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1. Introduction and Preliminaries

The well-known Banach fixed point theorem on complete metric spaces (specifically, each
contraction self-map of a complete metric space has a unique fixed point) has been extended
and generalized in different directions. For example, see Edelstein [1, 2], Kasahara [3],
Rhoades [4], Siddiq and Ansari [5], and others. One of its generalizations is for nonexpansive
single-valued maps on certain subsets of a Banach space. Indeed, these fixed points are not
necessarily unique. See, for example, Browder [6–8] and Kirk [9]. Fixed point theorems
for contractive and nonexpansive multivalued maps have also been established by several
authors. LetH denote the Hausdorffmetric on the space of all bounded nonempty subsets of
a metric space (X, d). A multivalued map J : X → 2X (where 2X denotes the collection of all
nonempty subsets of X) with bounded subsets as values is called contractive [10] if

H
(
J(x), J

(
y
)) ≤ hd

(
x, y

)
(1.1)

for all x, y ∈ X and for a fixed number h ∈ [0, 1). If the Lipschitz constant h = 1, then J is called
a multivalued nonexpansive mapping [11]. Nadler [10], Markin [11], Lami-Dozo [12], and
others proved fixed point theorems for these maps under certain conditions in the setting of
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metric and Banach spaces. Note that an element x ∈ X is called a fixed point of a multivalued
map J : X → 2X if x ∈ J(x). Among others, without using the concept of the Hausdorff
metric, Husain and Tarafdar [13] introduced the notion of a nonexpansive-type multivalued
map and proved a fixed point theorem on compact intervals of the real line. Using such type
of notions Husain and Latif [14] extended their result to general Banach space setting.

The fixed point results in modular function spaces were given by Khamsi et al. [15].
Even though a metric is not defined, many problems in metric fixed point theory can be
reformulated in modular spaces. For instance, fixed point theorems are proved in [15, 16] for
nonexpansive maps.

In this paper, we define nonexpansive-type and contractive-type multivalued maps
in modular function spaces, investigate the existence of fixed points of such mappings, and
prove similar results found in [17].

Now, we recall some basic notions and facts about modular spaces as formulated by
Kozlowski [18]. For more details the reader may consult [15, 16].

Let Ω be a nonempty set and let Σ be a nontrivial σ-algebra of subsets of Ω. Let P be a
δ-ring of subsets of Σ, such that E ∩A ∈ P for any E ∈ P and A ∈ Σ.

Let us assume that there exists an increasing sequence of sets Kn ∈ P such that Ω =⋃
Kn. By E we denote the linear space of all simple functions with supports from P. By M

we will denote the space of all measurable functions, that is, all functions f : Ω → R such
that there exists a sequence {gn} ∈ E, |gn| ≤ |f | and gn(ω) → f(ω) for all ω ∈ Ω. By 1A we
denote the characteristic function of the set A.

Definition 1.1. A functional ρ : E × Σ → [0,∞] is called a function modular if

(P1) ρ(0, E) = 0 for any E ∈ Σ,

(P2) ρ(f, E) ≤ ρ(g, E)whenever |f(ω)| ≤ |g(ω)| for any ω ∈ Ω, f, g ∈ E and E ∈ Σ,

(P3) ρ(f, ·) : Σ → [0,∞] is a σ-subadditive measure for every f ∈ E,

(P4) ρ(α,A) → 0 as α decreases to 0 for every A ∈ P, where ρ(α,A) = ρ(α1A,A),

(P5) if there exists α > 0 such that ρ(α,A) = 0, then ρ(β,A) = 0 for every β > 0, and

(P6) for any α > 0, ρ(α, .) is order continuous on P, that is, ρ(α,An) → 0 if {An} ∈ P
and decreases to ∅.

The definition of ρ is then extended to f ∈ M by

ρ
(
f, E

)
= sup

{
ρ
(
g, E

)
; g ∈ ε,

∣∣g(ω)
∣∣ ≤ ∣∣f(ω)

∣∣, for every ω ∈ Ω
}
. (1.2)

For the sake of simplicity we write ρ(f) instead of ρ(f,Ω).

Definition 1.2. A set E is said to be ρ-null if ρ(α, E) = 0 for every α > 0. A property p(w) is
said to hold ρ-almost everywhere (ρ-a.e.) if the set {w ∈ Ω : p(w)does not hold} is ρ-null.

