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1. Introduction and Preliminary

Let E be a real Banach space. A nonempty convex closed subset P ⊂ E is called a cone in E if
it satisfies the following:

(i) P is closed, nonempty, and P /= {0},
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply that ax + by ∈ P,

(iii) x ∈ P and −x ∈ P imply that x = 0.

The space E can be partially ordered by the cone P ⊂ E; by defining, x ≤ y if and only if
y − x ∈ P . Also, we write x � y if y − x ∈ int P , where int P denotes the interior of P .

A cone P is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y implies
‖x‖ ≤ K‖y‖.

In the following we always suppose that E is a real Banach space, P is a cone in E, and
≤ is the partial ordering with respect to P .

Definition 1.1 (see [1]). Let X be a nonempty set. Assume that the mapping d : X × X → E
satisfies the following:
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(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2. Let T : X → X be a map for which there exist real numbers a, b, c satisfying
0 < a < 1, 0 < b < 1/2, 0 < c < 1/2. Then T is called a Zamfirescu operator if, for each pair
x, y ∈ X, T satisfies at least one of the following conditions:

(1) d(Tx, Ty) ≤ ad(x, y),

(2) d(Tx, Ty) ≤ b(d(x, Tx) + d(y, Ty)),

(3) d(Tx, Ty) ≤ c(d(x, Ty) + d(y, Tx)).

Every Zamfirescu operator T satisfies the inequality:

d
(
Tx, Ty

) ≤ δd
(
x, y

)
+ 2δd(x, Tx) (1.1)

for all x, y ∈ X, where δ =max{a, b/(1 − b), c/(1 − c)}, with 0 < δ < 1. For normed spaces see
[2].

Lemma 1.3 (see [3]). Let {an} and {bn} be nonnegative real sequences satisfying the following
inequality:

an+1 ≤ (1 − λn)an + bn, (1.2)

where λn ∈ (0, 1), for all n ≥ n0,
∑∞

n=1 λn = ∞, and bn/λn → 0 as n → ∞. Then limn→∞ an = 0.

Remark 1.4. Let {an} and {bn} be nonnegative real sequences satisfying the following
inequality:

an+1 ≤ λan−m + bn, (1.3)

where λ ∈ (0, 1), for all n ≥ n0 and for some positive integer number m. If bn → 0 as n → ∞.
Then limn→∞ an = 0.

Lemma 1.5. Let P be a normal cone with constant K, and let {an} and {bn} be sequences in E
satisfying the following inequality:

an+1 ≤ han + bn, (1.4)

where h ∈ (0, 1) and bn → 0 as n → ∞. Then limn→∞ an = 0.

Proof. Let m be a positive integer such that hmK < 1. By recursion we have

an+1 ≤ bn + hbn−1 + · · · + hmbn−m + hm+1an−m, (1.5)



Fixed Point Theory and Applications 3

so

‖an+1‖ ≤ K‖bn + hbn−1 + · · · + hmbn−m‖ + hm+1K‖an−m‖, (1.6)

and then by Remark 1.4 ‖an‖ → 0. Therefore an → 0.

2. T-Stability in Cone Metric Spaces

Let (X, d) be a cone metric space, and T a self-map of X. Let x0 be a point of X, and assume
that xn+1 = f(T, xn) is an iteration procedure, involving T , which yields a sequence {xn} of
points from X.

Definition 2.1 (see [4]). The iteration procedure xn+1 = f(T, xn) is said to be T -stable with
respect to T if {xn} converges to a fixed point q of T and whenever {yn} is a sequence in X
with limn→∞ d(yn+1, f(T, yn)) = 0 we have limn→∞ yn = q.

In practice, such a sequence {yn} could arise in the following way. Let x0 be a point in
X. Set xn+1 = f(T, xn). Let y0 = x0. Now x1 = f(T, x0). Because of rounding or discretization
in the function T , a new value y1 approximately equal to x1 might be obtained instead of the
true value of f(T, x0). Then to approximate y2, the value f(T, y1) is computed to yield y2,
an approximation of f(T, y1). This computation is continued to obtain {yn} an approximate
sequence of {xn}.

One of the most popular iteration procedures for approximating a fixed point of T is
Picard’s iteration defined by xn+1 = Txn. If the conditions of Definition 2.1 hold for xn+1 = Txn,
then we will say that Picard’s iteration is T -stable.

Recently Qing and Rhoades [5] established a result for the T -stability of Picard’s
iteration in metric spaces. Here we are going to generalize their result to cone metric spaces
and present an application.

Theorem 2.2. Let (X, d) be cone metric space, P a normal cone, and T : X → X with F(T)/= ∅. If
there exist numbers a ≥ 0 and 0 ≤ b < 1, such that

d
(
Tx, q

) ≤ ad(x, Tx) + bd
(
x, q

)
(2.1)

for each x ∈ X, q ∈ F(T) and in addition, whenever {yn} is a sequence with d(yn, Tyn) → 0 as
n → ∞, then Picard’s iteration is T -stable.

Proof. Suppose {yn} ⊆ X, cn = d(yn+1, Tyn) and cn → 0. We shall show that yn → q. Since

d
(
yn+1, q

) ≤ d
(
yn+1, Tyn

)
+ d

(
Tyn, q

) ≤ cn + ad
(
yn, Tyn

)
+ bd

(
yn, q

)
, (2.2)

if we put an := d(Tyn, q) and bn := cn + ad(yn, Tyn) in Lemma 1.5, then we have yn → q.
Note that the fixed point q of T is unique. Because if p is another fixed point of T , then

d
(
p, q

)
= d

(
Tp, q

) ≤ ad
(
p, Tp

)
+ bd

(
p, q

)
= bd

(
p, q

)
, (2.3)

which implies p = q.
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Corollary 2.3. Let (X, d) be a cone metric space, P a normal cone, and T : X → X with q ∈ F(T).
If there exists a number λ ∈ [0, 1), such that d(Tx, Ty) ≤ λd(x, y), for each x, y ∈ X, then Picard’s
iteration is T -stable.

