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1. Introduction and Preliminary

Cone metric spaces were introduced by Huang and Zhang [1]. They replaced the set of real
numbers by an ordered Banach space and obtained some fixed point theorems for mapping
satisfying different contractions [1]. The study of fixed point theorems in such spaces
followed by some other mathematicians, see [2–8]. Recently Wardowski [9] was introduced
the concept of set-valued contractions in cone metric spaces and established some end point
and fixed point theorems for such contractions. In this paper at first we will introduce a new
order on the subsets of cone metric spaces then, using this definition, we simplify the proof
of fixed point theorems for contractive set-valued maps, omit the assumption of normality,
and obtain some generalization of results.

Let E be a real Banach space. A nonempty convex closed subset P ⊂ E is called a cone
in E if it satisfies.

(i) P is closed, nonempty, and P /= {0},
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply that ax + by ∈ P,

(iii) x ∈ P and −x ∈ P imply that x = 0.
The space E can be partially ordered by the cone P ⊂ E; that is, x ≤ y if and only if y − x ∈ P .
Also we write x � y if y − x ∈ Po, where Po denotes the interior of P .
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A cone P is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y implies
‖x‖ ≤ K‖y‖.

In the following we always suppose that E is a real Banach space, P is a cone in E, and
≤ is the partial ordering with respect to P .

Definition 1.1 (see [1]). Let X be a nonempty set. Assume that the mapping d : X × X → E
satisfies

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 iff x = y

(ii) d(x, y) = d(y, x) for all x, y ∈ X

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

In the following we have some necessary definitions.

(1) Let (M,d) be a cone metric space. A set A ⊆ M is called closed if for any sequence
{xn} ⊆ A convergent to x, we have x ∈ A.

(2) A set A ⊆ M is called sequentially compact if for any sequence {xn} ⊆ A, there exists
a subsequence {xnk} of {xn} is convergent to an element of A.

(3) Denote N(M) a collection of all nonempty subsets of M, C(M) a collection of all
nonempty closed subsets ofM andK(M) a collection of all nonempty sequentially
compact subsets of M.

(4) An element x ∈ M is said to be an endpoint of a set-valued map T : M → N(M), if
Tx = {x}. We denote a set of all endpoints of T by End(T).

(5) An element x ∈ M is said to be a fixed point of a set-valued map T : M → N(M),
if x ∈ Tx. Denote Fix(T) = {x ∈ M | x ∈ Tx}.

(6) A map f : M → R is called lower semi-continuous, if for any sequence {xn} in M
and x ∈ M, such that xn → x as n → ∞, we have f(x) ≤ lim infn→∞f(xn).

(7) A map f : M → E is called have lower semi-continuous property, and denoted by lsc
property if for any sequence {xn} in M and x ∈ M, such that xn → x as n → ∞,
then there exists N ∈ N that f(x) ≤ f(xn) for all n ≥ N.

(8) P called minihedral cone if sup{x, y} exists for all x, y ∈ E, and strongly minihedral
if every subset of E which is bounded from above has a supremum [10]. Let (M,d)
a cone metric space, cone P is strongly minihedral and hence, every subset of P has
infimum, so for A ∈ C(M), we define d(x,A) = infy∈Ad(x, y).

Example 1.2. Let E := R
n with P := {(x1, x2, . . . , xn) : xi ≥ 0 for all i = 1, 2, . . . , n}. The cone P

is normal, minihedral and strongly minihedral with Po /= ∅.

Example 1.3. Let D ⊆ R
n be a compact set, E := C(D), and P := {f ∈ E : f(x) ≥ 0 for all x ∈

D}. The cone P is normal and minihedral but is not strongly minihedral and Po /= ∅.

Example 1.4. Let (X,S, μ) be a finite measure space, S countably generated, E := Lp(X), (1 <
p < ∞), and P := {f ∈ E : f(x) ≥ 0μ a.e. on X}. The cone P is normal, minihedral and
strongly minihedral with Po = ∅.

