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1. Introduction

Let E be a Banach space with norm ‖ · ‖, let E∗ denote the dual of E and let 〈x, f〉 denote
the value of f ∈ E∗ at x ∈ E. Let T : E → E∗ be an operator. The problem of finding
v ∈ E satisfying 0 ∈ Tv is connected with the convex minimization problems and variational
inequalities. When T is maximal monotone, a well-known method for solving the equation
0 ∈ Tv in Hilbert space H is the proximal point algorithm (see [1]): x1 = x ∈ H and

xn+1 = Jrnxn, n = 1, 2, . . . , (1.1)

where rn ⊂ (0,∞) and Jr = (I + rT)−1 for all r > 0 is the resolvent operator for T . Rockafellar
(see [1]) proved the weak convergence of the algorithm (1.1). These results were extended to
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more general Banach spaces; see Kamimura and Takahashi [2] and Ohsawa and Takahashi
[3]. In 2004, Kamimura et al. [4] considered the algorithm (1.2) in a uniformly smooth and
uniformly convex Banach space E, namely,

xn+1 = J−1(αnJ(xn) + (1 − αn)J(Jrnxn)), n = 1, 2, . . . , (1.2)

where Jr = (J + rT)−1J , J is the duality mapping of E. They showed that the algorithm (1.2)
converges weakly to some element of T−10 provided that the sequences {αn} and {rn} of real
numbers are chosen appropriately.

Let C be a nonempty closed convex subset of E and letA be a monotone operator of C
into E∗. The variational inequality problem is to find a point u ∈ C such that

〈v − u,Au〉 ≥ 0, ∀v ∈ C. (1.3)

The set of solutions of the variational inequality problem is denoted by V I(C,A). Such a
problem is connected with the convex minimization problem, the complementarity problem,
the problem of finding a point u ∈ E satisfying 0 = Au and so on. An operator A of C into E∗

is said to be inverse-strongly-monotone, if there exists a positive real number α such that

〈x − y,Ax −Ay〉 ≥ α
∥
∥Ax −Ay

∥
∥
2 (1.4)

for all x, y ∈ C. In such a case,A is said to be α-inverse-strongly-monotone. If an operatorA of
C into E∗ is α-inverse-strongly-monotone, then A is Lipschitz continuous, that is, ‖Ax −Ay‖ ≤
(1/α)‖x − y‖ for all x, y ∈ C.

In a Hilbert space H, one method of solving a point in V I(C,A) is the projection
algorithm which starts with any x1 = x ∈ C and updates iteratively xn+1 according to the
formula

xn+1 = PC(xn − λnAxn) (1.5)

for every n = 1, 2, . . . , where A is a monotone operator of C in to H, PC, is the metric
projection of H onto C and {λn} is a sequence of positive numbers. In the case where A
is inverse-strongly-monotone, Iiduka et al. [5] proved that the sequence {xn} generated by
(1.5) converges weakly to some element of V I(C,A).

Recently, Iiduka and Takahashi [6] introduced the following iterative scheme for
finding a solution of the variational inequality problem for an inverse-strongly-monotone
operator A in Banach space: x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn − λnAxn) (1.6)

for every n = 1, 2, . . . , where ΠC is the generalized metric projection from E onto C, J is the
duality mapping from E into E∗, and {λn} is a sequence of positive numbers. They proved
that the sequence {xn} generated by (1.6) converges weakly to some element of V I(C,A).
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In this paper, motivated by the idea of extragradient method [7], Kamimura et al. [4],
and Iiduka and Takahashi [6], we introduce the iterative scheme (3.1) for finding a common
element of the set of zero of a maximal monotone operator and the solution set of the
variational inequality problem for an inverse-strongly-monotone operator in a 2-uniformly
convex and uniformly smooth Banach space. Then, the weak and strong convergence
theorems are proved under some parameters controlling conditions. Further, we apply our
convergence theorem to the convex minimization problem, the problem of finding a zero
point of a maximal monotone operator and the complementary problem. The results obtained
in this paper improve and extend the corresponding results of Kamimura et al. [4], and Iiduka
and Takahashi [6], and many others.

2. Preliminaries

Let E be a real Banach space. When {xn} is a sequence in E, we denote strong convergence of
{xn} to x ∈ E by xn → x andweak convergence by xn ⇀ x. An operator T ⊂ E×E∗ is said to be
monotone if 〈x−y, x∗−y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ T . We denote the set {x ∈ E : 0 ∈ Tx}
by T−10. A monotone T is said to be maximal if its graph G(T) = {(x, y) : y ∈ Tx} is not
properly contained in the graph of any other monotone operator. If T is maximal monotone,
then the solution set T−10 is closed and convex.

