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1. Introduction

Let E be a real Banach space and let E∗ be the dual of E. Let C be a closed convex subset of E.
Let A : C → E∗ be an operator. The classical variational inequality problem for A is to find
x̂ ∈ C such that

〈Ax̂, y − x̂〉 ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by V I(A,C). Such a problem is connected with the
convex minimization problem, the complementarity, the problem of finding a point x̂ ∈ E
satisfying 0 = Ax̂, and so on. First, we recall that

(1) an operator A is called monotone if

〈Ax −Ay, x − y〉 ≥ 0, ∀x, y ∈ C. (1.2)
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(2) an operator A is called α-inverse-strongly monotone if there exists a constant α > 0
with

〈Ax −Ay, x − y〉 ≥ α
∥

∥Ax −Ay
∥

∥

2
, ∀x, y ∈ C. (1.3)

Assume that

(C1) A is α-inverse-strongly monotone,

(C2) V I(A,C)/=∅,

(C3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(A,C).

Iiduka and Takahashi [1] introduced the following algorithm for finding a solution
of the variational inequality for an operator A that satisfies conditions (C1)–(C3) in a 2-
uniformly convex and uniformly smooth Banach space E. For an initial point x1 = x ∈ C,
define a sequence {xn} by

xn+1 = ΠCJ
−1(Jxn − λnAxn), ∀n ≥ 1, (1.4)

where J is the duality mapping on E, and ΠC is the generalized projection from E onto
C. Assume that λn ∈ [a, b] for some a, b with 0 < a < b < c2α/2 where 1/c is the p-
uniformly convexity constant of E. They proved that if J is weakly sequentially continuous,
then the sequence {xn} converges weakly to some element z in V I(A,C) where z =
limn→∞ΠV I(A,C)(xn).

The problem of finding a common element of the set of the variational inequalities
for monotone mappings in the framework of Hilbert spaces and Banach spaces has been
intensively studied by many authors; see, for instance, [2–4] and the references cited therein.

Let f : C×C → R be a bifunction. The equilibrium problem for f is to find x̂ ∈ C such
that

f
(

x̂, y
) ≥ 0, ∀y ∈ C. (1.5)

The set of solutions of (1.5) is denoted by EP(f).
For solving the equilibrium problem, let us assume that a bifunction f satisfies the

following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C,

lim sup
t↓0

f
(

tz + (1 − t)x, y
) ≤ f

(

x, y
)

; (1.6)

(A4) for all x ∈ C, f(x, ·) is convex and lower semicontinuous.
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Recently, Takahashi and Zembayashi [5], introduced the following iterative scheme
which is called the shrinking projection method:

x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ C such that f
(

un, y
)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(1.7)

where J is the duality mapping on E andΠC is the generalized projection from E ontoC. They
proved that the sequence {xn} converges strongly to q = ΠF(T)∩EP(f)x0 under appropriate
conditions.

Very recently, Qin et al. [6] extend the iteration process (1.7) from a single relatively
nonexpansive mapping to two relatively quasi-nonexpansive mappings:

x0 ∈ E, chosen arbitrarily,

C1 = C, x1 = ΠC1x0,

yn = J−1
(

αnJxn + βnJTxn + γnJSxn

)

,

un ∈ C such that f
(

un, y
)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0.

(1.8)

Under suitable conditions over {αn}, {βn}, and {γn}, they obtain that the sequence {xn}
generated by (1.8) converges strongly to q = ΠF(T)∩F(S)∩EP(f)x0.

The problem of finding a common element of the set of fixed points and the set of
solutions of an equilibrium problem in the framework of Hilbert spaces and Banach spaces
has been studied by many authors; see [5, 7–16].

Motivated by Iiduka and Takahashi [1], Takahashi and Zembayashi [5], and Qin
et al. [6], we introduce a new general process for finding common elements of the set of
the equilibrium problem and the set of the variational inequality problem for an inverse-
strongly monotone operator and the set of the fixed points for relatively quasi-nonexpansive
mappings.
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2. Preliminaries

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach
space E is said to be strictly convex if for any x, y ∈ U,

x /=y implies
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1. (2.1)

It is also said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that for any
x, y ∈ U,

∥

∥x − y
∥

∥ ≥ ε implies
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

< 1 − δ. (2.2)

It is known that a uniformly convex Banach space is reflexive and strictly convex; and we
define a function δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{

