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1. Introduction and Preliminaries

In 1980, Rzepecki [1] introduced a generalizedmetric dE on a setX in a way that dE : X×X →
S, where E is Banach space and S is a normal cone in Ewith partial order �. In that paper, the
author generalized the fixed point theorems of Maia type [2].

Let X be a nonempty set endowed in two metrics d1, d2 and T a mapping of X into itself.
Suppose that d1(x, y) ≤ d2(x, y) for all x, y ∈ X, andX is complete space with respect to d1, and T is
continuous with respect to d1, and T is contraction with respect to d2, that is, d2(Tx, Ty) ≤ kd2(x, y)
for all x, y ∈ X, where 0 ≤ k < 1. Then f has a unique fixed point in X.

Seven years later, Lin [3] considered the notion of K-metric spaces by replacing real
numbers with cone K in the metric function, that is, d : X × X → K. In that manuscript,
some results of Khan and Imdad [4] on fixed point theorems were considered for K-metric
spaces. Without mentioning the papers of Lin and Rzepecki, in 2007, Huang and Zhang
[5] announced the notion of cone metric spaces (CMS) by replacing real numbers with an
ordering Banach space. In that paper, they also discussed some properties of convergence
of sequences and proved the fixed point theorems of contractive mapping for cone metric
spaces: any mapping T of a complete cone metric space X into itself that satisfies, for some
0 ≤ k < 1, the inequality

d
(
Tx, Ty

) ≤ kd
(
x, y

)
, (1.1)

for all x, y ∈ X, has a unique fixed point.
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Recently, many results on fixed point theorems have been extended to cone metric
spaces (see, e.g., [5–9]). Notice also that in ordered abstract spaces, existence of some fixed
point theorems is presented and applied the resolution of matrix equations (see, e.g., [10–
12]).

In this manuscript, some of known results (see, e.g., [13, 14]) are extended to cone
Banach spaces which were defined and used in [15, 16] where the existence of fixed points
for self-mappings on cone Banach spaces is investigated.

Throughout this paper E := (E, ‖·‖) stands for real Banach space. Let P := PE always be
a closed nonempty subset of E. P is called cone if ax + by ∈ P for all x, y ∈ P and nonnegative
real numbers a, b where P ∩ (−P) = {0} and P /= {0}.

For a given cone P , one can define a partial ordering (denoted by ≤ or ≤P )with respect
to P by x ≤ y if and only if y − x ∈ P . The notation x < y indicates that x ≤ y and x /=y,
while x � y will show y − x ∈ intP , where intP denotes the interior of P . From now on, it is
assumed that intP /= ∅.

The cone P is called

(N) normal if there is a number K ≥ 1 such that for all x, y ∈ E:

0 ≤ x ≤ y =⇒ ‖x‖ ≤ K
∥∥y

∥∥, (1.2)

(R) regular if every increasing sequence which is bounded from above is convergent.
That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then
there is x ∈ E such that limn→∞‖xn − x‖ = 0.

In (N), the least positive integerK, satisfying (1.2), is called the normal constant of P .

Lemma 1.1 (see [6, 17]). (i) Every regular cone is normal.

(ii) For each k > 1, there is a normal cone with normal constant K > k.

(iii) The cone P is regular if every decreasing sequence which is bounded from below is
convergent.

Proofs of (i) and (ii) are given in [6] and the last one follows from definition.

Definition 1.2 (see [5]). Let X be a nonempty set. Suppose the mapping d : X × X → E
satisfies

(M1) 0 ≤ d(x, y) for all x, y ∈ X,

(M2) d(x, y) = 0 if and only if x = y,

(M3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y ∈ X,

(M4) d(x, y) = d(y, x) for all x, y ∈ X,

then d is called cone metric on X, and the pair (X, d) is called a cone metric space (CMS).

Example 1.3. Let E = R
3, P = {(x, y, z) ∈ E : x, y, z ≥ 0}, and X = R. Define d : X × X → E

by d(x, x̃) = (α|x − x̃|, β|x − x̃|, γ |x − x̃|), where α, β, γ are positive constants. Then (X, d) is a
CMS. Note that the cone P is normal with the normal constant K = 1.

It is quite natural to consider Cone Normed Spaces (CNS).
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Definition 1.4 (see [15, 16]). LetX be a vector space over R. Suppose the mapping ‖ · ‖P : X →
E satisfies

(N1) ‖x‖P > 0 for all x ∈ X,

(N2) ‖x‖P = 0 if and only if x = 0,

(N2) ‖x + y‖P ≤ ‖x‖P + ‖y‖P for all x, y ∈ X,

(N2) ‖kx‖P = |k|‖x‖P for all k ∈ R,

then ‖ · ‖P is called cone norm on X, and the pair (X, ‖ · ‖P ) is called a cone normed space
(CNS).

