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1. Introduction

Let E be a Banach space and let C be a nonempty bounded closed convex subset of E. We say
that a mapping T : C → C is nonexpansive if

∥
∥Tx − Ty

∥
∥ �

∥
∥x − y

∥
∥ for every x, y ∈ C. (1.1)

The result of Bruck [1] asserts that if a nonexpansive mapping T : C → C has a fixed
point in every nonempty closed convex subset of C which is invariant under T and if C is
convex and weakly compact, then Fix T = {x ∈ C : Tx = x}, the set of fixed points, is
nonexpansive retract ofC (i.e., there exists a nonexpansive mapping R : C → Fix T such that
R|Fix T = I). A few years ago, the Bruck results were extended by T. Domı́nguez Benavides
and Lorenzo Ramı́rez [2] to the case of asymptotically nonexpansive mappings if the space E
was sufficiently regular.

On the other hand it is known that, the set of fixed points of k-lipschitzian mapping
can be very irregular for any k > 1.
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Example 1.1 (Goebel [3, 4]). Let F be a nonempty closed subset of C. Fix z ∈ F, 0 < ε < 1 and
put

Tx = x + ε · dist(x, F) · (z − x), x ∈ C. (1.2)

It is not difficult to see that Fix T = F and the Lipschitz constant of T tends to 1 if ε ↓ 0.

For more information on the structure of fixed point sets see [4, 5] and references
therein.

In 1973, Goebel and Kirk [3] introduced the class of uniformly k-lipschitzian
mappings, recall that a mapping T : C → C is uniformly k-lipschitzian, k � 1, if

∥
∥Tnx − Tny

∥
∥ � k

∥
∥x − y

∥
∥ for every x, y ∈ C, n ∈ N, (1.3)

and proved the following theorem.

Theorem 1.2. Let E be a uniformly convex Banach space with modulus of convexity δE and let C be
a nonempty bounded closed convex subset of E. Suppose that T : C → C is uniformly k-lipschitzian
and

k

(

1 − δE

(
1
k

))

< 1. (1.4)

Then T has a fixed point in C. (Note that in a Hilbert space, k < 1/2
√
5.)

Recently Sȩdłak and Wiśnicki [6] proved that under the assumptions of Theorem 1.2,
Fix T is not only connected but even a retract of C, and next the author proved the following
theorem [7, Corollary 9].

Theorem 1.3. Let H be a Hilbert space, C a nonempty bounded closed convex subset of H, and
T : C → C a uniformly k-lipschitzian mapping with k <

√
2. Then T has a fixed point in C and

Fix T is a retract of C.

In this paper we shall continue this work. Precisely, by means of techniques of
asymptotic centers and the methods of Hilbert spaces, we establish some result on the
structure of fixed point sets for mappings with lipschitzian iterates in a Hilbert space. The
class of mappings with lipschitzian iterates is importantly greater than the class of uniformly
lipschitzian mappings; see [8, Example 1].

2. Asymptotic Center

Denote by ‖T‖ the Lipschitz norm of T :

‖T‖ = sup

{∥
∥Tx − Ty

∥
∥

∥
∥x − y

∥
∥

: x, y ∈ C, x /=y

}

. (2.1)
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Lifshitz [9] significantly extended Goebel and Kirk’s result and found an example of a fixed
point free uniformly π/2−lipschitzian mapping which leaves invariant a bounded closed
convex subset of l2. The validity of Lifshitz’s Theorem in a Hilbert space for

√
2 � k < π/2

remains open.
A more general approach was proposed by the present author using the methods of

Hilbert spaces, asymptotic techniques, and strongly ergodic matrix. We recall that a matrix
M = [an,k]n,k�1 is called strongly ergodic if

(i) for all n, k an,k � 0,

(ii) for all k limn→∞an,k = 0,

(iii) for all n
∑∞

k=1 an,k = 1,

(iv) limn→∞
∑∞

k=1 |an,k+1 − an,k| = 0.

Then we have the following theorem.

Theorem 2.1 (see [8]). Let C be a nonempty bounded closed convex subset of a Hilbert space and let
M = [an,k]n,k�1 be a strongly ergodic matrix. If T : C → C is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

∞∑

k=1

an,k ·
∥
∥
∥Tk+m

∥
∥
∥
2
< 2, (2.2)

then T has a fixed point in C.