Definition 1.3. A modular function ρ is called σ-finite if there exists an increasing sequence
of sets Kn ∈ P such that 0 < ρ(Kn) < ∞ and Ω =

⋃
Kn. It is easy to see that the functional
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ρ : M → [0,∞] is a modular and satisfies the following properties:

(i) ρ(f) = 0 if and only if f = 0 ρ-a.e.,

(ii) ρ(αf) = ρ(f) for every scalar α with |α| = 1 and f ∈ M, and

(iii) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α + β = 1, α ≥ 0, β ≥ 0 and f, g ∈ M.

In addition, if the following property is satisfied,

(iii)’ ρ(αf + βg) ≤ αρ(f) + βρ(g) if α + β = 1 , α ≥ 0, β ≥ 0 and, f, g ∈ M,

we say that ρ is a convex modular.
The modular ρ defines a corresponding modular space, that is, the vector space Lρ

given by

Lρ =
{
f ∈ M; ρ

(
λf

) −→ 0 as λ −→ 0
}
. (1.3)

When ρ is convex, the formula

∥∥f
∥∥
p = inf

{
α > 0; ρ

(
f

α

)
≤ 1

}
(1.4)

defines a norm in the modular space Lρ which is frequently called the Luxemburg norm. We
can also consider the space

Eρ=
{
f ∈M; ρ

(
αf,An

) → 0 as n → ∞ for every An∈Σ that decreases to ∅ and α>0
}
.
(1.5)

Definition 1.4. A function modular is said to satisfy the Δ2-condition if supn≥1ρ(2fn,Dk) →
0 as k → ∞ whenever {fn}n≥1 ⊂ M, Dk ∈ Σ decreases to ∅ and supn≥1ρ(fn,Dk) → 0 as
k → ∞.

We know from [18] that Eρ = Lρ when ρ satisfies the Δ2-condition.

Definition 1.5. A function modular is said to satisfy theΔ2-type condition if there existsK > 0
such that for any f ∈ Lρ we have ρ(2f) ≤ Kρ(f).

In general, Δ2-type condition and Δ2-condition are not equivalent, even though it is
obvious that Δ2-type condition implies Δ2-condition on the modular space Lρ.

Definition 1.6. Let Łρ be a modular space.

(1) The sequence {fn} ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn − f) → 0 as
n → ∞.

(2) The sequence {fn} ⊂ Lρ is said to be ρ-a.e. convergent to f ∈ Lρ if the set {ω ∈
Ω; fn(ω) � f(ω)} is ρ-null.

(3) The sequence {fn} ⊂ Lρ is said to be ρ-Cauchy if ρ(fn − fm) → 0 as n and m go to
∞.

(4) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent sequence of C
always belongs to C.
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(5) A subset C of Lρ is called ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent
sequence of C always belongs to C.

(6) A subset C of Lρ is called ρ-a.e. compact if every sequence in C has a ρ-a.e.
convergent subsequence in C.

(7) A subset C of Lρ is called ρ-bounded if

δρ(C) = sup
{
ρ
(
f − g

)
; f, g ∈ C

}
< ∞. (1.6)

We recall two basic results (see [15]) in the theory of modular spaces.

(i) If there exists a number α > 0 such that ρ(α(fn − f)) → 0, then there exists a
subsequence {gn} of {fn} such that gn → fρ-a.e.

(ii) (Lebesgue’s Theorem) If fn, f ∈ M, fn → fρ-a.e. and there exists a function g ∈ Eρ

such that |fn| ≤ |g|ρ-a.e. for all n, then ‖fn − f‖p → 0.

We know, by [15, 16] that under Δ2-condition the norm convergence and modular
convergence are equivalent, which implies that the norm and modular convergence are also
the same when we deal with the Δ2-type condition. In the sequel we will assume that the
modular function ρ is convex and satisfies the Δ2-type condition.