Note that each CNS is CMS. Indeed, d(x, y) = ‖x − y‖P .

Definition 1.5. Let (X, ‖ · ‖P ) be a CNS, x ∈ X and {xn}n≥1 a sequence in X. Then

(i) {xn}n≥1 converges to x whenever for every c ∈ E with 0 � c there is a natural
numberN, such that ‖xn − x‖P � c for all n ≥ N. It is denoted by limn→∞xn = x or
xn → x;

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ E with 0 � c there is a natural
number N, such that ‖xn − x‖P � c for all n,m ≥ N;

(iii) (X, ‖ · ‖P ) is a complete cone normed space if every Cauchy sequence is convergent.

Complete cone normed spaces will be called cone Banach spaces.

Lemma 1.6. Let (X, ‖ · ‖P ) be a CNS, P a normal cone with normal constantK, and {xn} a sequence
in X. Then,

(i) the sequence {xn} converges to x if and only if ‖xn − x‖P → 0, as n → ∞;

(ii) the sequence {xn} is Cauchy if and only if ‖xn − xm‖P → 0 as n,m → ∞;

(iii) the sequence {xn} converges to x and the sequence {yn} converges to y then ‖xn −yn‖P →
‖x − y‖P .

The proof is direct by applying [5, Lemmas 1, 4, and 5] to the cone metric space (X, d),
where d(x, y) = ‖x − y‖P , for all x, y ∈ X.

Lemma 1.7 (see [7, 8]). Let (X, ‖ · ‖P ) be a CNS over a cone P in E. Then (1) Int(P) + Int(P) ⊆
Int(P) and λInt(P) ⊆ Int(P), λ > 0. (2) If c � 0 then there exists δ > 0 such that ‖b‖ < δ implies
b � c. (3) For any given c � 0 and c0 � 0, there exists n0 ∈ N such that c0/n0 � c. (4) If an, bn
are sequences in E such that an → a, bn → b, and an ≤ bn, for all n then a ≤ b.

The proofs of the first two parts followed from the definition of Int(P). The third part
is obtained by the second part. Namely, if c � 0 is given then find δ > 0 such that ‖b‖ < δ
implies b � c. Then find n0 such that 1/n0 < δ/‖c0‖ and hence c0/n0 � c. Since P is closed,
the proof of fourth part is achieved.

Definition 1.8 (see [17]). P is called minihedral cone if sup{x, y} exists for all x, y ∈ E, and
strongly minihedral if every subset of E which is bounded from above has a supremum.

Lemma 1.9 (see [18]). Every strongly minihedral normal cone is regular.
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Example 1.10. Let E = C[0, 1] with the supremum norm and P = {f ∈ E : f ≥ 0}. Then P is
a cone with normal constant M = 1 which is not regular. This is clear, since the sequence xn

is monotonically decreasing, but not uniformly convergent to 0. This cone, by Lemma 1.9, is
not strongly minihedral. However, it is easy to see that the cone mentioned in Example 1.3 is
strongly minihedral.

Definition 1.11. Let C be a closed and convex subset of a cone Banach space with the norm
‖x‖P = d(x, 0) and T : C → C a mapping which satisfies the condition

1
2
‖x − Tx‖P ≤ ∥

∥x − y
∥
∥
P =⇒ ∥

∥Tx − Ty
∥
∥
P ≤ ∥

∥x − y
∥
∥
P , (1.3)

for all x, y ∈ C. Then, T is said to satisfy the condition (C).

For T : X → X, the set of fixed points of T is denoted by F(T) := {z ∈ X : Tz = z}.

Definition 1.12 (see [14]). Let C be a closed and convex subset of a cone Banach space with
the norm ‖x‖P = d(x, 0) and T : C → C a mapping. Consider the conditions

‖Tx − Tz‖P ≤ ‖x − z‖P ∀x, z ∈ C, (1.4)

‖Tx − z‖P ≤ ‖x − z‖P ∀x ∈ C, z ∈ F(T). (1.5)

Then T is called nonexpansive (resp., quasi-nonexpansive) if it satisfies the condition (1.4)
(resp., (1.5)).

2. Main Results

From now on, X = (X, ‖ · ‖P ) will be a cone Banach space, P a normal cone with normal
constant K and T a self-mapping operator defined on a subset C of X.