1 −
∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: x, y ∈ E, ‖x‖ =
∥

∥y
∥

∥ = 1,
∥

∥x − y
∥

∥ ≥ ε

}

. (2.3)

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. Let p be a fixed real
number with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists a constant
c > 0 such that δ(ε) ≥ cεp for all ε ∈ [0, 2]; see [17–19] for more details. A Banach space E is
said to be smooth if the limit

lim
t→ 0

∥

∥x + ty
∥

∥ − ‖x‖
t

(2.4)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.4) is attained
uniformly for x, y ∈ U. One should note that no Banach space is p-uniformly convex for
1 < p < 2; see [19]. It is well known that a Hilbert space is 2-uniformly convex, uniformly
smooth. For each p > 1, the generalized duality mapping Jp : E → 2E

∗
is defined by

Jp(x) =
{

x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1
}

(2.5)

for all x ∈ E. In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space,
then J = I, where I is the identity mapping. It is also known that if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E. See [20, 21] for
more details.

Lemma 2.1 (See [18, 22]). Let p be a given real number with p ≥ 2 and E a p-uniformly convex
Banach space. Then, for all x, y ∈ E, jx ∈ Jp(x) and jy ∈ Jp(y),

〈x − y, jx − jy〉 ≥ cp

2p−2p

∥

∥x − y
∥

∥

p
, (2.6)

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant of E.
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Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ
(

x, y
)

= ‖x‖2 − 2〈x, Jy〉 + ∥

∥y
∥

∥

2 (2.7)

for all x, y ∈ E. In a Hilbert space H, we have φ(x, y) = ‖x − y‖2 for all x, y ∈ H.
Recall that a mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all

x, y ∈ C and relatively nonexpansive if T satisfies the following conditions:

(1) F(T)/=∅, where F(T) is the set of fixed points of T ;

(2) φ(p, Tx) ≤ φ(p, x) for all p ∈ F(T) and x ∈ C;

(3) F(̂T) = F(T), where F(̂T) is the set of all asymptotic fixed points of T ;

see [10, 23, 24] for more details.
T is said to be relatively quasi-nonexpansive if T satisfies the conditions (1) and (2). It

is easy to see that the class of relatively quasi-nonexpansive mappings is more general than
the class of relatively nonexpansive mappings [9, 25, 26].

We give some examples which are closed relatively quasi-nonexpansive; see [6].

Example 2.2. Let E be a uniformly smooth and strictly convex Banach space and A ⊂ E × E∗

be a maximal monotone mapping such that its zero set A−10/=∅. Then, Jr = (J + rA)−1J is a
closed relatively quasi-nonexpansive mapping from E onto D(A) and F(Jr) = A−10.

Example 2.3. Let ΠC be the generalized projection from a smooth, strictly convex, and
reflexive Banach space E onto a nonempty closed convex subset C of E. Then, ΠC is a closed
relatively quasi-nonexpansive mapping with F(ΠC) = C.

Lemma 2.4 (Kamimura and Takahashi [27]). Let E be a uniformly convex and smooth Banach
space and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is bounded,
then ‖xn − yn‖ → 0 as n → ∞.

Let C be a nonempty closed convex subset of E. If E is reflexive, strictly convex and
smooth, then there exists x0 ∈ C such that φ(x0, x) = minφ(y, x) for x ∈ E and y ∈ C. The
generalized projection ΠC : E → C defined by ΠCx = x0. The existence and uniqueness of
the operatorΠC follows from the properties of the functional φ and strict monotonicity of the
duality mapping J ; for instance, see [20, 27–30]. In a Hilbert space, ΠC is coincident with the
metric projection.

Lemma 2.5 (Alber [28]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then x0 = ΠCx if and only if 〈x0 − y, Jx − Jx0〉 ≥ 0 for all y ∈ C.

Lemma 2.6 (Alber [28]). Let C be a nonempty closed convex subset of a reflexive, strictly convex
and smooth Banach space E and let x ∈ E. Then

φ
(

y,ΠCx
)

+ φ(ΠCx, x) ≤ φ
(

y, x
)

, ∀y ∈ C. (2.8)

Lemma 2.7 (Qin et al. [6]). Let E be a uniformly convex, smooth Banach space, let C be a closed
convex subset of E, let T be a closed and relatively quasi-nonexpansive mapping from C into itself.
Then F(T) is a closed convex subset of C.
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Lemma 2.8 (Cho et al. [31]). Let E be a uniformly convex Banach space and let Br(0) be a closed
ball of E. Then there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞)
with g(0) = 0 such that

∥

∥αx + βy + γz
∥

∥

2 ≤ α‖x‖2 + β
∥

∥y
∥

∥

2 + γ‖z‖2 − αβg
(∥

∥x − y
∥

∥

)

, (2.9)

for all x, y, z ∈ Br(0), and α, β, γ ∈ [0, 1] with α + β + γ = 1.