Definition 1.7. Let ρ be as aforementioned. We define a growth function ω by

ω(t) = sup

{
ρ
(
tf
)

ρ
(
f
) , f ∈ Lρ \ {0}

}

∀0 ≤ t < ∞. (1.7)

We have the following:

Lemma 1.8 (see [19]). Let ρ be as aforementioned. Then the growth function ω has the following
properties:

(1) ω(t) < ∞ ,∀t ∈ [0,∞),

(2) ω : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is continuous,

(3) ω(αβ) ≤ ω(α)ω(β); ∀α, β ∈ [0,∞),

(4) ω−1(α)ω−1(β) ≤ ω−1(αβ);∀α, β ∈ [0,∞), where ω−1 is the function inverse of ω.

The following lemma shows that the growth function can be used to give an upper
bound for the norm of a function.

Lemma 1.9 (see [19]). Let ρ be a convex function modular satisfying the Δ2-type condition. Then

∥∥f
∥∥
p ≤ 1

ω−1(1/ρ
(
f
)) whenever f ∈ Lρ. (1.8)

The next lemma will be of major interest throughout this work.
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Lemma 1.10 (see [16]). Let ρ be a function modular satisfying the Δ2-condition and let {fn} be a

sequence in Lρ such that fn
ρ−a.e→ f ∈ Lρ, and there exists k > 1 such that supnρ(k(fn − f)) < ∞.

Then,

lim inf
n→∞

ρ
(
fn − g

)
= lim inf

n→∞
ρ
(
fn − f

)
+ ρ

(
f − g

) ∀g ∈ Lρ. (1.9)

Moreover, one has

ρ
(
f
) ≤ lim inf

n→∞
ρ
(
fn
)
. (1.10)

2. Fixed Points of Contractive-Type and Nonexpansive-Type Maps

In the sequel we assume that ρ is a convex, σ-finite modular function satisfying the Δ2-type
condition, and C is a nonempty ρ-bounded subset of the modular function space Lρ. We
denote that C(C) is a collection of all nonempty ρ-closed subsets ofC, andK(C) is a collection
of all nonempty ρ-compact subsets of C.

We say that a multivalued map T : C → 2C is ρ-contractive-type if there exists k ∈
(0, 1) such that for any f, g ∈ C and for any F ∈ T(f), there exists G ∈ T(g) such that

ρ(F −G) ≤ kρ
(
f − g

)
, (2.1)

and ρ-nonexpansive-type if for any f, g ∈ C and for any F ∈ T(f), there exists G ∈ T(g) such
that

ρ(F −G) ≤ ρ
(
f − g

)
. (2.2)

We have the following fixed point theorem (for which a similar result may be found
in [17]).

Theorem 2.1. Let C be a nonempty ρ-closed subset of the modular function space Lρ. Then any
T : C → C(C) ρ-contractive-type map has a fixed point, that is, there exists f ∈ C such that
f ∈ T(f).

Proof. Let f0 ∈ C. Without loss of generality, assume that f0 is not a fixed point of T . Then
there exists f1 ∈ T(f0) such that f1 /= f0. Hence ρ(f0, f1) > 0. Since T is ρ-contractive-type,
then there exists f2 ∈ T(f1) such that

ρ
(
f1 − f2

) ≤ kρ
(
f0 − f1

)
. (2.3)

By induction, one can easily construct a sequence {fn} ∈ C such that fn+1 ∈ T(fn) and

ρ
(
fn+1 − fn

) ≤ kρ
(
fn − fn−1

)
, (2.4)
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for any n ≥ 1. In particular we have

ρ
(
fn+1 − fn

) ≤ knρ
(
f1 − f0

)
. (2.5)

Without loss of generality, we may assume ρ(fn+1, fn)/= 0, otherwise fn is a fixed point of T .
Hence

1
knρ

(
f1 − f0

) ≤ 1
ρ
(
fn+1 − fn

) (2.6)

Using Lemma 1.9, we get

∥
∥fn+1 − fn

∥
∥
ρ ≤ 1

ω−1(1/ρ
(
fn+1 − fn

)) . (2.7)

Using the properties of ω(t), we get

ω−1
(

1
knρ

(
f1 − f0

)

)

≤ ω−1
(

1
ρ
(
fn+1 − fn

)

)

. (2.8)

So

ω−1
(
1
k

)n

ω−1
(

1
ρ
(
f1 − f0

)

)

≤ ω−1
(

1
ρ
(
fn+1 − fn

)

)

, (2.9)

which implies

∥∥fn+1 − fn
∥∥
ρ ≤ 1

ω−1(1/k)nω−1(1/ρ
(
f1 − f0

)) . (2.10)