The normalized duality mapping J from E into E∗ is defined by

J(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2
}

. (2.1)

We recall (see [8]) that E is reflexive if and only if J is surjective; E is smooth if and only if J
is single-valued; E is strictly convex if and only if J is one-to-one; if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E. We note that in a
Hilbert space, H, J is the identity operator. The definitions of the strict (uniform) convexity,
(uniformly) smoothness of Banach spaces and related properties can be found in [8].

The duality J from a smooth Banach space E into E∗ is said to be weakly sequentially
continuous [9] if xn ⇀ x implies Jxn⇀

∗Jx, where ⇀∗ implies the weak∗ convergence.
Let E be a Banach space. Themodulus of convexity of E is the function δ : [0, 2] → [0, 1]

defined by

δ(ε) = inf
{

1 −
∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
: x, y ∈ E, ‖x‖ =

∥
∥y
∥
∥ = 1,

∥
∥x − y

∥
∥ ≥ ε

}

. (2.2)

E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed real number
with p ≥ 2. Then E is said to be p-uniformly convex if there exists a constant c > 0 such that
δ(ε) ≥ cεp for all ε ∈ [0, 2]. For example, see [10, 11] for more detials. Observe that every
p-uniformly convex space is uniformly convex. One should note that no Banach space is p-
uniformly convex for 1 < p < 2; see [11] for more details. It is well known that Hilbert and
Lebesgue Lq (1 < q ≤ 2) spaces are 2-uniformly convex and uniformly smooth.
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Lemma 2.1 (see [12, 13]). Let E be a 2-uniformly convex Banach space. Then, for all x, y ∈ E, one
has

∥
∥x − y

∥
∥ ≤ 2

c2
∥
∥Jx − Jy

∥
∥, (2.3)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1/c in Lemma 2.1 is called the 2-uniformly convex constant of E; see
[10].

Lemma 2.2 (see [13]). Let E be a uniformly convex Banach space. Then for each r > 0, there exists
a strictly increasing, continuous, and convex function K : [0,∞) → [0,∞) such that K(0) = 0 and

∥
∥λx + (1 − λy)

∥
∥
2 ≤ λ‖x‖2 + (1 − λ)

∥
∥y
∥
∥
2 − λ(1 − λ)K

(∥
∥x − y

∥
∥
)

(2.4)

for all x, y ∈ {z ∈ E : ‖z‖ ≤ r} and λ ∈ [0, 1].

Let E be a smooth Banach space. The function φ : E × E → R defined by

φ
(

x, y
)

= ‖x‖2 − 2
〈

x, Jy
〉

+
∥
∥y
∥
∥
2 ∀x, y ∈ E (2.5)

is studied by Alber [14], Kamimura and Takahashi [2], and Reich [15]. It is obvious from the
definition of φ that (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2 for all x, y ∈ E.

Let E be a reflexive, strictly convex smooth Banach space, and C a nonempty closed
convex subset of E. By Alber [14], for each x ∈ E, there corresponds a unique element x0 ∈ C
(denoted by ΠC(x)) such that

φ(x0, x) = min
y∈C

φ
(

y, x
)

. (2.6)

The mapping ΠC(x) is called the generalized projection from E onto C. If E is a Hilbert space,
then ΠC(x) is coincident with the metric projection from E onto C.

Lemma 2.3 (see [2]). Let E be a uniformly convex smooth Banach space, and let {xn} and {yn} be
sequences in E. If {xn} or {yn} is bounded and limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.

Lemma 2.4 (see [2, 14]). Let E be a smooth Banach space and C be a nonempty, closed convex subset
of E. Let x ∈ E and let x0 ∈ C. Then φ(x0, x) = miny∈Cφ(y, x) if and only if 〈y − x0, Jx − Jx0〉 ≤ 0
for all y ∈ C.

Lemma 2.5 (see [2, 14]). Let E be a reflexive, strictly convex, and smooth Banach space, C a
nonempty, closed convex subset of E, and x ∈ E. Then

φ
(

y,ΠC(x)
)

+ φ(ΠC(x), x) ≤ φ
(

y, x
) ∀y ∈ C. (2.7)

Let E be a reflexive, strictly convex, and smooth Banach space and J the duality
mapping from E into E∗. Then J−1 is also single-valued, one-to-one, surjective, and it is the
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duality mapping from E∗ into E. We make use of the following mapping V studied in Alber
[14]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.8)

for all x ∈ E and x∗ ∈ E∗. In other words, V (x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.6 (see [14]). Let E be a reflexive, strictly convex, and smooth Banach space and let V be as
in (2.8). Then

V (x, x∗) + 2
〈

J−1(x∗) − x, y∗
〉

≤ V
(

x, x∗ + y∗) (2.9)

for all x ∈ E and x∗, y∗ ∈ E∗.