Lemma 2.9 (Blum and Oettli [7]). Let C be a closed convex subset of a smooth, strictly convex, and
reflexive Banach space E, let f be a bifunction from C × C to R satisfying (A1)–(A4), and let r > 0
and x ∈ E. Then, there exists z ∈ C such that

f
(

z, y
)

+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2.10)

Lemma 2.10 (Qin et al. [6]). Let C be a closed convex subset of a uniformly smooth, strictly convex,
and reflexive Banach space E, and let f be a bifunction from C × C to R satisfying (A1)–(A4). For all
r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{

z ∈ C : f
(

z, y
)

+
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}

. (2.11)

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [32], that is, for all x, y ∈ E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉; (2.12)

(3) F(Tr) = EP(f);

(4) EP(f) is closed and convex.

Lemma 2.11 (Takahashi and Zembayashi [14]). Let C be a closed convex subset of a smooth,
strictly, and reflexive Banach space E, let f be a bifucntion from C × C to R satisfying (A1)–(A4), let
r > 0. Then, for all x ∈ E and q ∈ F(Tr),

φ
(

q, Trx
)

+ φ(Trx, x) ≤ φ
(

q, x
)

. (2.13)

We make use of the following mapping V studied in Alber [28]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.14)

for all x ∈ E and x∗ ∈ E∗, that is, V (x, x∗) = φ(x, J−1(x∗)).
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Lemma 2.12 (Alber [28]). Let E be a reflexive, strictly convex, smooth Banach space and let V be as
in (2.14). Then

V (x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V
(

x, x∗ + y∗) (2.15)

for all x ∈ E and x∗, y∗ ∈ E∗.

An operator A of C into E∗ is said to be hemicontinuous if for all x, y ∈ C, the mapping
F of [0, 1] into E∗ defined by F(t) = A(tx + (1 − t)y) is continuous with respect to the weak∗

topology of E∗. We define by NC(v) the normal cone for C at a point v ∈ C, that is,

NC(v) =
{

x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C
}

. (2.16)

Theorem 2.13 (Rockafellar [33]). Let C be a nonempty, closed convex subset of a Banach space E
and A a monotone, hemicontinuous operator of C into E∗. Let Te ⊂ E × E∗ be an operator defined as
follows:

Tev =

⎧

⎨

⎩

Av +NC(v), v ∈ C;

∅, otherwise.
(2.17)

Then Te is maximal monotone and T−1
e 0 = V I(A,C).

3. Strong Convergence Theorems

Theorem 3.1. Let E be a 2-uniformly convex, uniformly smooth Banach space, let C be a nonempty
closed convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–(A4), let A be an
operator of C into E∗ satisfying (C1)–(C3), and let T, S be two closed relatively quasi-nonexpansive
mappings from C into itself such that F := F(T)∩F(S)∩EP(f)∩V I(A,C)/=∅. For an initial point
x0 ∈ E with x1 = ΠC1x0 and C1 = C, define a sequence {xn} as follows:

zn = ΠCJ
−1(Jxn − λnAxn),

yn = J−1
(

αnJxn + βnJTxn + γnJSzn
)

,

un ∈ C such that f
(

un, y
)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(3.1)

where J is the duality mapping on E. Assume that {αn}, {βn}, and {γn} are sequences in [0, 1]
satisfying the restrictions:

(B1) αn + βn + γn = 1;

(B2) lim infn→∞αnβn > 0, lim infn→∞αnγn > 0;
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(B3) {rn} ⊂ [s,∞) for some s > 0;

(B4) {λn} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2-uniformly
convexity constant of E.

Then, {xn} and {un} converge strongly to q = ΠFx0.

Proof. We divide the proof into eight steps.