Since ω(1) = 1 and k < 1, then 1 < ω−1(1/k). This forces {fn} to be ‖ · ‖ρ-Cauchy. Hence the
sequence {fn}‖ · ‖ρ-converges to some f ∈ Lρ. Since ρ satisfies the Δ2-condition, then {fn}ρ-
converges to f . Since C is ρ-closed, then f ∈ C. Let us prove that f is indeed a fixed point of
T . Since T is a ρ-contractive-type mapping, then for any n ≥ 1, there exists Fn ∈ T(f) such
that

ρ
(
fn+1 − Fn

) ≤ kρ
(
fn − f

)
. (2.11)

Hence {ρ(fn+1−Fn)} converges to 0. Since ρ satisfies theΔ2-condition, we have {‖fn+1 − Fn‖ρ}
converges to 0. Since {fn}‖ · ‖ρ-converges to f , then {Fn}‖ · ‖ρ-converges to f . Hence {Fn}ρ-
converges to f . Since T(f) is ρ-closed and {Fn} ∈ T(f), we get f ∈ T(f).

Remark 2.2. Consider the multivalued map TA(f) = A, where A is a nonempty ρ-closed
subset of C. Then it is easy to show that TA is a ρ-contractive-type map. The set of all fixed
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point of TA is exactly the set A. In particular, ρ-contractive-type maps may not have a unique
fixed point.

As an application of the above theorem, we have the following result.

Proposition 2.3. Let C be a ρ-closed convex subset of the modular function space Lρ. Let T : C →
C(C) be ρ-nonexpansive-type map. Then there exists an approximate fixed points sequence {fn} in C,
that is, for any n ≥ 1 there exists Fn ∈ T(fn) such that

lim
n→∞

ρ
(
fn − Fn

)
= 0. (2.12)

In particular one has limn→∞distρ(fn, T(fn)) = 0, where

distρ
(
fn, T

(
fn
))

= inf
{
ρ
(
fn − g

)
; g ∈ T

(
fn
)}

. (2.13)

Proof. Let λ ∈ (0, 1) and let f0 be a fixed point in C. For each f ∈ C, define a map

Tλ
(
f
)
= λf0 + (1 − λ)T

(
f
)
=
{
λf0 + (1 − λ)g; g ∈ T

(
f
)}

. (2.14)

Note that Tλ(f) is nonempty and ρ-closed subset of C because T(f) is ρ-closed and C is
convex. Since T is a ρ-nonexpansive-type map, for each f, g ∈ C and for any F ∈ T(f), there
exists G ∈ T(g) such that

ρ(F −G) ≤ ρ
(
f − g

)
. (2.15)

Since ρ is convex we get

ρ
((
λf0 + (1 − λ)F

) − (
λf0 + (1 − λ)G

))
= ρ((1 − λ)(F −G)) ≤ (1 − λ)ρ(F −G), (2.16)

which implies

ρ
((
λf0 + (1 − λ)F

) − (
λf0 + (1 − λ)G

)) ≤ (1 − λ)ρ
(
f − g

)
. (2.17)

In other words, the map Tλ is a ρ-contractive-type. Theorem 2.1 implies the existence of a
fixed point fλ of Tλ, thus there exists Fλ ∈ T(fλ) such that

fλ = λf0 + (1 − λ)Fλ. (2.18)

In particular, we have

ρ
(
fλ − Fλ

)
= ρλ

(
f0 − Fλ

) ≤ λρ
(
f0 − Fλ

) ≤ λδρ(C), (2.19)
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where δρ(C) = supf,g∈Cρ(f − g) is the ρ-diameter of C. Note that since C is ρ-bounded, then
δρ(C) < ∞. If we choose λ = 1/n, for n ≥ 1 and write fn = fλn and Fn = Fλn , we get

ρ
(
fn − Fn

) ≤ δρ(C)
n

, (2.20)

for any n ≥ 1, which implies limn→∞ρ(fn − Fn) = 0.

Using the above result, we are now ready to prove the main fixed point result for
ρ-nonexpansive-type multivalued maps.

Theorem 2.4. Let C be a nonempty ρ-closed convex subset of the modular function space Lρ. Assume
that C is ρ-a.e. compact. Then each ρ-nonexpansive-type map T : C → K(C) has a fixed point.