Theorem 2.1. Let a ∈ R with a > 1 and let (X, d) be a complete cone metric space T : X → X an
onto mapping which satisfies the condition

d
(
Tx, Ty

) ≥ ad
(
x, y

)
. (2.1)

Then, T has a unique fixed point.

Proof. Let x /=y and Tx = Ty, then by (2.1), one can observe 0 ≥ ad(x, y) which is a
contradiction. Thus, T is one-to-one and it has an inverse, say S. Hence,

d
(
x, y

) ≥ ad
(
Sx, Sy

) ⇐⇒ d
(
Sx, Sy

) ≤ 1
a
d
(
x, y

)
. (2.2)

By [5, Theorem 1], S has a unique fixed point which is equivalent to saying that T has a
unique fixed point.

The following statement is consequence of Definition 1.11.
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Proposition 2.2. Every nonexpansive mapping satisfies the condition (C).

Proposition 2.3. Let T satisfy the condition (C) and F(T)/= ∅, then T is a quasi-nonexpansive.

Proof. Let z ∈ F(T) and x ∈ C. Since (1/2)‖z − Tz‖P = 0 ≤ ‖z − x‖P and satisfies the condition
(C),

‖z − Tx‖P = ‖Tz − Tx‖P ≤ ‖z − x‖P . (2.3)

Theorem 2.4. Let C be a closed and convex subset of a cone Banach space X with the norm ‖x‖P =
d(x, 0) and T : C → C a mapping which satisfies the condition

d(x, Tx) + d
(
y, Ty

) ≤ qd
(
x, y

)
, (2.4)

for all x, y ∈ C, where 2 ≤ q < 4. Then, T has at least one fixed point.

Proof. Let x0 ∈ C be arbitrary. Define a sequence {xn} in the following way:

xn+1 :=
xn + T(xn)

2
n = 0, 1, 2, . . . . (2.5)

Notice that

xn − Txn = 2
(
xn −

(
xn + Txn

2

))
= 2(xn − xn+1), (2.6)

which yields that

d(xn, Txn) = ‖xn − Txn‖P = 2‖xn − xn+1‖P = 2d(xn, xn+1), (2.7)

for n = 0, 1, 2, . . . . Combining this observation with the condition (2.4), one can obtain

2d(xn−1, xn) + 2d(xn, xn+1) ≤ qd(xn−1, xn). (2.8)

Thus, d(xn, xn+1) ≤ kd(xn−1, xn), where k = (q − 2)/2 < 1. Hence, {xn} is a Cauchy sequence
in C and thus converges to some z ∈ C. Regarding the inequality

d(z, Txn) ≤ d(z, xn) + d(xn, Txn) = d(z, xn) + 2d(xn, xn+1) (2.9)

and by the help of Lemma 1.6(iii), one can obtain

Txn −→ z. (2.10)
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Taking into account (2.6) and (2.4), substituting x = z and y = xn implies that

d(z, Tz) + 2d(xn, xn+1) ≤ qd(z, xn). (2.11)

Thus, when n → ∞, one can get d(z, Tz) ≤ 0, that is, Tz = z.

Notice that identity map, I(x) = x, satisfies the condition (2.4). Thus, maps that satisfy
the condition (2.4) may have fixed points.

From the triangle inequality,

d(x, Tx) + d
(
y, Ty

) ≤ d
(
x, y

)
+ d

(
y, Tx

)
+ d

(
y, x

)
+ d

(
x, Ty

)
. (2.12)

By (2.4),

d(x, Tx) + d
(
y, Ty

) ≤ 2d
(
x, y

)
+ qd

(
x, y

)
=
(
2 + q

)
d
(
x, y

)
, 2 ≤ q < 4. (2.13)

Thus, letting p = 2 + q implies that

d(x, Tx) + d
(
y, Ty

) ≤ 2d
(
x, y

)
+ qd

(
x, y

)
=
(
2 + q

)
d
(
x, y

)
, 0 ≤ p < 2. (2.14)

Hence we have the following conclusion.

Theorem 2.5. Let C be a closed and convex subset of a cone Banach space with the norm ‖x‖P =
d(x, 0) and T : C → C a mapping which satisfies the condition

d(x, Tx) + d
(
y, Ty

) ≤ pd
(
x, y

)
(2.15)

for all x, y ∈ C, where 0 ≤ p < 2. Then T has a fixed point.