Step 1. Show that ΠFx0 and ΠCn+1x0 are well defined.
It is obvious that V I(A,C) is a closed convex subset of C. By Lemma 2.7, we know that

F(T) ∩ F(S) is closed and convex. From Lemma 2.10 (4), we also have EP(f) is closed and
convex. Hence F := F(T)∩F(S)∩EP(f)∩V I(A,C) is a nonempty, closed, and convex subset
of C; consequently, ΠFx0 is well defined.

Clearly, C1 = C is closed and convex. Suppose that Ck is closed and convex for k ∈ N.
For all z ∈ Ck, we know φ(z, yk) ≤ φ(z, xk) is equivalent to

2〈z, Jxk − Jyk〉 ≤ ‖xk‖2 −
∥

∥yk

∥

∥

2
. (3.2)

So, Ck+1 is closed and convex. By induction, Cn is closed and convex for all n ≥ 1. This shows
that ΠCn+1x0 is well-defined.

Step 2. Show that F ⊂ Cn for all n ∈ N.
Put vn = J−1(Jxn − λnAxn). First, we observe that un = Trnyn for all n ≥ 1 and F ⊂ C1 =

C. Suppose F ⊂ Ck for k ∈ N. Then, for all u ∈ F, we know from Lemma 2.6 and Lemma 2.12
that

φ(u, zk) = φ(u,ΠCvk)

≤ φ(u, vk)

= φ
(

u, J−1(Jxk − λkAxk)
)

= V (u, Jxk − λkAxk)

≤ V (u, (Jxk − λkAxk) + λkAxk) − 2
〈

J−1(Jxk − λkAxk) − u, λkAxk

〉

= V (u, Jxk) − 2λk〈vk − u,Axk〉
= φ(u, xk) − 2λk〈xk − u,Axk〉 + 2〈vk − xk,−λkAxk〉.

(3.3)

Since u ∈ V I(A,C) and from (C1), we have

−2λk〈xk − u,Axk〉 = −2λk〈xk − u,Axk −Au〉 − 2λk〈xk − u,Au〉

≤ −2αλk‖Axk −Au‖2.
(3.4)
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From Lemma 2.1 and (C3), we obtain

2〈vk − xk,−λkAxk〉 = 2〈J−1(Jxk − λkAxk) − J−1(Jxk),−λkAxk〉

≤ 2
∥

∥

∥J−1(Jxk − λkAxk) − J−1(Jxk)
∥

∥

∥‖λkAxk‖

≤ 4
c2

∥

∥

∥JJ−1(Jxk − λkAxk) − JJ−1(Jxk)
∥

∥

∥‖λkAxk‖

=
4
c2
‖(Jxk − λkAxk) − (Jxk)‖‖λkAxk‖

=
4
c2
λ2k‖Axk‖2

≤ 4
c2
λ2k‖Axk −Au‖2.

(3.5)

Replacing (3.4) and (3.5) into (3.3), we get

φ(u, zk) ≤ φ(u, xk) + 2λk
(

2
c2
λk − α

)

‖Axk −Au‖2 ≤ φ(u, xk). (3.6)

By the convexity of ‖ · ‖2, for each u ∈ F ⊂ Ck, we obtain

φ(u, uk) = φ
(

u, Trkyk

)

≤ φ
(

u, yk

)

= φ
(

u, J−1
(

αkJxk + βkJTxk + γkJSzk
)

)

= ‖u‖2 − 2αk〈u, Jxk〉 − 2βk〈u, JTxk〉 − 2γk〈u, JSzk〉

+
∥

∥αkJxk + βkJTxk + γkJSzk
∥

∥

2

≤ ‖u‖2 − 2αk〈u, Jxk〉 − 2βk〈u, JTxk〉 − 2γk〈u, JSzk〉

+ αk‖Jxk‖2 + βk‖JTxk‖2 + γk‖JSzk‖2

= αkφ(u, xk) + βkφ(u, Txk) + γkφ(u, Szk)

≤ αkφ(u, xk) + βkφ(u, xk) + γkφ(u, zk)

≤ φ(u, xk).

(3.7)

This shows that u ∈ Ck+1; consequently, F ⊂ Ck+1. Hence F ⊂ Cn for all n ≥ 1.

Step 3. Show that limn→∞φ(xn, x0) exists.
From xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1. (3.8)
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From Lemma 2.6, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(u, x0) − φ(u, xn) ≤ φ(u, x0). (3.9)

Combining (3.8) and (3.9), we obtain that limn→∞φ(xn, x0) exists.

