) for all x, y ∈ X and every
t > 0, where a : R

+ → (0, 1) is a monotone increasing function.

If

lim
n→∞

T∞
i=n

(
1 − ai(t)

)
= 1, (2.4)

then f, g, and h have a unique common fixed point.

Proof. Let x0 ∈ X. By (a), we can find x1 such that f(x1) = g(x0) and h(x1) = f(x2). By
induction, we can define a sequence {xn} such that f(x2n+1) = g(x2n) and h(x2n+1) = f(x2n+2).
By induction again,

Ff(x2n),f(x2n+1)(t) = Fh(x2n−1),g(x2n)(t)

≥ min
{
Fh(x2n−1),g(x2n)(t), Fg(x2n−1),h(x2n)(t)

}

≥ 1 − a(t)
(
1 − Ff(x2n−1),f(x2n)(t)

)
.

(2.5)

Similarly, we have

Ff(x2n−1),f(x2n)(t) = Fg(x2n−2),h(x2n−1)(t)

≥ min
{
Fh(x2n−2),g(x2n−1)(t), Fg(x2n−2),h(x2n−1)(t)

}

≥ 1 − a(t)
(
1 − Ff(x2n−2),f(x2n−1)(t)

)
.

(2.6)

Hence, it follows that

Ff(xn),f(xn+1)(t) ≥ 1 − a(t)
(
1 − Ff(xn−1),f(xn)(t)

)

≥ 1 − a(t)
(
1 − (

1 − a(t)
(
1 − Ff(xn−2),f(xn−1)(t)

)))

= 1 − a2(t)
(
1 − Ff(xn−2),f(xn−1)(t)

)

...

≥ 1 − an(t)
(
1 − Ff(x0),f(x1)(t)

)
.

(2.7)

for n = 1, 2, . . . .
Now by Lemma 2.1, {f(xn)} is a Cauchy sequence. Since the space f(X) is complete,

there exists a point y ∈ X such that

lim
n→∞

f(xn) = lim
n→∞

g(x2n) = lim
n→∞

h(x2n+1) = y ∈ f(X). (2.8)
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It follows that, there exists v ∈ X such that f(v) = y. We prove that g(v) = h(v) = y. From
(c), we get

Fg(x2n),h(v)(t) ≥ min
{
Fg(x2n),h(v)(t), Fh(x2n),g(v)(t)

}

≥ 1 − a(t)
(
1 − Ff(x2n),f(v)(t)

) (2.9)

as n → ∞, we have

Fy,h(v)(t) ≥ 1 − a(t)
(
1 − Fy,y(t)

)
= 1 (2.10)

which implies that, h(v) = y. Moreover,

Fg(v),h(x2n+1)(t) ≥ min
{
Fg(v),h(x2n+1)(t), Fh(v),g(x2n+1)(t)

}

≥ 1 − a(t)
(
1 − Ff(v),f(x2n+1)(t)

) (2.11)

as n → ∞, we have

Fg(v),y(t) ≥ 1 − a(t)
(
1 − Fy,y(t)

)
= 1 (2.12)

which implies that g(v) = y. Since, the pairs (f, g) and (f, h) are weak compatible, we have
f(g(v)) = g(f(v)), hence it follows that f(y) = g(y). Similarly, we get f(y) = h(y). Now, we
prove that g(y) = y. Since, from (c) we have

Fg(y),h(x2n+1)(t) ≥ min
{
Fg(y),h(x2n+1)(t), Fh(y),g(x2n+1)(t)

}

≥ 1 − a(t)
(
1 − Ff(y),f(x2n+1)(t)

) (2.13)

as n → ∞, we have

Fg(y),y(t) ≥ 1 − a(t)
(
1 − Ff(y),y(t)

)

= 1 − a(t)
(
1 − Fg(y),y(t)

)

≥ 1 − a(t)
(
1 − (

1 − a(t)
(
1 − Fg(y),y(t)

)))

= 1 − a2(t)
(
1 − Fg(y),y(t)

)

...

≥ 1 − an(t)
(
1 − Fg(y),y(t)

)
−→ 1.

(2.14)

It follows that g(y) = y. Therefore, h(y) = f(y) = g(y) = y. That is y is a common fixed point
of f, g, and h.
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If y and z are two fixed points common to f, g, and h, then

Fy,z(t) = Fg(y),h(z)(t)

≥ min
{
Fg(y),h(z)(t), Fh(y),g(z)(t)

}

≥ 1 − a(t)
(
1 − Ff(y),f(z)(t)

)

= 1 − a(t)
(
1 − Fy,z(t)

)

≥ 1 − a(t)
(
1 − (

1 − a(t)
(
1 − Fy,z(t)

)))

...

≥ 1 − an(t)
(
1 − Fy,z(t)

) −→ 1

(2.15)

as n → ∞, which implies that y = z and so the uniqueness of the common fixed point.

Corollary 2.3. Let (X,F, T) be a complete Menger PQM space and let f, g : X → X be maps that
satisfy the following conditions:

(a) g(X) ⊆ f(X);

(b) the pair (f, g) is weak compatible, f(X) is closed subset of X;

(c) Fg(x),g(y)(t) ≥ 1 − a(t)(1 − Ff(x),f(y)(t)) for all x, y ∈ X and t > 0, where a : R
+ → (0, 1)

is monotone increasing function.