Theorem 2.6. Let C be a closed and convex subset of a cone Banach space with the norm ‖x‖P =
d(x, 0) and T : C → C a mapping which satisfies the condition

d
(
Tx, Ty

)
+ d(x, Tx) + d

(
y, Ty

) ≤ rd
(
x, y

)
(2.16)

for all x, y ∈ C, where 2 ≤ r < 5. Then T has at least one fixed point.

Proof. Construct a sequence {xn} as in the proof of Theorem 2.4, that is, (2.5), (2.6) and also

xn − Txn−1 =
xn−1 + Txn−1

2
− Txn−1 =

xn−1 − Txn−1
2

,

d(xn, Txn−1) = ‖xn − Txn−1‖P =
1
2
‖xn−1 − Txn−1‖P =

1
2
d(xn−1, Txn−1)

(2.17)

hold. Thus the triangle inequality implies

d(xn, Txn) − d(xn, Txn−1) ≤ d(Txn−1, Txn). (2.18)
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Then, by (2.17) and (2.7)we obtain

2d(xn, xn+1) − d(xn, xn−1) ≤ d(Txn−1, Txn). (2.19)

Replacing x = xn−1 and y = xn in (2.16) and regarding (2.7) and (2.19), one can obtain

2d(xn, xn+1) + d(xn, xn−1) − 2d(xn, xn−1) + 2d(xn, xn+1) ≤ rd(xn−1, xn) (2.20)

and thus, d(xn, xn+1) ≤ ((r − 1)/4)d(xn, xn−1). Since 1 ≤ r < 5, the sequence {xn} is a Cauchy
sequence that converges to some z ∈ C. Since {Txn} also converges to z as in the proof of
Theorem 2.4, the inequality (2.16) (under the assumption x = z and y = xn) by the help of
Lemma 1.6(iii) yields that d(Tz, z)+d(z, Tz) ≤ 0which is equivalent to saying that Tz = z.

Theorem 2.7. Let C be a closed and convex subset of a cone Banach space with the norm ‖x‖P =
d(x, 0). If there exist a, b, s and T : C → C satisfies the conditions

0 ≤ s + |a| − 2b < 2(a + b), (2.21)

ad
(
Tx, Ty

)
+ b

(
d(x, Tx) + d

(
y, Ty

)) ≤ sd
(
x, y

)
(2.22)

for all x, y ∈ C. Then, T has at least one fixed point.

Proof. Construct a sequence {xn} as in the proof of Theorem 2.4. We claim that the inequality
(2.22) for x = xn−1 and y = xn implies that

2ad(xn, xn+1) − |a|d(xn−1, xn) + 2b(d(xn−1, xn) + d(xn, xn+1)) ≤ sd(xn−1, xn) (2.23)

for all a, b, s that satisfy (2.21). For the proof of the claim, first recall from (2.7) that

d(xn−1, Txn−1) = 2d(xn−1, xn), d(xn, Txn) = 2d(xn, xn+1). (2.24)

The case a ≥ 0 is trivially true. Indeed, taking into account (2.22) with x = xn−1 and y = xn

together with (2.24) and (2.19), one can get

2ad(xn, xn+1) − ad(xn−1, xn) + 2b(d(xn−1, xn) + d(xn, xn+1)) ≤ sd(xn−1, xn) (2.25)

which is equivalent to (2.23) since |a| = a. For the case a < 0, consider the inequality
d(Txn−1, Txn) ≤ d(xn, Txn) + d(xn, Txn−1) which is equivalent to

a(d(xn, Txn) + d(xn, Txn−1)) ≥ ad(Txn−1, Txn). (2.26)
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By substituting x = xn−1 and y = xn in (2.22) together with (2.24), (2.26) and (2.17), one can
get

2ad(xn, xn+1) + ad(xn−1, xn) + 2b(d(xn−1, xn) + d(xn, xn+1)) ≤ sd(xn−1, xn) (2.27)

which is equivalent to (2.23) since |a| = −a. Hence, the claim is proved.
By (2.23), one can obtain

d(xn, xn+1) ≤ |a| − 2b + s

2(a + b)
d(xn−1, xn). (2.28)

Due to (2.21), we have 0 ≤ (|a| − 2b + s)/2(a + b) < 1. Thus, the sequence {xn} is a Cauchy
sequence that converges to some z ∈ C. By substituting x with z and y with xn in (2.22), one
can obtain

ad(Tz, z) + bd(z, Tz) ≤ 0, (2.29)

as n → ∞. This last condition is equivalent to saying that Tz = z as a + b > 0.
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