Corollary 2.4. Let (X, d) be a cone metric space, P a normal cone, and T : X → X is a Zamfirescu
operator with F(T)/= ∅ and whenever {yn} is a sequence with d(yn, Tyn) → 0 as n → ∞, then
Picard’s iteration is T -stable.

Definition 2.5 (see [6]). Let (X, d) be a cone metric space. A map T : X → X is called a
quasicontraction if for some constant λ ∈ (0, 1) and for every x, y ∈ X, there exists u ∈
C(T ;x, y) ≡ {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, such that d(Tx, Ty) ≤ λu.

Lemma 2.6. If T is a quasicontraction with 0 < λ < 1/2, then T is a Zamfirescu operator and so
satisfies (2.1).

Proof. Let λ ∈ (0, 1/2) for every x, y ∈ X we have d(Tx, Ty) ≤ λu for some u ∈ C(T ;x, y). In
the case that u = d(x, Ty)we have

d
(
Tx, Ty

) ≤ λd
(
x, Ty

) ≤ λd(x, Tx) + λd
(
Tx, Ty

)
. (2.4)

So

d
(
Tx, Ty

) ≤ λ

1 − λ
d(x, Tx) ≤ 2

λ

1 − λ
d(x, Tx) +

λ

1 − λ
d
(
x, y

)
. (2.5)

Put δ := λ/(1 − λ) so 0 < δ < 1. The other cases are similarly proved. Therefore T is a
Zamfirescu operator.

Theorem 2.7. Let (X, d) be a nonempty complete cone metric space, P be a normal cone, and T a
quasicontraction and self map of X with some 0 < λ < 1/2. Then Picard’s iteration is T -stable.

Proof. By [6, Theorem 2.1], T has a unique fixed point q ∈ X. Also T satisfies (2.1). So by
Theorem 2.2 it is enough to show that d(yn, Tyn) → 0. We have

d
(
yn, Tyn

) ≤ d
(
yn, Tyn−1

)
+ d

(
Tyn−1, Tyn

)
. (2.6)

Put bn := d(yn, Tyn), cn := d(yn+1, Tyn) and dn := d(Tyn−1, Tyn). Therefore cn → 0 as n → ∞
and

bn ≤ cn−1 + dn ≤ cn−1 + λun, (2.7)

where

un ∈ C
(
T, yn−1, yn

)
=
{
d
(
yn−1, yn

)
, d

(
yn−1, Tyn−1

)
, d

(
yn, Tyn

)
, d

(
yn−1, Tyn

)
, d

(
yn, Tyn−1

)}
.

(2.8)
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Hence we have un = bn or un ≤ sbn−1 + lcn−1 where s = 0, 1 or 1/(1 − λ) and l = 1 or 1 + λ.
Therefore by (2.7), bn ≤ (λl + 1)cn−1 + λsbn−1 by 0 ≤ λs < 1. Now by Lemma 1.5 we have
bn → 0.

3. An Application

Theorem 3.1. Let X := (C[0, 1],R) with ‖f‖∞ := sup0≤x≤1 |f(x)| for f ∈ X and let T be a self map

of X defined by Tf(x) =
∫1
0F(x, f(t))dt where

(a) F : [0, 1] × R → R is a continuous function,

(b) the partial derivative Fy of F with respect to y exists and |Fy(x, y)| ≤ L for some L ∈ [0, 1),

(c) for every real number 0 ≤ a < 1 one has ax ≤ F(x, ay) for every x, y ∈ [0, 1].

Let P := {(x, y) ∈ R
2 | x, y ≥ 0} be a normal cone and (X, d) the complete cone metric space defined

by d(f, g) = (‖f − g‖∞, α‖f − g‖∞) where α ≥ 0. Then,

(i) Picard’s iteration is T -stable if 0 ≤ L < 1/2,

(ii) Picard’s iteration fails to be T -stable if 1/2 ≤ L < 1 and
∫1
0F(x, t)dt /=x.

Proof. (i) We have T being a continuous quasicontraction map with 0 ≤ λ := L < 1/2; so by
Theorem 2.7, Picard’s iteration is T -stable.

(ii) Put yn(x) := nx/(n + 1) so yn ∈ X and d(yn, h) → 0, where h(x) = x. Also
d(yn+1, Tyn) → 0, since

∥∥yn+1 − Tyn

∥∥
∞ = sup

0≤x≤1

∣∣∣∣∣
n + 1
n + 2

x −
∫1

0
F

(
x,

nt

n + 1

)
dt

∣∣∣∣∣

≤ sup
0≤x≤1

∣∣∣∣
n + 1
n + 2

x − nx

n + 1

∣∣∣∣ −→ 0,

(3.1)

as n → ∞. But yn → h and h is not a fixed point for T. Therefore Picard’s iteration is not
T -stable.

Example 3.2. Let F1(x, y) := x + y/4 and F2(x, y) := x + y/2. Therefore F1 and F2 satisfy the
hypothesis of Theorem 3.1 where F1 has property (i) and F2 has property (ii). So the self maps
T1, T2 of X defined by T1f(x) = x + (1/4)

∫1
0f(t)dt and T2f(x) = x + (1/2)

∫1
0f(t)dt have unique

fixed points but Picard’s iteration is T -stable for T1 but not T -stable for T2.
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