This result generalizes Lifshitz’s Theorem (in case of a Hilbert space) and shows that
the theorem admits certain perturbations in the behavior of the norm of successive iterations
in infinite sets; see [8, Example 1].

Let E be a Banach space. Recall that the modulus of convexity δE is the function δE :
[0, 2] → [0, 1] defined by

δE(ε) = inf
{

1 − 1
2
∥
∥x + y

∥
∥ : ‖x‖ � 1,

∥
∥y
∥
∥ � 1,

∥
∥x − y

∥
∥ � ε

}

(2.3)

and uniform convexity means δE(ε) > 0 for ε > 0. A Hilbert space H is uniformly convex. This
fact is a direct consequence of parallelogram identity.

Now we prove some version of Sȩdłak and Wiśnicki’s result [6, Lemma 2.1]. Let C
be a nonempty bounded closed convex subset of a real Hilbert space H, let M = [an,k]n,k�1

be a strongly ergodix matrix, and let T : C → C be a mapping such that ‖Tk‖ � 1 for all
k = 1, 2, . . ., and

lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥Tk
∥
∥
∥
2
= B < ∞. (2.4)
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Let x, y ∈ C we use

r
(
y,
{
Tkx
})

= lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥y − Tkx

∥
∥
∥
2
,

r
(
C,
{
Tkx
})

= inf
y∈C

r
(
y,
{
Tkx
})

(2.5)

to denote the asymptotic radius of {Tkx} at y and the asymptotic radius of {Tkx} in C,
respectively. It is well known in a Hilbert space [8] that the asymptotic center of {Tkx} in
C:

A
(
C,
{
Tkx
})

=
{
y ∈ C : r

(
y,
{
Tkx
})

= r
(
C,
{
Tkx
})}

(2.6)

is a singleton.
Let A : C → C denote a mapping which associates with a given x ∈ C a unique

z ∈ A(C, {Tkx}), that is, z = Ax. The following Lemma is a crucial tool to prove Theorem 4.1.

Lemma 2.2. Let H be a Hilbert space and let C be a nonempty bounded closed convex subset of H.
Then the mapping A : C → C is continuous.

Proof. On the contrary, suppose that there exists x0 ∈ C and ε0 > 0 such that for all η > 0 there
exists x1 ∈ C such that ‖x1 − x0‖ < η and ‖z1 − z0‖ � ε0, where {z0} = A(C, {Tkx0}), {z1} =
A(C, {Tkx1}).

Fix η > 0 and take x1 ∈ C such that

‖x1 − x0‖ < η, ‖z1 − z0‖ � ε0. (2.7)

Let R0 = r(C, {Tkx0}), R1 = r(C, {Tkx1}) and R = limn→∞
∑∞

k=1 an,k · ‖z1 − Tkx0‖2. Notice that

R0 < R. (2.8)

Choose ε > 0. Then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∥
∥z1 − Tkx0

∥
∥ <

√
R + ε,

∥
∥z0 − Tkx0

∥
∥ <

√
R0 + ε <

√
R + ε,

‖z0 − z1‖ ≥ ε0

(2.9)

for all but finitely many k.
If, for example, ‖z1 − Tkx0‖ �

√
R + ε for all everyone k, then

∥
∥
∥z1 − Tkx0

∥
∥
∥
2

� R + ε. (2.10)
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Multiplying both sides of this inequality (for fixed k) by suitable element of the matrix M
and summing up such obtained inequalities for k � 1, we have for n = 1, 2, . . . ,

∞∑

k=1

an,k ·
∥
∥
∥z1 − Tkx0

∥
∥
∥
2

� R + ε. (2.11)

Taking the limit superior as n → ∞ on each side, we get

R = lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥z1 − Tkx0

∥
∥
∥
2

� R + ε > R, (2.12)

which is contradiction.
It follows by (2.9) and the properties of δH that

∥
∥
∥Tkx0 − z1 + z0

2

∥
∥
∥ �

(

1 − δH

(
ε0√
R + ε

))√
R + ε,

∥
∥
∥Tkx0 − z1 + z0

2

∥
∥
∥
2

�
(

1 − δH

(
ε0√
R + ε

))2

(R + ε).

(2.13)

Multiplying both sides of this inequality by suitable elements of the matrix M and summing
up such obtained inequalities for k � 1, taking the limit superior as n → ∞ on each side, we
get

R0 < lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥Tkx0 − z1 + z0

2

∥
∥
∥
2

�
(

1 − δH

(
ε0√
R + ε

))2

(R + ε).