For more details about above examples, see [11].
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Example 1.5. Let E := C2([0, 1],R+) with norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and P := {f ∈ E : f ≥ 0}
that is not normal cone by [12] and not minihedral by [10].

Example 1.6. Let E := R
2 and P := {(x1, 0) : x1 ≥ 0}. This P is strongly minihedral but not

minihedral by [10].

Throughout, we will suppose that P is strongly minihedral cone in E with nonempty
interior and ≤ be a partial ordering with respect to P.

2. Main Results

Let (M,d) be a cone metric space and T : M → C(M). For x, y ∈ M, Let

D
(
x, Ty

)
=
{
d(x, z) : z ∈ Ty

}
,

S
(
x, Ty

)
=
{
u ∈ D

(
x, Ty

)
: ‖u‖ = inf

{‖v‖ : v ∈ D
(
x, Ty

)}}
.

(2.1)

At first we prove the closedness of Fix(T)without the assumption of normality.

Lemma 2.1. Let (M,d) be a complete cone metric space and T : M → C(M). If the function
f(x) = infy∈Tx‖d(x, y)‖ for x ∈ M is lower semi-continuous, then Fix(T) is closed.

Proof. Let xn ∈ Txn and xn → x.We show that x ∈ Tx. Since

f(x) ≤ lim inf
n→∞

f(xn) = lim inf
n→∞

inf
y∈Txn

∥∥d
(
xn, y

)∥∥,

≤ lim inf
n→∞

‖d(xn, xn)‖ = 0,
(2.2)

so f(x) = 0 which implies d(yn, x) → 0 for some yn ∈ Tx. Let c ∈ E with c 
 0 then, there
exists N such that for n ≥ N, d(yn, x) � (1/2)c. Now, for n > m,we have,

d
(
yn, ym

) ≤ d
(
yn, x

)
+ d

(
x, ym

) � 1
2
c +

1
2
c = c. (2.3)

So {yn} is a Cauchy sequence in complete metric space, hence there exist y∗ ∈ M such that
yn → y∗. Since Tx is closed, thus y∗ ∈ Tx. Now by uniqueness of limit we conclude that
x = y∗ ∈ Tx.

Definition 2.2. Let A and B are subsets of E, we write A � B if and only if there exist x ∈ A
such that for all y ∈ B, x ≤ y. Also for x ∈ E, we write x � B if and only if {x} � B and
similarly A � x if and only if A � {x}.

Note that aA + B := {ax + y : x ∈ A,y ∈ B}, for every scaler a ∈ R
+ and A,B subsets

of E.
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The following lemma is easily proved.

Lemma 2.3. Let A,B,C ⊆ E, x, y ∈ E, a ∈ R
+, and a/= 0.

(1) If A � B, and B � C, then A � C,

(2) A � B ⇔ aA � aB,

(3) If x � B, then ax � aB,

(4) If A � y, then aA � ay,

(5) x ≤ y ⇔ {x} � {y},
(6) If A � B, then A � B + P.

The order “�” is not antisymmetric, thus this order is not partially order.

Example 2.4. Let E := R and P := R
+. Put A := [1, 3) and B := [1, 4] so A � B, B � A but A/=B.

Theorem 2.5. Let (M,d) be a complete cone metric space, T : M → C(M), a set-valued map and
the function f : M → P defined by f(x) = d(x, Tx), x ∈ M with lsc property. If there exist real
numbers a, b, c, e ≥ 0 and q > 1 with k := aq + b + ceq < 1 such that for all x ∈ M there exists
y ∈ Tx:

d
(
x, y

) � qD(x, Tx),

D
(
y, Tx

) � ed
(
x, y

)
,

D
(
y, Ty

) � ad
(
x, y

)
+ bD(x, Tx) + cD

(
y, Tx

)
,

(2.4)

then Fix(T)/= ∅.