Let E be a smooth, strictly convex, and reflexive Banach space and let T ⊂ E × E∗ be
a maximal monotone operator. Then for each r > 0 and x ∈ E, there corresponds a unique
element xr ∈ D(T) satisfying

J(x) ∈ J(xr) + rT(xr), (2.10)

see Barbu [16] or Takahashi [17]. We define the resolvent of T by Jrx = xr . In other words,
Jr = (J+rT)−1J for all r > 0. It easy to show that T−10 = F(Jr) for all r > 0, where F(Jr) denotes
the set of all fixed points of Jr . We can also define, for each r > 0, the Yosida approximation of T
by Ar = r−1(J − JJr). We know that (Jrx,Arx) ∈ T for all r > 0 and x ∈ E. We also know the
following.

Lemma 2.7 (see [18]). Let E be a smooth, strictly convex, and reflexive Banach space, let T ⊂ E×E∗

be a maximal monotone operator with T−10/= ∅, let r > 0 and let Jr = (J + rT)−1J. Then

φ
(

x, Jry
)

+ φ
(

Jry, y
) ≤ φ

(

x, y
)

(2.11)

for all x ∈ T−10 and y ∈ E.

An operator A of C into E∗ is said to be hemicontinuous if for all x, y ∈ C, the mapping
f of [0, 1] into E∗ defined by f(t) = A(tx + (1 − t)y) is continuous with respect to the weak∗

topology of E∗. We denote by NC(v) the normal cone for C at a point v ∈ C, that is , NC(v) =
{x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0 for all y ∈ C}.

Theorem 2.8 (see [19]). Let C be a nonempty closed convex subset of a Banach space E, and A a
monotone, hemicontinuous operator of C into E∗. Let T ⊂ E × E∗ be an operator defined as follows:

Tv =

⎧

⎨

⎩

Av +NC(v), v ∈ C,

∅, v /∈C.
(2.12)

Then T is maximal monotone and T−10 = V I(C,A).



6 Fixed Point Theory and Applications

Lemma 2.9 (see [8]). Let C be a nonempty, closed convex subset of a Banach space E and A a
monotone, hemicontinuous operator of C into E∗. Then

V I(C,A) = {u ∈ C : 〈u − v,Av〉 ≥ 0 ∀v ∈ C}. (2.13)

It is obvious from Lemma 2.9 that the set V I(C,A) is a closed convex subset of C.
Further, we know the following lemma [8, Theorem 7.1.8].

Lemma 2.10 (see [8]). Let C be a nonempty, compact, and convex subset of a Banach space E, and
A a monotone, hemicontinuous operator of C into E∗. Then the set V I(C,A) is nonempty.

3. Main Result

In this section, we first prove the following strong convergence theorem.

Theorem 3.1. Let E be a 2-uniformly convex and smooth Banach space, T ⊂ E × E∗ be a maximal
monotone operator and, let Jr = (J + rT)−1J for all r > 0. Let C be a nonempty closed convex subset of
E such that D(T) ⊂ C ⊂ J−1(

⋂

r>0R(J + rT)) and let A be an α-inverse-strongly-monotone operator
of C into E∗ with F := V I(C,A) ∩ T−10/= ∅ and ‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ C and u ∈ F. Let
{xn} be a sequence defined by x1 = x ∈ C and

yn = ΠCJ
−1(Jxn − λnAxn),

xn+1 = ΠCJ
−1(αnJ(xn) + (1 − αn)J

(

Jrnyn

))

, n = 1, 2, . . . ,
(3.1)

whereΠC is the generalized projection from E onto C, {αn} ⊂ [0, 1], {rn} ⊂ (0,∞), and {λn} ⊂ [a, b]
for some a, b with 0 < a < b < c2α/2, where c is a constant in (2.3). Then the sequence {ΠF(xn)}
converges strongly to an element of F, which is a unique element v ∈ F such that

lim
n→∞

φ(v, xn) = min
y∈F

lim
n→∞

φ
(

y, xn

)

, (3.2)

whereΠF is the generalized projection from C onto F.