Proof. Proposition 2.3 ensures the existence of a sequence {fn} in C and a sequence {Fn} such
that Fn ∈ T(fn) and limn→∞ρ(fn − Fn) = 0. Without loss of generality we may assume that
{fn}ρ-a.e. converges to f ∈ C and {Fn}ρ-a.e. converges to F ∈ C. Lemma 1.10 implies

ρ
(
f − F

) ≤ lim inf
n→∞

ρ
(
fn − Fn

)
= 0. (2.21)

Hence f = F. Since T is a ρ-nonexpansive-type map, then there exists a sequence {Gn} ∈ T(f)
such that

ρ(Fn −Gn) ≤ ρ
(
fn − f

)
, (2.22)

for all n ≥ 1. Since T(f) is ρ-compact, we may assume that {Gn} is ρ-convergent to some
h ∈ T(f). Lemma 1.10 implies

lim inf
n→∞

ρ
(
fn − f

)
+ ρ

(
f − h

)
= lim inf

n→∞
ρ
(
fn − h

)
. (2.23)

Since ρ satisfies the Δ2-condition, then

lim inf
n→∞

ρ
(
fn − h

)
= lim inf

n→∞
ρ
(
fn − Fn + Fn −Gn +Gn − h

)

= lim inf
n→∞

ρ(Fn −Gn)
(2.24)

(see, [20]). Since ρ(Fn −Gn) ≤ ρ(fn − f), we get

lim inf
n→∞

ρ
(
fn − h

) ≤ lim inf
n→∞

ρ
(
fn − f

)
, (2.25)

which implies

lim inf
n→∞

ρ
(
fn − f

)
+ ρ

(
f − h

) ≤ lim inf
n→∞

ρ
(
fn − f

)
. (2.26)
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Hence ρ(f − h) = 0 or f = h. Hence f ∈ T(f); that is, f is a fixed point of T .

Proposition 2.3 and Theorem 2.4 are also hold if we assume that C is starshaped
instead of Convex. (A set C is called starshaped if there exists f0 ∈ C such that λf0− (1−λ)f ∈
C provided f ∈ C and λ ∈ [0, 1].)

3. Fixed Points of w-Contractive-Type Maps

In [21] the authors introduced the concept of w-distance in metric spaces which they
connected to the existence of fixed point of single and multivalued maps (see also [22]).
Similarly we extend their definition and results to modular spaces. Indeed let ρ be a convex,
σ-finite modular function. A function p : Lρ × Lρ → [0,∞) is called w-modular on the
modular function space Lρ if the following are satisfied:

(1) p(f, g) ≤ p(f, h) + p(h, g) for any f, g, h ∈ Lρ;

(2) for any f ∈ Lρ, p(f, ·) : Lρ → [0,∞) is lower semicontinuous; that is, if {gn}ρ-
converges to g, then

p
(
f, g

) ≤ lim inf
n→∞

p
(
f, gn

)
, (3.1)

(3) for any ε > 0, there exists δ > 0 such that p(f, g) ≤ δ and p(f, h) ≤ δ imply ρ(g, h) ≤
ε.

As it was done in [21], we need the following technical lemma.

Lemma 3.1. Let p(·, ·) be w-modular on the modular function space Lρ. Let {fn} and {gn} be
sequences in Lρ, and let {αn} and {βn} be sequences in [0,∞) converging to 0, and f, g, h ∈ Lρ.
Then the following hold:

(1) if p(fn, g) ≤ αn and p(fn, h) ≤ βn, for all n ≥ 1, then g = h; in particular if p(f, g) = 0
and p(f, h) = 0, then g = h;

(2) if p(fn, gn) ≤ αn and p(fn, h) ≤ βn, for any n ≥ 1, then {gn}ρ-converges to h;

(3) if p(fn, fm) ≤ αn for any n,m ≥ 1 withm > n, then {fn} is a ρ-Cauchy sequence;

(4) if p(g, fn) ≤ αn for any n ≥ 1, then {fn} is a ρ-Cauchy sequence.