Proof. Let x ∈ M, then there exists y ∈ Tx such that

D
(
y, Ty

) � ad
(
x, y

)
+ bD(x, Tx) + cD

(
y, Tx

)

� (
aq + b + ceq

)
D(x, Tx) = kD(x, Tx).

(2.5)

Let x0 ∈ M, there exist x1 ∈ Tx0 such that D(x1, Tx1) � kD(x0, Tx0) and d(x0, x1) �
qD(x0, Tx0). Continuing this process, we can iteratively choose a sequence {xn} in M such
that xn+1 ∈ Txn, D(xn, Txn) � knD(x0, Tx0), and d(xn, xn+1) � qD(xn, Txn) � qknD(x0, Tx0).
So, for n > m,we have,

{d(xn, xm)} � {d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)}

� q
(
kn−1 + kn−2 + · · · + km

)
D(x0, Tx0)

� qkm
(
1 + k + k2 + · · ·

)
D(x0, Tx0)

� q
km

1 − k
D(x0, Tx0).

(2.6)
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Therefore, for every u0 ∈ D(x0, Tx0), d(xn, xm) ≤ q(km/(1 − k))u0. Let c ∈ E and c 
 0 be
given. Choose δ > 0 such that c +Nδ(0) ⊆ P, where Nδ(0) = {x ∈ E : ‖x‖ < δ}. Also, choose
a N ∈ N such that q(km/(1 − k))u0 ∈ Nδ(0), for all m ≥ N. Then q(km/(1 − k))u0 � c, for
all m ≥ N. Thus d(xn, xm) ≤ q(km/(1 − k))u0 � c for all n > m. Namely, {xn} is Cauchy
sequence in complete cone metric space, therefore xn → x∗ for some x∗ ∈ M. Now we show
that x∗ ∈ Tx∗.

Let un ∈ D(xn, Txn) hence there exists tn ∈ Txn such that 0 ≤ un = d(xn, tn) ≤ knu0 for
all u0 ∈ D(x0, Tx0). Now knu0 → 0 as n → ∞ so for all 0 � c there exists N ∈ N such that
0 ≤ un = d(xn, tn) ≤ knu0 � c for all n ≥ N.

According to lsc property of f , for all c 
 0 there exists N ∈ N such that for all n ≥ N

f(x∗) ≤ f(xn) = inf
y∈Txn

d
(
xn, y

) ≤ d(xn, tn) � c. (2.7)

So 0 ≤ f(x∗) � c for all c 
 0. Namely, f(x∗) = 0 thus d(yn, x
∗) → 0 for some yn ∈ Tx∗, and

by the closedness of Tx∗ we have x∗ ∈ Tx∗.

We notice that d(xn, x) → 0 implies that for all c 
 0 there exists N ∈ N such that
d(xn, x) � c for all n ≥ N, but the inverse is not true.

Example 2.6. Let M = E := C2([0, 1],R+) with norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and P := {f ∈
E : f ≥ 0} that is not normal cone by [12]. Consider xn := (1 − sinnt)/(n + 2) and yn :=
(1 + sinnt)/(n + 2) so 0 ≤ xn ≤ xn + yn → 0 and ‖xn‖ = ‖yn‖ = 1, (see [10]) Define cone
metric d : M × M → E with d(f, g) = f + g, for f /= g, d(f, f) = 0. Since 0 ≤ xn � c,
namely, d(xn, 0) � c but d(xn, 0) � 0. Indeed xn → 0 in (M,d) but xn � 0 in E. Even for
n > m, d(xn, xm) = xn + xm � c and ‖d(xn, xm)‖ = ‖xn + xm‖ = 2 in particular d(xn, xn+1) � c
but d(xn, xn+1) � 0.