Step 4. Show that {xn} is a Cauchy sequence in C.
Since xm = ΠCmx0 ∈ Cm ⊂ Cn for m > n, by Lemma 2.6, we also have

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.10)

Taking m,n → ∞, we obtain that φ(xm, xn) → 0. From Lemma 2.4, we have ‖xm − xn‖ → 0.
Hence {xn} is a Cauchy sequence. By the completeness of E and the closedness of C, one can
assume that xn → q ∈ C as n → ∞. Further, we obtain

lim
n→∞

φ(xn+1, xn) = 0. (3.11)

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) −→ 0, (3.12)

as n → ∞. Applying Lemma 2.4 to (3.11) and (3.12), we get

lim
n→∞

‖un − xn‖ = 0. (3.13)

This implies that un → q as n → ∞. Since J is uniformly norm-to-norm continuous on
bounded subsets of E, we also obtain

lim
n→∞

‖Jun − Jxn‖ = 0. (3.14)

Step 5. Show that xn → q ∈ F(T) ∩ F(S).
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Let r = supn≥1{‖xn‖, ‖Txn‖, ‖Szn‖}. From (3.6) and Lemma 2.8, we know that there
exists a continuous strictly increasing convex function g : [0,∞) → [0,∞)with g(0) = 0 such
that

φ(u, un) = φ
(

u, Trnyn

)

≤ φ
(

u, yn

)

= φ
(

u, J−1
(

αnJxn + βnJTxn + γnJSzn
)

)

= ‖u‖2 − 2αn〈u, Jxn〉 − 2βn〈u, JTxn〉 − 2γn〈u, JSzn〉

+
∥

∥αnJxn + βnJTxn + γnJSzn
∥

∥

2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2βn〈u, JTxn〉 − 2γn〈u, JSzn〉

+ αn‖Jxn‖2 + βn‖JTxn‖2 + γn‖JSzn‖2

− αnβng(‖Jxn − JTxn‖)
= αnφ(u, xn) + βnφ(u, Txn) + γnφ(u, Szn)

− αnβng(‖Jxn − JTxn‖)

≤ φ(u, xn) + 2γnλn
(

2
c2
λn − α

)

‖Axn −Au‖2

− αnβng(‖Jxn − JTxn‖).

(3.15)

This implies that

αnβng(‖Jxn − JTxn‖) ≤ φ(u, xn) − φ(u, un)

= ‖xn‖2 − ‖un‖2 − 2〈u, Jxn − Jun〉
≤ ‖xn − un‖(‖xn‖ + ‖un‖) + 2‖u‖‖Jxn − Jun‖.

(3.16)

It follows from (3.13), (3.14), and (B2) that

lim
n→∞

g(‖Jxn − JTxn‖) = 0. (3.17)

By the property of g, we also obtain that

lim
n→∞

‖Jxn − JTxn‖ = 0. (3.18)

Since J is uniformly norm-to-norm continuous on bounded sets, so is J−1. Then

lim
n→∞

‖xn − Txn‖ = lim
n→∞

∥

∥

∥J−1(Jxn) − J−1(JTxn)
∥

∥

∥ = 0. (3.19)
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In the same manner, we can show that

lim
n→∞

‖xn − Szn‖ = 0. (3.20)

Again, by (3.15), we have

2a
(

α − 2
c2
b

)

‖Axn −Au‖2 ≤ 1
γn

(

φ(u, xn) − φ(u, un)
)

, (3.21)

which yields that

lim
n→∞

‖Axn −Au‖ = 0. (3.22)

From Lemma 2.6, Lemma 2.12, and (3.5), we have

φ(xn, zn) = φ(xn,ΠCvn)

≤ φ(xn, vn)

= φ
(

xn, J
−1(Jxn − λnAxn)

)

= V (xn, Jxn − λnAxn)

≤ V (xn, (Jxn − λnAxn) + λnAxn)

− 2〈J−1(Jxn − λnAxn) − xn, λnAxn〉
= φ(xn, xn) + 2〈vn − xn,−λnAxn〉

= 2〈vn − xn,−λnAxn〉 ≤ 4
c2
b2‖Axn −Au‖2.