Proof. Let z ∈ F := V I(C,A) ∩ T−10. By Lemmas 2.5 and 2.6, we have

φ
(

z, yn

)

= φ
(

z,ΠCJ
−1(Jxn − λnAxn)

)

≤ φ
(

z, J−1(Jxn − λnAxn)
)

= V (z, Jxn − λnAxn)

≤ V (z, (Jxn − λnAxn) + λnAxn) − 2
〈

J−1(Jxn − λnAxn) − z, λnAxn

〉

= V (z, Jxn) − 2λn
〈

J−1(Jxn − λnAxn) − z,Axn

〉

= φ(z, xn) − 2λn〈xn − z,Axn〉 + 2
〈

J−1(Jxn − λnAxn) − xn,−λnAxn

〉

(3.3)
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for all n ∈ N. Since A is α-inverse-strongly-monotone and z ∈ V I(C,A), it follows that

−2λn〈xn − z,Axn〉 = −2λn〈xn − z,Axn −Az〉 − 2λn〈xn − z,Az〉

≤ −2αλn‖Axn −Az‖2
(3.4)

for all n ∈ N. By Lemma 2.1, we also have

2
〈

J−1(Jxn − λnAxn) − xn,−λnAxn

〉

≤ 2
∥
∥
∥J−1(Jxn − λnAxn) − J−1(Jxn)

∥
∥
∥‖λnAxn‖

≤ 4
c2
‖(Jxn − λnAxn) − (Jxn)‖‖λnAxn‖

=
4
c2
λ2n‖Axn‖2 ≤ 4

c2
λ2n‖Axn −Az‖2

(3.5)

for all n ∈ N. From (3.3), (3.4) and (3.5), we get

φ
(

z, yn

) ≤ φ(z, xn) + 2λn
(

2
c2
λn − α

)

‖Axn −Az‖2

≤ φ(z, xn) + 2a
(

2
c2
b − α

)

‖Axn −Az‖2 ≤ φ(z, xn)

(3.6)

for all n ∈ N. By Lemmas 2.5 and 2.7 and (3.6), we have

φ(z, xn+1) = φ
(

z,ΠCJ
−1(αnJ(xn) + (1 − αn)J

(

Jrnyn

)))

≤ φ
(

z, J−1
(

αnJ(xn) + (1 − αn)J
(

Jrnyn

)))

= V
(

z, αnJ(xn) + (1 − αn)J
(

Jrnyn

))

≤ αnV (z, Jxn) + (1 − αn)V
(

z, J
(

Jrnyn

))

= αnφ(z, xn) + (1 − αn)φ
(

z, Jrnyn

)

≤ αnφ(z, xn) + (1 − αn)
(

φ
(

z, yn

) − φ
(

Jrnyn, yn

))

≤ αnφ(z, xn) + (1 − αn)φ
(

z, yn

)

≤ αnφ(z, xn) + (1 − αn)φ(z, xn) = φ(z, xn)

(3.7)

for all n ∈ N. Thus limn→∞φ(z, xn) exists and hence, {φ(z, xn)} is bounded. It implies that
{xn} and {yn} are bounded. Define a function g : F → [0,∞) as follows:

g(z) = lim
n→∞

φ(z, xn), ∀z ∈ F. (3.8)
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Then, by the same argument as in proof of [4, Theorem 3.1], we obtain g is a continuous
convex function and if ‖zn‖ → ∞ then g(zn) → ∞. Hence, by [8, Theorem 1.3.11], there
exists a point v ∈ F such that

g(v) = min
y∈F

g
(

y
)

(:= l). (3.9)

Put un = ΠFxn for all n ∈ N. We next proof that un → v as n → ∞. If not, then there exists
ε0 > 0 such that for eachm ∈ N, there ism′ ≥ m satisfying ‖um′ −v‖ ≥ ε0. Since v ∈ F, we have

φ(un, xn) = φ(ΠFxn, xn) ≤ φ(v, xn) (3.10)

for all n ∈ N. This implies that

lim
n→∞

supφ(un, xn) ≤ lim
n→∞

φ(v, xn) = l. (3.11)

Since (‖v‖ − ‖un‖)2 ≤ φ(v, un) ≤ φ(v, xn) for all n ∈ N and {xn} is bounded, the sequence
{un} is also bounded. Applying Lemma 2.2, there exists a strictly increasing, continuous, and
convex function K : [0,∞) → [0,∞) such that K(0) = 0 and

∥
∥
∥
un + v

2

∥
∥
∥

2
≤ 1

2
‖un‖2 + 1

2
‖v‖2 − 1

4
K(‖un − v‖) (3.12)

for all n ∈ N. Now, choose b satisfying 0 < b < (1/4)K(ε0). Hence, there exists n0 ∈ N such
that

φ(un, xn) ≤ l + b, φ(v, xn) ≤ l + b (3.13)

for all n ≥ n0. Thus there exists k ≥ n0 satisfying the following:

φ(uk, xk) ≤ l + b, φ(v, xk) ≤ l + b, ‖uk − v‖ ≥ ε0. (3.14)

From (3.7), (3.12), and (3.14), we have

φ
(uk + v

2
, xn+k

)

≤ φ
(uk + v

2
, xk

)