Example 2.7. LetM = E := C2([0, 1],R)with norm ‖f‖ = ‖f‖∞+‖f ′‖∞ and P := {f ∈ E : f ≥ 0}
that is not normal cone. Define cone metric d : M × M → E with d(f, g) = f2 + g2, for
f /= g, d(f, f) = 0 and set-valued mapping T : M → C(M) by Tf = {−f, 0, f}. In this space
every Cauchy sequence converges to zero. The function F(f) = d(f, Tf) = infg∈Tfd(f, g) =
inf{0, f2, 2f2} = 0 have lsc property. Also we have D(f, Tf) = {0, f2, 2f2} and D(f, Tg) =
{f2, f2 + g2}. Now for q > 1, e ≥ 1, a, b, c ≥ 0, k = aq + b + ceq < 1 and for all f ∈ M take
g := 0 ∈ Tf . Therefore, it satisfies in all of the hypothesis of Theorem 2.5. So T has a fixed
point f ∈ Tf. For sample take a = b = c = 1/6, e = 1, and q = 2.

Theorem 2.8. Let (M,d) be a complete cone metric space, T : M → K(M), a set-valued map, and a
function f : M → P defined by f(x) = d(x, Tx), x ∈ M with lsc property. The following conditions
hold:

(i) if there exist real numbers a, b, c, e ≥ 0 and q > 1 with k := aq + b + ceq < 1 such that for
all x ∈ M, there exists y ∈ Tx:

d
(
x, y

) � qS(x, Tx),

S
(
y, Tx

) � ed
(
x, y

)
,

S
(
y, Ty

) � ad
(
x, y

)
+ bS(x, Tx) + cS

(
y, Tx

)
,

(2.8)

then Fix(T)/= ∅,
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(ii) if there exist real numbers a, b, c, e ≥ 0 and q > 1 with k := aq + b + ceq < 1 such that for
all x ∈ M and y ∈ Tx:

d
(
x, y

) � qS(x, Tx),

S
(
y, Tx

) � ed
(
x, y

)
,

S
(
y, Ty

) � ad
(
x, y

)
+ bS(x, Tx) + cS

(
y, Tx

)
,

(2.9)

then Fix(T) = End(T)/= ∅.

Proof. (i) It is obvious that S(x, Tx) ⊆ D(x, Tx). It is enough to show that S(x, Tx)/= ∅ for all
x ∈ M. However S(x, Tx) = ∅ for some x ∈ M, it implies d(x, y) � ∅ for some y ∈ Tx, and
this is a contradiction.

(ii) By (i), there exists x∗ ∈ M such that x∗ ∈ Tx∗. Then for y ∈ Tx∗ and 0 ∈ S(x∗, Tx∗)
we have d(x∗, y) � (1/b)S(x∗, Tx∗). Therefore, d(x∗, y) ≤ (1/b)0 = 0. This implies that x∗ =
y ∈ Tx∗.

Corollary 2.9. Let (M,d) be a complete cone metric space, T : M → C(M), a set-valued map, and
the function f : M → P defined by f(x) = d(x, Tx), for x ∈ M with lsc property. If there exist real
numbers a, b ≥ 0 and q > 1 with k := aq + b < 1 such that for all x ∈ M there exists y ∈ Tx with

d
(
x, y

) � qD(x, Tx),

D
(
y, Ty

) � ad
(
x, y

)
+ bD(x, Tx),

(2.10)

then Fix(T)/= ∅.

To have Theorems 3.1 and 3.2 in [9], as the corollaries of our theorems we need the
following lemma and remarks.