If

lim
n→∞

T∞
i=n

(
1 − ai(t)

)
= 1, (2.16)

then f and g have a unique common fixed point.

Proof. It is enough, set h = g in Theorem 2.2.

Corollary 2.4. Let (X,F, T) be a complete Menger PQM space and let f1, f2, . . . , fn, g : X → X be
maps that satisfy the following conditions:

(a) g(X) ⊆ f1f2 · · · fn(X);

(b) the pair (f1f2 · · · fn, g) is weak compatible, f1f2 · · · fn(X) is closed subset of X;

(c) Fg(x),g(y)(t) ≥ 1 − a(t)(1 − Ff1f2···fn(x),f1f2···fn(y)(t)) for all x, y ∈ X and t > 0, where
a : R

+ → (0, 1) is monotone increasing function;
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(d)

g
(
f2 · · · fn

)
=
(
f2 · · · fn

)
g,

g
(
f3 · · · fn

)
=
(
f3 · · · fn

)
g,

...

gfn = fng,

f1
(
f2 · · · fn

)
=
(
f2 · · · fn

)
f1,

f1f2
(
f3 · · · fn

)
=
(
f3 · · · fn

)
f1f2,

...

f1 · · · fn−1
(
fn
)
=
(
fn
)
f1 · · · fn−1.

(2.17)

If

lim
n→∞

T∞
i=n

(
1 − ai(t)

)
= 1, (2.18)

then f1, f2, . . . , fn, g have a unique common fixed point.

Proof. By Corollary 2.3, if set f1f2 · · · fn = f then f, g have a unique common fixed point in X.
That is, there exists x ∈ X, such that f1f2 · · · fn(x) = g(x) = x. We prove that fi(x) = x, for
i = 1, 2, . . . . From (c), we have

Fg(f2···fnx),g(x)(t) ≥ 1 − a(t)
(
1 − Ff1f2···fn(f2···fnx),f1f2···fn(x)(t)

)
. (2.19)

By (d), we get

Ff2···fn(x),x(t) ≥ 1 − a(t)
(
1 − Ff2···fn(x),x(t)

)
(2.20)

Hence, f2 · · · fn(x) = x. Thus , f1(x) = f1f2 · · · fn(x) = x.
Similarly, we have f2(x) = · · · fn(x) = x.

Corollary 2.5. Let (X, F, T) be a complete PQM space and let f, g, h : X → X satisfy conditions
(a), (b), and (c) of Theorem 2.2. If T is a t-norm of H-type then there exists a unique common fixed
point for the mapping f, g, and h.

Proof. By Proposition 1.6 all the conditions of the Theorem 2.2 are satisfied.

Corollary 2.6. Let (X, F, TD
λ ) for some λ > 0 be a complete PQM space and let f, g, h : X → X

satisfy conditions (a), (b), and (c) of Theorem 2.2. If
∑∞

i=1(a
i(t))λ < ∞ then there exists a unique

common fixed point for the mapping f, g, and h.
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Proof. From equivalence (1.10) we have

∞∑

i=1

(
ai(t)

)λ
< ∞ ⇐⇒ lim

n→∞
(TD

λ )
∞
i=n

(
1 − ai(t)

)
= 1. (2.21)

Corollary 2.7. Let (X, F, TAA
λ

) for some λ > 0 be a complete PQM space and let f, g, h : X → X

satisfy conditions (a), (b), and (c) of Theorem 2.2. If
∑∞

i=1(a
i(t))λ < ∞ then there exists a unique

common fixed point for the mapping f, g, and h.

Proof. From equivalence (1.11) we have

∞∑

i=1

(
ai(t)

)λ
< ∞ ⇐⇒ lim

n→∞
(TAA

λ )
∞
i=n

(
1 − ai(t)

)
= 1. (2.22)

Corollary 2.8. Let (X, F, TSW
λ

) for some λ > −1 be a complete PQM space and let f, g, h : X → X
satisfy conditions (a), (b), and (c) of Theorem 2.2. If

∑∞
i=1(a

i(t)) < ∞ then there exists a unique
common fixed point for the mapping f, g, and h.

Proof. From equivalence (1.12) we have

∞∑

i=1

(
ai(t)

)
< ∞ ⇐⇒ lim

n→∞
(TSW

λ )
∞
i=n

(
1 − ai(t)

)
= 1. (2.23)
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[13] O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, vol. 536 of Mathematics and Its
Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

[14] O. Hadžić and E. Pap, “New classes of probabilistic contractions and applications to random
operators,” in Fixed Point Theory and Applications (Chinju/Masan, 2001), vol. 4, pp. 97–119, Nova Science
Publishers, Hauppauge, NY, USA, 2003.

[15] I. L. Reilly, P. V. Subrahmanyam, andM. K. Vamanamurthy, “Cauchy sequences in quasipseudometric
spaces,”Monatshefte für Mathematik, vol. 93, no. 2, pp. 127–140, 1982.

[16] G. Jungck and B. E. Rhoades, “Fixed points for set valued functions without continuity,” Indian Journal
of Pure and Applied Mathematics, vol. 29, no. 3, pp. 227–238, 1998.