=
∥
∥
∥
uk + v

2

∥
∥
∥

2
− 2
〈uk + v

2
, Jxk

〉

+ ‖xk‖2

≤ 1
2
‖uk‖2 + 1

2
‖v‖2 − 1

4
K(‖uk − v‖) − 〈uk + v, Jxk〉 + ‖xk‖2

=
1
2
φ(uk, xk) +

1
2
φ(v, xk) − 1

4
K(‖uk − v‖)

≤ l + b − 1
4
K(ε0)

(3.15)
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for all n ∈ N. Hence

l ≤ lim
n→∞

φ
(uk + v

2
, xn

)

= lim
n→∞

φ
(uk + v

2
, xn+k

)

≤ l + b − 1
4
K(ε0) < l + b − b = l. (3.16)

This is a contradiction. Therefore the sequence {un} converges strongly to v ∈ F := V I(C,A)∩
T−10. Consequently, v ∈ F is the unique element of F such that

lim
n→∞

φ(v, xn) = min
y∈F

lim
n→∞

φ
(

y, xn

)

. (3.17)

This completes the proof.

When C = E and A ≡ 0 in Theorem 3.1, we obtain the following corollary.

Corollary 3.2 (see Kamimura et al. [4]). Let E be a smooth and uniformly convex Banach space.
Let T ⊂ E × E∗ be a maximal monotone operator with T−10/= ∅, let Jr = (J + rT)−1J for all r > 0 and
let ΠT−10 be the generalized projection of E onto T−10. Let {xn} be a sequence defined by x1 = x ∈ E
and

xn+1 = J−1(αnJ(xn) + (1 − αn)J(Jrnxn)), (3.18)

for every n = 1, 2, . . . , where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞). Then the sequence {ΠT−10(xn)} converges
strongly to an element of T−10, which is a unique element v ∈ T−10 such that

lim
n→∞

φ(v, xn) = min
y∈T−10

lim
n→∞

φ
(

y, xn

)

. (3.19)

Now, we can prove the following weak convergence theorem for finding a common
element of the set of zero of a maximal monotone operator and the set of solution of the
variational inequality problem for an inverse-strongly-monotone operator in a 2-uniformly
convex and uniformly smooth Banach space.

Theorem 3.3. Let E be a 2-uniformly convex and smooth Banach space whose duality mapping J
is weakly sequentially continuous. Let T ⊂ E × E∗ be a maximal monotone operator and let Jr =
(J + rT)−1J for all r > 0. Let C be a nonempty closed convex subset of E such that D(T) ⊂ C ⊂
J−1(
⋂

r>0R(J + rT)) and let A be an α-inverse-strongly-monotone operator of C into E∗ with F :=
V I(C,A)∩T−10/= ∅ and ‖Ay‖ ≤ ‖Ay−Au‖ for all y ∈ C and u ∈ F. Let {αn} ⊂ [0, 1], {rn} ⊂ (0,∞)
such that lim supn→∞αn < 1 and lim infn→∞rn > 0, and let {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where c is a constant in (2.3). Let {xn} be a sequence generated by (3.1). Then
the sequence {xn} converges weakly to an element v of F. Further v = limn→∞ΠF(xn).

Proof. As in proof of Theorem 3.1, we have {xn} and {yn} are bounded. It holds from (3.7)
and (3.6) that

(1 − αn)φ
(

Jrnyn, yn

) ≤ φ(z, xn) − φ(z, xn+1) (3.20)
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for all n ∈ N. Since lim supn→∞αn < 1, it follows that limn→∞φ(Jrnyn, yn) = 0. Applying
Lemma 2.3, we have limn→∞‖Jrnyn − yn‖ = 0. Since E is uniformly smooth, the duality
mapping J is uniformly norm-to-norm continuous on each bounded subset of E. Thus

lim
n→∞

∥
∥J
(

Jrnyn

) − J
(

yn

)∥
∥ = 0. (3.21)

By (3.7) and (3.6), we note that

−2a
(

2
c2
b − α

)

(1 − αn)‖Axn −Az‖2 ≤ φ(z, xn) − φ(z, xn+1) (3.22)

for all n ∈ N and hence limn→∞‖Axn −Az‖2 = 0. From Lemmas 2.5 and 2.6 and (3.5), we
have

φ
(

xn, yn

)

= φ
(

xn,ΠCJ
−1(Jxn − λnAxn)

)

≤ φ
(

xn, J
−1(Jxn − λnAxn)

