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1. Introduction

Let H be a real Hilbert space with inner product 〈 · , · 〉 and induced norm ‖ · ‖, and let C be
a nonempty-closed convex subset of H. Let ϕ : H → R ∪ {+∞} be a function and let F be
a bifunction from C × C to R such that C ∩ domϕ/=∅, where R is the set of real numbers
and domϕ = {x ∈ H : ϕ(x) < +∞}. Flores-Bazán [1] introduced the following generalized
equilibrium problem:

Find x ∈ C such that F(x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by GEP (F, ϕ). Flores-Bazán [1] provided some
characterizations of the nonemptiness of the solution set for problem (1.1) in reflexive Banach
spaces in the quasiconvex case. Bigi et al. [2] studied a dual problem associated with the
problem (1.1)with C = H = Rn.
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Let ϕ(x) = δC(x), ∀x ∈ H. Here δC denotes the indicator function of the set C; that is,
δC(x) = 0 if x ∈ C and δC(x) = +∞ otherwise. Then the problem (1.1) becomes the following
equilibrium problem:

Finding x ∈ C such that F(x, y) ≥ 0, ∀y ∈ C. (1.2)

The set of solutions of (1.2) is denoted by EP(F). The problem (1.2) includes, as special
cases, the optimization problem, the variational inequality problem, the fixed point problem,
the nonlinear complementarity problem, the Nash equilibrium problem in noncooperative
games, and the vector optimization problem. For more detail, please see [3–5] and the
references therein.

If F(x, y) = g(y)−g(x) for all x, y ∈ C, where g : C → R is a function, then the problem
(1.1) becomes a problem of finding x ∈ C which is a solution of the following minimization
problem:

min
y∈C

{
ϕ(y) + g(y)

}
. (1.3)

The set of solutions of (1.3) is denoted by Argmin(g, ϕ).
If ϕ : H → R ∪ {+∞} is replaced by a real-valued function φ : C → R, the problem

(1.1) reduces to the following mixed equilibrium problem introduced by Ceng and Yao [6]:

Find x ∈ C such that F(x, y) + φ(y) − φ(x) ≥ 0, ∀y ∈ C. (1.4)

Recall that a mapping T : C → C is said to be a κ-strict pseudocontraction [7] if there
exists 0 ≤ κ < 1, such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + κ
∥∥(I − T)x − (I − T)y

∥∥2
, ∀x, y ∈ C, (1.5)

where I denotes the identity operator on C. When κ = 0, T is said to be nonexpansive. Note
that the class of strict pseudocontraction mappings strictly includes the class of nonexpansive
mappings. We denote the set of fixed points of S by Fix(S).

Ceng and Yao [6], Yao et al. [8], and Peng and Yao [9, 10] introduced some iterative
schemes for finding a common element of the set of solutions of the mixed equilibrium
problem (1.4) and the set of common fixed points of a family of finitely (infinitely)
nonexpansive mappings (strict pseudocontractions) in a Hilbert space and obtained some
strong convergence theorems(weak convergence theorems). Some methods have been
proposed to solve the problem (1.2); see, for instance, [3–5, 11–18] and the references
therein. Recently, S. Takahashi and W. Takahashi [12] introduced an iterative scheme by
the viscosity approximation method for finding a common element of the set of solutions
of problem (1.2) and the set of fixed points of a nonexpansive mapping in a Hilbert space
and proved a strong convergence theorem. Su et al. [13] introduced an iterative scheme by
the viscosity approximation method for finding a common element of the set of solutions
of problem (1.2) and the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality problem for an α-inverse strongly monotone mapping
in a Hilbert space. Tada and Takahashi [14] introduced two iterative schemes for finding
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a common element of the set of solutions of problem (1.2) and the set of fixed points of
a nonexpansive mapping in a Hilbert space and obtained both strong convergence theorem
and weak convergence theorem. Ceng et al. [15] introduced an iterative algorithm for finding
a common element of the set of solutions of problem (1.2) and the set of fixed points of a strict
pseudocontraction mapping. Chang et al. [16] introduced some iterative processes based on
the extragradient method for finding the common element of the set of fixed points of a family
of infinitely nonexpansive mappings, the set of problem (1.2), and the set of solutions of
a variational inequality problem for an α-inverse strongly monotone mapping. Colao et al.
[17] introduced an iterative method for finding a common element of the set of solutions
of problem (1.2) and the set of fixed points of a finite family of nonexpansive mappings
in a Hilbert space and proved the strong convergence of the proposed iterative algorithm
to the unique solution of a variational inequality, which is the optimality condition for a
minimization problem. To the best of our knowledge, there is not any algorithms for solving
problem (1.1).

On the other hand, Marino and Xu [19] and Zhou [20] introduced and researched
some iterative scheme for finding a fixed point of a strict pseudocontraction mapping. Acedo
and Xu [21] introduced some parallel and cyclic algorithms for finding a common fixed point
of a family of finite strict pseudocontraction mappings and obtained both weak and strong
convergence theorems for the sequences generated by the iterative schemes.