(3.23)

It follows from Lemma 2.4 and (3.22) that

lim
n→∞

‖xn − zn‖ = 0. (3.24)

Hence zn → q as n → ∞ and

lim
n→∞

‖Jxn − Jzn‖ = 0. (3.25)

Combining (3.20) and (3.24), we also obtain

lim
n→∞

‖Szn − zn‖ = 0. (3.26)

From (3.19), (3.26) and by the closedness of T and S, we get q ∈ F(T) ∩ F(S).
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Step 6. Show that xn → q ∈ EP(f).
From (3.15), we see

φ
(

u, yn

) ≤ φ(u, xn). (3.27)

From (3.16), we observe

lim
n→∞

φ(u, xn) − φ(u, un) = 0. (3.28)

Note that un = Trnyn. From (3.27) and Lemma 2.11, we have

φ
(

un, yn

)

= φ
(

Trnyn, yn

)

≤ φ
(

u, yn

) − φ
(

u, Trnyn

)

≤ φ(u, xn) − φ
(

u, Trnyn

)

= φ(u, xn) − φ(u, un).

(3.29)

From (3.28), we get limn→∞φ(un, yn) = 0. By Lemma 2.4, we obtain

∥

∥un − yn

∥

∥ −→ 0 (3.30)

as n → ∞. Since rn ≥ s, we have

∥

∥Jun − Jyn

∥

∥

rn
−→ 0 (3.31)

as n → ∞. From un = Trnyn we have

f
(

un, y
)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C. (3.32)

By (A2), we have

∥

∥y − un

∥

∥

∥

∥Jun − Jyn

∥

∥

rn
≥ 1

rn
〈y − un, Jun − Jyn〉

≥ −f(un, y
)

≥ f
(

y, un

)

, ∀y ∈ C.

(3.33)

From (A4) and un → q, we get f(y, q) ≤ 0 for all y ∈ C. For 0 < t < 1 and y ∈ C. Define
yt = ty + (1 − t)q, then yt ∈ C, which implies that f(yt, q) ≤ 0. From (A1), we obtain that
0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, q) ≤ tf(yt, y). Thus, f(yt, y) ≥ 0. From (A3), we have
f(q, y) ≥ 0 for all y ∈ C. Hence q ∈ EP(f).
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Step 7. Show that xn → q ∈ V I(A,C).
Define Te ⊂ E × E∗ be as in (2.17). By Theorem 2.13, Te is maximal monotone and

T−1
e 0 = V I(A,C). Let (v,w) ∈ G(Te). Since w ∈ Tev = Av +NC(v), we get w − Av ∈ NC(v).

From zn ∈ C, we have

〈v − zn,w −Av〉 ≥ 0. (3.34)

On the other hand, since zn = ΠCJ
−1(Jxn−λnAxn). Then, by Lemma 2.5, we have 〈v−zn, Jzn−

(Jxn − λnAxn)〉 ≥ 0 and thus

〈

v − zn,
Jxn − Jzn

λn
−Axn

〉

≤ 0. (3.35)

It follows from (3.34) and (3.35) that

〈v − zn,w〉 ≥ 〈v − zn,Av〉

≥ 〈v − zn,Av〉 +
〈

v − zn,
Jxn − Jzn

λn
−Axn

〉

= 〈v − zn,Av −Axn〉 +
〈

v − zn,
Jxn − Jzn

λn

〉

= 〈v − zn,Av −Azn〉 + 〈v − zn,Azn −Axn〉

+
〈

v − zn,
Jxn − Jzn

λn

〉

≥ −‖v − zn‖‖zn − xn‖
α

− ‖v − zn‖‖Jxn − Jzn‖
a

≥ −M
(‖zn − xn‖

α
+
‖Jxn − Jzn‖

a

)

,

(3.36)

where M = supn≥1{‖v − zn‖}. By taking the limit as n → ∞ and from (3.24) and (3.25), we
obtain 〈v − q,w〉 ≥ 0. By the maximality of Te, we have q ∈ T−1

e 0 and hence q ∈ V I(A,C).

Step 8. Show that q = ΠFx0.
From xn = ΠCnx0, we have

〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. (3.37)

Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − u〉 ≥ 0, ∀u ∈ F. (3.38)

By taking limit in (3.38), we obtain that

〈Jx0 − Jq, q − u〉 ≥ 0, ∀u ∈ F. (3.39)
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By Lemma 2.5, we can conclude that q = ΠFx0. Furthermore, it is easy to see that un → q as
n → ∞. This completes the proof.

As a direct consequence of Theorem 3.1, we obtain the following results.