The proof is easy and similar to the one given in [21]. Now we are ready to give the
first fixed point result in this setting. Let C be a nonempty ρ-closed subset of the modular
function space Lρ. We say that a multivalued map T : C → C(C) is weakly ρ-contractive-
type map if there exists w-modular p(·, ·) on Lρ and k ∈ [0, 1) such that for any f, g ∈ C and
any F ∈ T(f), there exists G ∈ T(g) such that p(F,G) ≤ kp(f, g).

Theorem 3.2. Let C be a nonempty ρ-closed subset of the modular function space Lρ. Then each
weakly ρ-contractive-type map T : C → C(C) has a fixed point f ∈ C, and p(f, f) = 0.
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Proof. Let p(·, ·) be a w-modular and k ∈ [0, 1) associated to T , that is, for any f, g ∈ C and
any F ∈ T(f), there exists G ∈ T(g) such that p(F,G) ≤ kp(f, g). Fix f0 ∈ C and f1 ∈ T(f0). By
induction one can construct a sequence {fn} such that fn+1 ∈ T(fn) and

p
(
fn, fn+1

) ≤ kp
(
fn−1, fn

)
, (3.2)

for every n ≥ 1. In particular we have p(fn, fn+1) ≤ knp(f0, f1), for every n ≥ 1. Using the
properties of p(·, ·), we get

p
(
fn, fn+h

) ≤ kn

1 − k
p
(
f0, f1

)
, (3.3)

for any n, h ≥ 1. Lemma 3.1 implies that the sequence {fn} is ρ-Cauchy. Hence {fn}ρ-
converges to some f ∈ C. Using the lower semicontinuity of p, we get

p
(
fn, f

) ≤ lim inf
n→∞

p
(
fn, fn+h

) ≤ kn

1 − k
p
(
f0, f1

)
, (3.4)

for any n ≥ 1. Since fn ∈ T(fn−1) and T is weakly ρ-contractive-type map, there exists gn ∈
T(f) such that

p
(
fn, gn

) ≤ kp
(
fn−1, f

) ≤ kn

1 − k
p
(
f0, f1

)
, (3.5)

for any n ≥ 2. Lemma 3.1 implies that {gn}ρ- converges to f as well. Since T(f) is ρ-closed,
then f ∈ T(f), that is, f is a fixed point of T . Let us complete the proof by showing that
p(f, f) = 0. Since f ∈ T(f), there exists h1 ∈ T(f) such that p(f, h1) ≤ kp(f, f). By induction
we can construct a sequence {hn} in C such that hn+1 ∈ T(hn) and p(f, hn+1) ≤ kp(f, hn), for
any n ≥ 1. So we have p(f, hn) ≤ knp(f, f), for any n ≥ 1. Lemma 3.1 implies that {hn} is
ρ-Cauchy. Hence {hn}ρ- converges to some h ∈ C. Using the lower semicontinuity of p(·, ·)
we get

p
(
f, h

) ≤ lim inf
n→∞

p
(
f, hn

) ≤ 0. (3.6)

Hence p(f, h) = 0. Then for any n ≥ 1, we have

p
(
fn, h

) ≤ p
(
fn, f

)
+ p

(
f, h

) ≤ kn

1 − k
p
(
f0, f1

)
. (3.7)

Lemma 3.1 implies f = h, or p(f, f) = 0.

Note that in the proof above we did not use the Δ2-condition. The reason behind is
that p(·, ·) satisfies the triangle inequality. If T is single valued, then we have little more
information about the fixed point. Indeed, letC be a nonempty ρ-closed subset of themodular
function space Lρ. The map T : C → C is called a weakly ρ-contractive type map if there
exists w-modular p(·, ·) on Lρ and k ∈ [0, 1) such that for any f, g ∈ C; p(T(f), T(g)) ≤
kp(f, g).
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Theorem 3.3. Let C be a nonempty ρ-closed subset of the modular function space Lρ. Then each
weakly ρ-contractive type map T : C → C has a unique fixed point f ∈ C, and p(f, f) = 0.

Proof. Theorem 3.2 ensures the existence of a fixed point f ∈ C, that is, T(f) = f and p(f, f) =
0. Let us show that f is the only fixed point of T . Assume that h ∈ C is another fixed point
of T . Then we must have p(f, h) = 0. Combining this with p(f, f) = 0, Lemma 3.1 implies
f = h.

Similar extensions of the results as found in [21–23] may be proved in our setting.
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