In the present paper, we introduce a new approximation scheme combining the
viscosity method with parallel method for finding a common element of the set of solutions
of the generalized equilibrium problem and the set of fixed points of a family of finitely strict
pseudocontractions. We obtain a strong convergence theorem for the sequences generated by
these processes. Based on this result, we also get some new and interesting results. The results
in this paper extend and improve some well-known results in the literature.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖. Let C be a nonempty-
closed convex subset of H. Let symbols → and ⇀ denote strong and weak convergences,
respectively. In a real Hilbert space H, it is well known that

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 (2.1)

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H, there exists a unique nearest point in C, denoted by PC(x), such that

‖x − PC(x)‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the metric projection of H onto
C. We know that PC is a nonexpansive mapping fromH onto C. It is also known that PCx ∈ C
and

〈
x − PC(x), PC(x) − y

〉 ≥ 0 (2.2)

for all x ∈ H and y ∈ C.
For each B ⊆ H, we denote by conv(B) the convex hull of B. A multivalued mapping

G : B → 2H is said to be a KKM map if, for every finite subset {x1, x2, . . . , xn} ⊆ B,
conv({x1, x2, . . . , xn}) ⊆

⋃∞
n=1G(xi).
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We will use the following results in the sequel.

Lemma 2.1 (see [22]). Let B be a nonempty subset of a Hausdorff topological vector space X and let
G : B → 2X be a KKM map. If G(x) is closed for all x ∈ B and is compact for at least one x ∈ B, then⋂

x∈BG(x)/=∅.

For solving the generalized equilibrium problem, let us give the following assump-
tions for the bifunction F, ϕ, and the set C:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for any x, y ∈ C;

(A3) for each y ∈ C, x �→ F(x, y) is weakly upper semicontinuous;

(A4) for each x ∈ C, y �→ F(x, y) is convex;

(A5) for each x ∈ C, y �→ F(x, y) is lower semicontinuous;

(B1) For each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C ∩ domϕ
such that for any z ∈ C \Dx,

F
(
z, yx

)
+ ϕ

(
yx

)
+
1
r

〈
yx − z, z − x

〉
< ϕ(z); (2.3)

(B2) C is a bounded set.

Lemma 2.2. Let C be a nonempty-closed convex subset of H. Let F be a bifunction from C × C to
R satisfying (A1)–(A4) and let ϕ : H → R ∪ {+∞} be a proper lower semicontinuous and convex
function such that C ∩ domϕ/=∅. For r > 0 and x ∈ H, define a mapping Sr : H → C as follows:

Sr(x) =
{
z ∈ C : F(z, y) + ϕ(y) +

1
r
〈y − z, z − x〉 ≥ ϕ(z), ∀y ∈ C

}
(2.4)

for all x ∈ H. Assume that either (B1) or (B2) holds. Then, the following conclusions hold:

(1) for each x ∈ H, Sr(x)/=∅;

(2) Sr is single-valued;

(3) Sr is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥Sr(x) − Sr(y)
∥∥2 ≤ 〈

Sr(x) − Sr(y), x − y
〉
; (2.5)

(4) Fix(Sr) = GEP(F, ϕ);

(5) GEP(F, ϕ) is closed and convex.

Proof. Let x0 be any given point in E. For each y ∈ C, we define

G(y) =
{
z ∈ C : F(z, y) + ϕ(y) +

1
r

〈
y − z, z − x0

〉 ≥ ϕ(z)
}
. (2.6)
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Note that for each y ∈ C∩domϕ,G(y) is nonempty since y ∈ G(y) and for each y ∈ C\domϕ,
G(y) = C. We will prove that G is a KKMmap on C∩domϕ. Suppose that there exists a finite
subset {y1, y2, . . . , yn} of C ∩ domϕ and μi ≥ 0 for all i = 1, 2, . . . , n with

∑n
i=1μi = 1 such that

ẑ =
∑n

i=1μiyi/∈G(yi) for each i = 1, 2, . . . , n. Then we have

F
(
ẑ, yi

)
+ ϕ

(
yi

) − ϕ(ẑ) +
1
r

〈
yi − ẑ, ẑ − x0

〉
< 0 (2.7)

for each i = 1, 2, . . . , n. By (A4) and the convexity of ϕ, we have

0 = F(ẑ, ẑ) + ϕ(ẑ) − ϕ(ẑ) +
1
r

〈
ẑ − ẑ, ẑ − x0

〉

≤
n∑

i=1

μi

[
F
(
ẑ, yi

)
+ ϕ

(
yi

) − ϕ(ẑ)
]
+
1
r

[
n∑

i=1

μi

〈
yi − ẑ, ẑ − x0

〉
]