Lemma 2.10. Let (M,d) be a cone metric space, P a normal cone with constant one and T : M →
C(M), a set-valued map, then

‖d(x, Tx)‖ =
∥∥∥∥ inf
y∈Tx

d
(
x, y

)
∥∥∥∥ = inf

y∈Tx

∥∥d
(
x, y

)∥∥. (2.11)

Proof. Put α := infy∈Tx‖d(x, y)‖ and β := infy∈Txd(x, y) we show that α = ‖β‖.
Let y ∈ Tx then β ≤ d(x, y) and so ‖β‖ ≤ ‖d(x, y)‖, which implies ‖β‖ ≤ α.
For the inverse, let for all 0 ≤ r ≤ α. Then r ≤ ‖d(x, y)‖ for all y ∈ Tx.
Since β := infy∈Txd(x, y), for every c that c 
 0 there exists y ∈ Tx such that d(x, y) <

β + c, so r ≤ ‖d(x, y)‖ < ‖β + c‖ ≤ ‖β‖ + ‖c‖, for all c 
 0. Thus r ≤ ‖β‖.

Remark 2.11. By Proposition 1.7.59, page 117 in [11], if E is an ordered Banach space with
positive cone P , then P is a normal cone if and only if there exists an equivalent norm | · | on E
which is monotone. So by renorming the E we can suppose P is a normal cone with constant
one.
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Remark 2.12. Let (M,d) be a cone metric space, P a normal cone with constant one, T : M →
C(M), a set-valued map, the function f : M → P defined by f(x) = d(x, Tx), x ∈ M with
lsc property, and g : E → R

+ with g(x) = ‖x‖. Then gof(x) = infy∈Tx‖d(x, y)‖, is lower
semi-continuous.

Now the Theorems 3.1 and 3.2 in [9] is stated as the following corollaries without
the assumption of normality, and by Lemma 2.10 and Remarks 2.11, 2.12 we have the same
theorems.

Corollary 2.13 (see [9, Theorem 3.1]). Let (M,d) be a complete cone metric space, T : M →
C(M), a set-valued map and the function f : M → P defined by f(x) = d(x, Tx), x ∈ M with lsc
property. If there exist real numbers 0 ≤ λ < 1, λ < b ≤ 1 such that for all x ∈ M there exists y ∈ Tx
one has D(y, Ty) � λd(x, y) and bd(x, y) � D(x, Tx) then Fix(T)/= ∅.

Corollary 2.14 (see [9, Theorem 3.2]). Let (M,d) be a complete cone metric space, T : M →
K(M), a set-valued map and the function f : M → P defined by f(x) = d(x, Tx), x ∈ M with lsc
property. The following hold:

(i) if there exist real numbers 0 ≤ λ < 1, λ < b ≤ 1 such that for all x ∈ M there exists y ∈ Tx
one has S(y, Ty) � λd(x, y) and bd(x, y) � S(x, Tx), then Fix(T)/= ∅,

(ii) if there exist real numbers 0 ≤ λ < 1, λ < b ≤ 1 such that for all x ∈ M and every y ∈ Tx
one has S(y, Ty) � λd(x, y) and bd(x, y) � S(x, Tx), then Fix(T) = End(T)/= ∅.

Definition 2.15. For A ⊆ M, T : M → C(M)where T is a set-valued map we define

D(A, TA) :=
⋃

x∈A
D(x, Tx), D(A, TA) :=

⋂

x∈A
D(x, Tx). (2.12)

Note that T2x = T(Tx) for x ∈ M.
The following theorem is a reform of Theorem 2.5.

Theorem 2.16. Let (M,d) be a complete cone metric space, T : M → C(M), a set-valued map,
and the function f : M → P defined by f(x) = d(x, Tx), x ∈ M with lsc property. If there exists
0 ≤ k < 1 such that

D
(
Tx, T2x

)
� kD(M,TM). (2.13)

for all x ∈ M. Then Fix(T)/= ∅.

Proof. For every x ∈ M, then there exist y ∈ Tx and z ∈ Ty such that d(y, z) ≤ kd(x, t), for
all t ∈ Tx. Let xn ∈ M, there exist xn+1 ∈ Txn and xn+2 ∈ Txn+1 such that d(xn+1, xn+2) ≤
kd(xn, xn+1), since xn+1 ∈ Txn. Thus d(xn, xn+1) ≤ knd(x0, x1). The remaining is same as the
proof of Theorem 2.5.
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