Corollary 3.2. Let E be a 2-uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let f be a bifunction from C × C to R satisfying (A1)–(A4) and
let T be a closed relatively quasi-nonexpansive mapping fromC into itself such that F(T)∩EP(f)/=∅.
Assume that {αn} ⊂ [0, 1] satisfies lim infn→∞αn(1 − αn) > 0 and {rn} ⊂ [s,∞) for some s > 0.
Then the sequence {xn} generated by (1.7) converges strongly to q = ΠF(T)∩EP(f)x0.

Proof. Putting S = T and A ≡ 0 in Theorem 3.1, we obtain the result.

Remark 3.3. If A ≡ 0 in Theorem 3.1, then Theorem 3.1 reduces to Theorem 3.1 of Qin et al.
[6].

Remark 3.4. Corollary 3.2 improves Theorem 3.1 of Takahashi and Zembayashi [5] from
the class of relatively nonexpansive mappings to the class of relatively quasi-nonexpansive
mappings, that is, we relax the strong restriction: F(̂T) = F(T). Further, the algorithm in
Corollary 3.2 is also simpler to compute than the one given in [14].

4. Applications

Next, we consider the problem of finding a zero point of an inverse-strongly monotone
operator of E into E∗. Assume that A satisfies the conditions:

(D1) A is α-inverse-strongly monotone,

(D2) A−10 = {u ∈ E : Au = 0}/=∅.

Theorem 4.1. Let E be a 2-uniformly convex, uniformly smooth Banach space. Let f be a bifunction
from E × E to R satisfying (A1)–(A4), let A be an operator of E into E∗ satisfying (D1) and (D2),
and let T, S be two closed relatively quasi-nonexpansive mappings from E into itself such that F :=
F(T) ∩ F(S) ∩ EP(f) ∩A−10/=∅. For an initial point x0 ∈ E with x1 = ΠC1x0 and C1 = E, define a
sequence {xn} as follows:

zn = J−1(Jxn − λnAxn),

yn = J−1
(

αnJxn + βnJTxn + γnJSzn
)

,

un ∈ E such that f
(

un, y
)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ E,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(4.1)

where J is the duality mapping on E. Assume that {αn}, {βn}, and {γn} are sequences in [0, 1]
satisfying the conditions (B1)–(B4) of Theorem 3.1.

Then, {xn} and {un} converge strongly to q = ΠFx0.
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Proof. Putting C = E in Theorem 3.1, we have ΠE = I. We also have V I(A,E) = A−10 and
then the condition (C3) of Theorem 3.1 holds for all y ∈ E and u ∈ A−10. So, we obtain the
result.

Let K be a nonempty, closed convex cone in E, A an operator of K into E∗. We define
its polar in E∗ to be the set

K∗ =
{

y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0, ∀x ∈ K
}

. (4.2)

Then the element u ∈ K is called a solution of the complementarity problem if

Au ∈ K∗, 〈u,Au〉 = 0. (4.3)

The set of solutions of the complementarity problem is denoted by C(K,A).
Assume that A is an operator satisfying the conditions:

(E1) A is α-inverse-strongly monotone,

(E2) C(K,A)/=∅,

(E3) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ K and u ∈ C(K,A).

Theorem 4.2. Let E be a 2-uniformly convex, uniformly smooth Banach space, and K a nonempty,
closed convex cone in E. Let f be a bifunction from K × K to R satisfying (A1)–(A4), let A be an
operator of K into E∗ satisfying (E1)–(E3), and let T, S be two closed relatively quasi-nonexpansive
mappings fromK into itself such that F := F(T) ∩F(S) ∩EP(f) ∩C(K,A)/=∅. For an initial point
x0 ∈ E with x1 = ΠC1x0 and C1 = K, define a sequence {xn} as follows:

zn = ΠKJ
−1(Jxn − λnAxn),

yn = J−1
(

αnJxn + βnJTxn + γnJSzn
)

,

un ∈ K such that f
(

un, y
)

+
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ K,

Cn+1 =
{

z ∈ Cn : φ(z, un) ≤ φ(z, xn)
}

,

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(4.4)

where J is the duality mapping on E. Assume that {αn}, {βn} and {γn} are sequences in [0, 1]
satisfying the conditions (B1)–(B4) of Theorem 3.1.

Then, {xn} and {un} converge strongly to q = ΠFx0.

Proof. From [20, Lemma 7.1.1], we have V I(K,A) = C(K,A). Hence, we obtain the result.
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