)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn) − 2
〈

J−1(Jxn − λnAxn) − xn, λnAxn

〉

= φ(xn, xn) + 2
〈

J−1(Jxn − λnAxn) − xn,−λnAxn

〉

=
4
c2
λ2n‖Axn −Az‖2 ≤ 4

c2
b2‖Axn −Az‖2

(3.23)

for all n ∈ N. Since limn→∞‖Axn −Az‖2 = 0, we have limn→∞φ(xn, yn) = 0. Applying
Lemma 2.3, we obtain limn→∞‖xn − yn‖ = 0. From the uniform smoothness of E, we have
limn→∞‖Jxn − Jyn‖ = 0. Since {xn} is bounded, there exists a subsequence {xni} of {xn}
such that xni ⇀ u ∈ E. It follows that yni ⇀ u as i ⇀ ∞. We will show that u ∈ F. Since
limn→∞rn > 0, it follows from (3.21) that

lim
n→∞

∥
∥Arnyn

∥
∥ = lim

n→∞
1
rn

∥
∥Jyn − J

(

Jrnyn

)∥
∥ = 0. (3.24)

If (z, z∗) ∈ T , then it holds from the monotonicity of T that

〈

z − yni , z
∗ −Arni

yni

〉

≥ 0 (3.25)

for all i ∈ N. Letting i → ∞, we get 〈z−u, z∗〉 ≥ 0. Then, the maximality of T implies u ∈ T−10.
Next, we show that u ∈ V I(C,A). Let B ⊂ E × E∗ be an operator as follows:

Bv :=

⎧

⎨

⎩

Av +NC(v), v ∈ C,

∅, v /∈C.
(3.26)
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By Theorem 2.8, B is maximal monotone and B−10 = V I(C,A). Let (v,w) ∈ G(B). Since
w ∈ Bv = Av +NC(v), it follows that w −Av ∈ NC(v). From yn ∈ C, we have

〈

v − yn,w −Av
〉 ≥ 0. (3.27)

On the other hand, from yn = ΠCJ
−1(Jxn − λnAxn) and Lemma 2.4, we have 〈v − yn, Jyn −

(Jxn − λnAxn)〉 ≥ 0 and hence

〈

v − yn,
Jxn − Jyn

λn
−Axn

〉

≤ 0. (3.28)

Then it follows from (3.27) and (3.28) that

〈

v − yn,w
〉 ≥ 〈v − yn,Av

〉

≥ 〈v − yn,Av
〉

+
〈

v − yn,
Jxn − Jyn

λn
−Axn

〉

=
〈

v − yn,Av −Axn

〉

+
〈

v − yn,
Jxn − Jyn

λn

〉

=
〈

v − yn,Av −Ayn

〉

+
〈

v − yn,Ayn −Axn

〉

+
〈

v − yn,
Jxn − Jyn

λn

〉

≥ −∥∥v − yn

∥
∥

∥
∥yn − xn

∥
∥

α
− ∥∥v − yn

∥
∥

∥
∥Jxn − Jyn

∥
∥

a

≥ −M
(∥
∥yn − xn

∥
∥

α
+

∥
∥Jxn − Jyn

∥
∥

a

)

(3.29)

for all n ∈ N, where M = sup{‖v − yn‖ : n ∈ N}. Taking n = ni, we have 〈v − u,w〉 ≥ 0 as
i → ∞. Hence, by the maximality of B, we obtain u ∈ B−10 = V I(C,A) and therefore u ∈ F.
By Theorem 3.1, the {ΠF(xn)} converges strongly to a point v ∈ F which is a unique element
of F such that

lim
n→∞

φ(v, xn) = min
y∈F

lim
n→∞

φ
(

y, xn

)

. (3.30)

By the uniform smoothness of E, we also have limn→∞‖JΠFxni − Jv‖ = 0. Finally we prove
that u = v. From Lemma 2.4 and u ∈ F, we have

〈u −ΠFxni , Jxni − JΠFxni〉 ≤ 0 (3.31)

for all i ∈ N. Since J is weakly sequentially continuous, we have Jxni ⇀ Ju as i ⇀ ∞. Letting
i → ∞ in (3.31), we get

〈u − v, Ju − Jv〉 ≤ 0. (3.32)



12 Fixed Point Theory and Applications

This implies 〈u−v, Ju− Jv〉 = 0. Since E is strictly convex, it follows that u = v. Therefore the
sequence {xn} converges weakly to v = limn→∞ΠF(xn). This completes the proof.

When C = E and A ≡ 0 in Theorem 3.3, we obtain the following result.

Corollary 3.4 (see Kamimura et al. [4]). LetE be a uniformly convex and uniformly smooth Banach
space whose duality mapping J is weakly sequentially continuous. Let T ⊂ E × E∗ be a maximal
monotone operator with T−10/= ∅, let Jr = (J + rT)−1J for all r > 0 and let {xn} be a sequence defined
by x1 = x ∈ E and

xn+1 = J−1(αnJ(xn) + (1 − αn)J(Jrnxn)), (3.33)

for every n = 1, 2, . . . , where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy lim supn→∞αn < 1 and
lim infn→∞rn > 0. Then the sequence {xn} converges weakly to an element v of T−10. Further
v = limn→∞ΠT−10(xn).