(2.14)

Moreover,

∥
∥
∥Tkx0 − z1

∥
∥
∥
2
�
(∥
∥
∥Tkx0 − Tkx1

∥
∥
∥ +
∥
∥
∥Tkx1 − z1

∥
∥
∥
)2

� ∥
∥Tkx0 − Tkx1

∥
∥2 + 2

∥
∥Tkx0 − Tkx1

∥
∥ · ∥∥Tkx1 − z1

∥
∥ +
∥
∥Tkx1 − z1

∥
∥2

�
∥
∥Tk
∥
∥2 · ‖x0 − x1‖2 + 2

∥
∥Tk
∥
∥ · ‖x0 − x1‖ ·

∥
∥Tkx1 − z1

∥
∥ +
∥
∥Tkx1 − z1

∥
∥2

�
(∥
∥Tk
∥
∥2 + 2

∥
∥Tk
∥
∥
)
· ‖x0 − x1‖ · diamC +

∥
∥Tkx1 − z1

∥
∥2

� 3
∥
∥Tk
∥
∥2 · diam C · ‖x0 − x1‖ +

∥
∥Tkx1 − z1

∥
∥2.

(2.15)
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Multiplying both sides of this inequality by suitable elements of the matrix M and summing
up such obtained inequalities for k � 1, taking the limit superior as n → ∞ on each side, we
get

R = lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥Tkx0 − z1

∥
∥
∥
2

� 3 · diam C · ‖x0 − x1‖ · lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥Tk
∥
∥
∥
2
+ lim sup

n→∞

∞∑

k=1

an,k ·
∥
∥
∥Tkx1 − z1

∥
∥
∥
2

� 3 · B · diam C · η + R1 + ε.

(2.16)

Similarly,

R1 < lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥Tkx1 − z0

∥
∥
∥
2

� 3 · diam C · ‖x1 − x0‖ · lim sup
n→∞

∞∑

k=1
an,k ·

∥
∥Tk
∥
∥2 + lim sup

n→∞

∞∑

k=1
an,k ·

∥
∥Tkx0 − z0

∥
∥2

� 3 · B · diam C · η + R0 + ε.

(2.17)

From (2.16) and (2.17), we have

R � 3 · B · diam C · η + R1 + ε < 6 · B · diam C · η + 2 · ε + R0. (2.18)

If R0 = 0, then from (2.18) it follows R = 0. This is contradiction with (2.8). If R0 > 0, then
combining (2.18) with (2.14) and applying the monotonicity of δH , we obtain

R0 <

(

1 − δH

(
ε0

√
6 · B · diam C · η + 3 · ε + R0

))2
(
6 · B · diam C · η + 3 · ε + R0

)
. (2.19)

Letting η, ε ↓ 0 and using the continuity of δH , we conclude that

1 �
(

1 − δH

(
ε0
√
R0

))2

< 1. (2.20)

This contradiction proves the continuity of mapping A.
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3. The Methods of Hilbert Spaces

Let M, T be as above. We define functionals

d(u) = lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥u − Tku

∥
∥
∥
2
,

r(x) = lim sup
n→∞

∞∑

k=1
an,k ·

∥
∥x − Tku

∥
∥2,

(3.1)

where u, x ∈ C. Let z in C be an asymptotic center of {Tku}k�1 with respect to r(·) and C,
which minimizes the functional r(x) over x in C (for fix u ∈ C).

Lemma 3.1. One has r(z) � d(u).

Proof. It is consequence of the above definitions.

Lemma 3.2. One has ‖z − u‖ � 2
√
d(u).

Proof. For any k ∈ N, we have

‖z − u‖2 = 2
(∥
∥
∥z − Tku

∥
∥
∥
2
+
∥
∥
∥Tku − u

∥
∥
∥
2
)

−
∥
∥
∥z + u − 2Tku

∥
∥
∥
2

� 2
∥
∥z − Tku

∥
∥2 + 2

∥
∥Tku − u

∥
∥2.

(3.2)

Multiplying both sides of this inequality by suitable elements of the matrix M and summing
up such obtained inequalities for k � 1, taking the limit superior as n → ∞ on each side, we
get

‖z − u‖2 � 2 lim sup
n→∞

∞∑

k=1

an,k ·
∥
∥
∥z − Tku

∥
∥
∥
2
+ 2 lim sup

n→∞

∞∑

k=1

an,k

∥
∥
∥Tku − u

∥
∥
∥
2

= 2(r(z) + d(u)) � 4d(u).