When αn = 0 and T ≡ 0 in Theorem 3.3, we have the following corollary.

Corollary 3.5 (see Iiduka and Takahashi [6]). Let E be a 2-uniformly convex and uniformly
smooth Banach space whose duality mapping J is weakly sequentially continuous. LetC be a nonempty
closed convex subset of E and let A be an α-inverse-strongly-monotone operator of C into E∗ with
V I(C,A)/= ∅. Assume that ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(C,A). Let {λn} ⊂ [a, b]
for some a, b with 0 < a < b < c2α/2, where c is a constant in (2.3). Let {xn} be a sequence defined
by x1 = x ∈ C and

xn+1 = ΠCJ
−1(Jxn − λnAxn), (3.34)

for every n = 1, 2, . . . , where ΠC is the generalized projection from E onto C. Then the sequence {xn}
converges weakly to an element v in V I(C,A). Further v = limn→∞ΠV I(C,A)(xn).

4. Application

In this section, we prove some weak convergence theorems in a 2-uniformly convex,
uniformly smooth Banach space by using Theorem 3.3. We first apply Theorem 3.3 to the
convex minimization problem.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous and let f : E → (−∞,∞] be a proper lower
semicontinuous convex function. Let C be a nonempty closed convex subset of E such that D(∂f) ⊂
C ⊂ J−1(

⋂

r>0R(J + r∂f)) and let A be an α-inverse-strongly-monotone operator of C into E∗ with
F := V I(C,A)∩(∂f)−10/= ∅ and ‖Ay‖ ≤ ‖Ay−Au‖ for all y ∈ C and u ∈ F. Let {xn} be a sequence
defined as follows: x1 = x ∈ C and

zn = ΠCJ
−1(Jxn − λnAxn),

yn = argmin
y∈C

{

f
(

y
)

+
1
2rn

∥
∥y
∥
∥
2 − 1

rn

〈

y, Jzn
〉
}

,

xn+1 = ΠCJ
−1(αnJ(xn) + (1 − αn)J

(

yn

))

,

(4.1)
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for every n = 1, 2, . . . , where ΠC is the generalized projection from E onto C, {αn} ⊂ [0, 1], {rn} ⊂
(0,∞) satisfy lim supn→∞αn < 1 and lim infn→∞rn > 0, and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where c is a constant in (2.3). Then the sequence {xn} converges weakly to an
element v of F := V I(C,A) ∩ (∂f)−10. Further v = limn→∞ΠF(xn).

Proof. By Rockafellar’s theorem [20, 21], the subdifferential mapping ∂f ⊂ E × E∗ is maximal
monotone. Let Jr = (J + r∂f)−1J for all r > 0. As in the proof of [4, Theorem 4.1], we have yn =
Jrnzn for all n ∈ N. Hence, by Theorem 3.3, {xn} converges weakly to v = limn→∞ΠF(xn).

Next, we study the problem of finding a zero point of a maximal monotone operator
of E into E∗ and a minimizer of a continuously Fréchet differentiable, convex functional in a
Banach space. To prove this, we need the following lemma.

Lemma 4.2 (see [22]). Let E be a Banach space, f a continuously Fréchet differentiable, convex
function on E, and ∇f the gradient of f . If ∇f is 1/α-Lipschitz continuous, then ∇f is α-inverse-
strongly-monotone.

Theorem 4.3. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T ⊂ E ×E∗ be a maximal monotone operator and let
Jr = (J + rT)−1J for all r > 0. Let C be a nonempty closed convex subset of E such that D(T) ⊂ C ⊂
J−1(
⋂

r>0R(J + rT)). Assume that f is a function on E satisfies the following:

(1) f is a continuously Fréchet differentiable convex function on E, and ∇f is 1/α-Lipschitz
continuous;

(2) S = argminy∈Cf(y) = {z ∈ C : f(z) = miny∈Cf(y)} ∩ T−10/= ∅;
(3) ‖∇f |C(y)‖ ≤ ‖∇f |C(y) − ∇f |C(u)‖ for all y ∈ C and u ∈ S ∩ T−10.

Suppose that x1 = x ∈ C and {xn} is given by

yn = ΠCJ
−1(Jxn − λn∇f |C(xn)

)

,

xn+1 = ΠCJ
−1(αnJ(xn) + (1 − αn)J

(

Jrnyn

))

,
(4.2)

for every n = 1, 2, . . . , where ΠC is the generalized projection from E onto C and {αn} ⊂ [0, 1],
{rn} ⊂ (0,∞) satisfy lim supn→∞αn < 1 and lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where c is a constant in (2.3). Then the sequence {xn} converges weakly to some
element v in F := T−10 ∩ S. Further v = limn→∞ΠF(xn).

Proof. It follows from Lemma 4.2 and the condition (1) that ∇f |C is an α-inverse-
strongly-monotone operator of C into E∗. We also obtain from the convexity and Fréchet
differentiability of f that

V I
(

C,∇f |C
)

= argmin
y∈C

f
(

y
)

. (4.3)

By using Theorem 3.3, {xn} converges weakly to some element v in F := T−10 ∩ S.

We next consider the problem of finding a zero point of a maximal monotone operator
of E into E∗ and a zero point of an inverse-strongly-monotone operator of E into E∗. In the
case where C = E.
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Theorem 4.4. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T ⊂ E × E∗ be a maximal monotone operator and
let Jr = (J + rT)−1J for all r > 0. Let A be an α-inverse-strongly-monotone of E into E∗ with A−10 ∩
T−10/= ∅. Let x1 = x ∈ E and {xn} is given by

yn = J−1(Jxn − λnAxn),

xn+1 = J−1
(

αnJ(xn) + (1 − αn)J
(

Jrnyn

))

,
(4.4)

for every n = 1, 2, . . . , where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy lim supn→∞αn < 1 and
lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where c is a constant
in (2.3). Then the sequence {xn} converges weakly to some element v in F := T−10 ∩ A−10. Further
v = limn→∞ΠF(xn).

Proof. FromΠE = I, V I(E,A) = A−10, and ‖Ay‖ = ‖Ay− 0‖ = ‖Ay−Au‖ for all y ∈ E and u ∈
A−10, by using Theorem 3.3, {xn} converges weakly to some element v in F := T−10∩A−10.

Corollary 4.5. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T ⊂ E ×E∗ be a maximal monotone operator and let
Jr = (J + rT)−1J for all r > 0. Assume that f is a function on E such that f is a continuously Fréchet
differentiable convex function on E,∇f is 1/α-Lipschitz continuous, and (∇f)−10 = {z ∈ E : f(z) =
miny∈Ef(y)} ∩ T−10/= ∅. Let {xn} be a sequence generated by x1 = x ∈ E and

yn = J−1
(

Jxn − λn∇fxn

)

,

xn+1 = J−1
(

αnJ(xn) + (1 − αn)J
(

Jrnyn

))

,
(4.5)

for every n = 1, 2, . . . , where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy lim supn→∞αn < 1 and
lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where c is a constant in
(2.3). Then the sequence {xn} converges weakly to some element v in F := T−10 ∩ (∇f)−10. Further
v = limn→∞ΠF(xn).

Proof. By Lemma 4.2, we have ∇f is an α-inverse-strongly-monotone operator of E into E∗.
Hence, by Theorem 4.4, {xn} converges weakly to some element v in F := T−10∩ (∇f)−10.

Finally we consider the complementary problem. Let K be a nonempty closed convex
cone in E, A an operator of K into E∗. We define its polar in E∗ to be the set

K∗ =
{

y∗ ∈ E∗ :
〈

x, y∗〉 ≥ 0 ∀x ∈ K
}

. (4.6)

Then an element u ∈ K is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (4.7)

The set of solutions of the complementarity problem is denoted by C(K,A).
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Theorem 4.6. Let E be a 2-uniformly convex and uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let T ⊂ E ×E∗ be a maximal monotone operator and let
Jr = (J + rT)−1J for all r > 0. Let K be a nonempty closed convex cone of E such that D(T) ⊂ K ⊂
J−1(
⋂

r>0R(J + rT)). Let A be an α-inverse-strongly-monotone of K into E∗ with F := C(K,A) ∩
T−10/= ∅ and ‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ K and u ∈ F. Suppose that x1 = x ∈ K and {xn} is
given by

yn = ΠKJ
−1(Jxn − λnAxn),

xn+1 = ΠKJ
−1(αnJ(xn) + (1 − αn)J

(

Jrnyn

))

,
(4.8)

for every n = 1, 2, . . . , where ΠK is the generalized projection from E onto K and {αn} ⊂ [0, 1],
{rn} ⊂ (0,∞) satisfy lim supn→∞αn < 1 and lim infn→∞rn > 0 and {λn} ⊂ [a, b] for some a, b with
0 < a < b < c2α/2, where c is a constant in (2.3). Then the sequence {xn} converges weakly to some
element v in F := T−10 ∩ C(K,A). Further v = limn→∞ΠF(xn).

Proof. It follows by of [8, Lemma 7.11] that V I(K,A) = C(K,A). Hence, Theorem 3.3, {xn}
converges weakly to some element v in F := T−10 ∩ C(K,A).
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