(3.3)

Lemma 3.3. One has r(Tsz) � ‖Ts‖2 · r(z) for all s ∈ N.

Proof. Fix s ∈ N, then we have

∞∑

k=1

an,k

∥
∥
∥Tsz − Tku

∥
∥
∥
2

�
s∑

k=1

an,k

∥
∥
∥Tsz − Tku

∥
∥
∥
2
+ ‖Ts‖2 ·

∞∑

k=s+1

an,k

∥
∥
∥z − Tk−su

∥
∥
∥
2

=
s∑

k=1
an,k

∥
∥Tsz − Tku

∥
∥2 + ‖Ts‖2 ·

( ∞∑

k=1
an,k

∥
∥z − Tk−su

∥
∥2 −

s∑

k=1
an,k

∥
∥z − Tk−su

∥
∥2
)

.

(3.4)
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Since the matrix M is strongly ergodic,

s∑

k=1

an,k

∥
∥
∥Tsz − Tku

∥
∥
∥
2 −→ 0,

s∑

k=1
an,k

∥
∥z − Tk−su

∥
∥2 −→ 0,

(3.5)

as n → ∞, we get thesis.

Lemma 3.4. One has r(z) + ‖z − x‖2 � r(x) for every x ∈ C.

Proof. For x ∈ C and 0 < t < 1, we have

∥
∥
∥tx + (1 − t)z − Tku

∥
∥
∥
2
= t
∥
∥
∥x − Tku

∥
∥
∥
2
+ (1 − t)

∥
∥
∥z − Tku

∥
∥
∥
2 − t(1 − t)‖x − z‖2. (3.6)

Multiplying both sides of this inequality by suitable elements of the matrix M and summing
up such obtained inequalities for k � 1, taking the limit superior as n → ∞ on each side, we
get

lim sup
n→∞

∞∑

k−1
an,k

∥
∥
∥tx + (1 − t)z − Tku

∥
∥
∥
2

= t · lim sup
n→∞

∞∑

k=1

an,k

∥
∥
∥x − Tku

∥
∥
∥
2
+ (1 − t) · lim sup

n→∞

∞∑

k=1

an,k

∥
∥
∥z − Tku

∥
∥
∥
2 − t(1 − t)‖x − z‖2.

(3.7)

Since r(z) � r(tx + (1 − t)z), we obtain

r(z) � t · r(x) + (1 − t) · r(z) − t(1 − t)‖x − z‖2,

r(z) � r(x) − (1 − t)‖x − z‖2.
(3.8)

Taking t ↓ 0+, we get, r(z) + ‖z − x‖2 � r(x).

4. Main Result

We are now in position to prove our main result.

Theorem 4.1. Let C be a nonempty bounded closed convex subset of a Hilbert space and let M =
[an,k]n,k�1 be a strongly ergodic matrix. If T : C → C is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

∞∑

k=1

an,k ·
∥
∥
∥Tk+m

∥
∥
∥
2
< 2, (4.1)

then Fix T = {x ∈ C : Tx = x} is a retract of C.
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Proof. Let {ni} and {mi} be sequences of natural numbers such that

g = lim
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥Tk+mi

∥
∥
∥
2
< 2. (4.2)

By Theorem 2.1, Fix T /= ∅. For any x ∈ C we can inductively define a sequence {zj} in the
following manner: z1 is the unique point in C that minimizes the functional

lim sup
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥y − Tk+mix

∥
∥
∥
2

(4.3)

over y ∈ C, and zj+1 is the unique point in C that minimizes the functional

lim sup
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥y − Tk+mizj

∥
∥
∥
2

(4.4)

over y ∈ C, that is, zj = Ajx, j = 1, 2, . . . . First we prove the following inequality:

d̂(z) �
(
g − 1

)
d̂(u), (4.5)

where

d̂(u) = lim sup
i→∞

∞∑

k=1

∥
∥
∥u − Tk+miu

∥
∥
∥
2
, (4.6)

and z is the asymptotic center in C which minimizes the functional

r̂(x) = lim sup
i→∞

∞∑

k=1

∥
∥
∥x − Tk+miu

∥
∥
∥
2

(4.7)

over x in C.
In fact, we put in Lemma 3.4 x = Tpz. Then by Lemma 3.3, we get

r̂(z) + ‖z − Tpz‖2 � r̂(Tpz) � ‖Tp‖2 · r̂(z),

‖z − Tpz‖2 �
(
‖Tp‖2 − 1

)
· r̂(z).

(4.8)

For p = m + ki we have

∥
∥
∥z − Tk+miz

∥
∥
∥
2

�
(∥
∥
∥Tk+mi

∥
∥
∥
2 − 1

)

· r̂(z), (4.9)
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and hence

d̂(z) = lim sup
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥z − Tk+miz

∥
∥
∥
2

�
(

lim
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥Tk+mi

∥
∥
∥
2 − 1

)

· r̂(z)

=
(
g − 1

) · r̂(z) (
by Lemma 3.1

)

�
(
g − 1

) · d̂(u).

(4.10)

Next by Lemma 3.2 and inequality (4.5), we have

∥
∥zj+1 − zj

∥
∥ =
∥
∥
∥Aj+1x −Ajx

∥
∥
∥ � 2

√
(
g − 1

)j
d(x) � 2 · αj ·

√
diam C, (4.11)

where α =
√
g − 1 < 1 for x ∈ C, j = 1, 2, . . . . Thus

sup
x∈C

∥
∥
∥Apx −Ajx

∥
∥
∥ � αj

1 − α
· 2 ·
√
diam C −→ 0 if p, j −→ ∞, (4.12)

which implies that the sequence {Ajx} converges uniformly to a function

Rx = lim
j→∞

Ajx, x ∈ C. (4.13)

It follows from Lemma 2.2 that R : C → C is continuous. Moreover,

∥
∥
∥Rx − Tk+miRx

∥
∥
∥
2
= 2
(∥
∥Rx −Ajx

∥
∥2 +

∥
∥Ajx − Tk+miRx

∥
∥2
)
− ∥∥Rx + Tk+miRx − 2Ajx

∥
∥2

� 2
∥
∥Rx −Ajx

∥
∥2 + 2

∥
∥Ajx − Tk+miRx

∥
∥2

� 2
∥
∥Rx −Ajx

∥
∥2 + 2

(
2
∥
∥Ajx − Tk+miAjx

∥
∥2 + 2

∥
∥Tk+miAjx − Tk+miRx

∥
∥2
)

�
(
2 + 4

∥
∥Tk+mi

∥
∥2
)
· ∥∥Rx −Ajx

∥
∥2 + 4

∥
∥Ajx − Tk+miAjx

∥
∥2.

(4.14)
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Multiplying both sides of this inequalities by suitable elements of the matrixM and summing
up such obtained inequalities for k � 1, taking the limit superior as i → ∞ on each side, we
get

d̂(Rx) = lim sup
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥Rx − Tk+miRx

∥
∥
∥
2

�
(

2 + 4 lim
i→∞

∞∑

k=1

ani,k ·
∥
∥
∥Tk+mi

∥
∥
∥
2
)
∥
∥
∥Rx −Ajx

∥
∥
∥
2

+4 lim sup
i→∞

∞∑

k=1
ani,k ·

∥
∥Ajx − Tk+miAjx

∥
∥2

=
(
2 + 4g

)∥
∥Rx −Ajx

∥
∥2 + 4d̂

(
Ajx
) (

by (4.5)
)

� (
2 + 4g

)∥
∥Rx −Ajx

∥
∥2 + 4

(
g − 1

)j · d̂(x) → 0 if j → ∞.

(4.15)

Thus, d̂(Rx) = 0. This implies that Rx = TRx; see [8] for details. Thus Rx = TRx for every
x ∈ C and R is a retraction of C onto Fix T .

IfM = [an,k]n,k�1 is the Cesaro matrix, that is, for n = 1, 2, . . . ,

an,k =

⎧
⎨

⎩

1
n

for k = 1, 2, . . . , n,

0 for k � n + 1,
(4.16)

then we have the following corollary.

Corollary 4.2. Let C be a nonempty bounded closed convex subset of a Hilbert space. If T : C → C
is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

1
n

n∑

k=1

∥
∥
∥Tk+m

∥
∥
∥
2
< 2, (4.17)

then Fix T = {x ∈ C : Tx = x} is a retract of C.
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[7] J. Górnicki, “Remarks on the structure of the fixed-point sets of uniformly Lipschitzian mappings in
uniformly convex Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 355, no. 1, pp.
303–310, 2009.
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