< 0,
(2.8)

which is a contradiction. Hence, G is a KKM map on C ∩ domϕ. Note that G(y)
w
(the weak

closure of G(y)) is a weakly closed subset of C for each y ∈ C. Moreover, if (B2) holds, then
G(y)

w
is also weakly compact for each y ∈ C. If (B1) holds, then for x0 ∈ E, there exists a

bounded subset Dx0 ⊆ C and yx0 ∈ C ∩ domϕ such that for any z ∈ C \Dx0 ,

F
(
z, yx0

)
+ ϕ

(
yx0

)
+
1
r

〈
yx0 − z, z − x0

〉
< ϕ(z). (2.9)

This shows that

G
(
yx0

)
=
{
z ∈ C : F

(
z, yx0

)
+ ϕ

(
yx0

)
+
1
r

〈
yx0 − z, z − x0

〉 ≥ ϕ(z)
}

⊆ Dx0 . (2.10)

Hence, G(yx0)
w

is weakly compact. Thus, in both cases, we can use Lemma 2.1 and have
⋂

y∈C∩domϕG(y)
w
/=∅.

Next, we will prove that G(y)
w
= G(y) for each y ∈ C; that is, G(y) is weakly closed.

Let z ∈ G(y)
w
and let zm be a sequence in G(y) such that zm ⇀ z. Then,

F
(
zm, y

)
+ ϕ(y) +

1
r

〈
y − zm, zm − x0

〉 ≥ ϕ
(
zm

)
. (2.11)

Since ‖ · ‖2 is weakly lower semicontinuous, we can show that

lim sup
m→∞

〈
y − zm, zm − x0

〉 ≤ 〈
z − y, x0 − z

〉
. (2.12)
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It follows from (A3) and the weak lower semicontinuity of ϕ that

ϕ(z) ≤ lim inf
m→∞

ϕ
(
zm

) ≤ lim sup
m→∞

[
F
(
zm, y

)
+ ϕ(y) +

1
r

〈
y − zm, zm − x0

〉
]

≤ lim sup
m→∞

[
F
(
zm, y

)
+ ϕ(y)

]
+
1
r
lim sup
m→∞

〈
y − zm, zm − x0

〉

≤ F(z, y) + ϕ(y) +
1
r

〈
z − y, x0 − z

〉
.

(2.13)

This implies that z ∈ G(y). Hence, G(y) is weakly closed. Hence, Sr(x0) =
⋂

y∈CG(y) =
⋂

y∈C∩domϕG(y) =
⋂

y∈C∩domϕG(y)
w
/=∅. Hence, from the arbitrariness of x0, we conclude that

Sr(x)/=∅, ∀x ∈ H.
We observe that Sr(x) ⊆ domϕ. So by similar argument with that in the proof of

Lemma 2.3 in [9], we can easily show that Sr is single-valued and Sr is a firmly nonexpansive-
type map. Next, we claim that Fix(Sr) = GEP(F, ϕ). Indeed, we have the following:

u ∈ Fix
(
Sr

) ⇐⇒ u = Sr(u)

⇐⇒ F(u, y) + ϕ(y) +
1
r
〈y − u, u − u〉 ≥ ϕ(u), ∀y ∈ C

⇐⇒ F(u, y) + ϕ(y) ≥ ϕ(u), ∀y ∈ C

⇐⇒ u ∈ GEP(F, ϕ).

(2.14)

At last, we claim that GEP(F, ϕ) is a closed convex. Indeed, Since Sr is firmly nonexpansive,
Sr is also nonexpansive. By [23, Proposition 5.3], we know that GEP(F, ϕ) = Fix(Sr) is closed
and convex.

Remark 2.3. It is easy to see that Lemma 2.2 is a generalization of [9, Lemma 2.3].

Lemma 2.4 (see [24, 25]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤
(
1 − γn

)
αn + δn, (2.15)

where γn is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∞∑

n=1

γn = ∞;

(ii) lim sup
n→∞

δn
γn

≤ 0 or
∞∑

n=1

∣∣δn
∣∣ < ∞.

(2.16)

Then, limn→∞αn = 0.

Lemma 2.5. In a real Hilbert spaceH, there holds the following inequality:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 (2.17)

for all x, y ∈ H.
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3. Strong Convergence Theorems

In this section, we show a strong convergence of an iterative algorithm based on both
viscosity approximation method and parallel method which solves the problem of finding
a common element of the set of solutions of a generalized equilibrium problem and the set of
fixed points of a family of finitely strict pseudocontractions in a Hilbert space.

We need the following assumptions for the parameters {γn}, {rn}, {αn}, {ζ(n)1 },
{ζ(n)2 }, . . . , {ζ(n)N }, and {βn}:

(C1) limn→∞αn = 0 and
∑∞

n=1αn = ∞;

(C2) 1 > lim supn→∞βn ≥ lim infn→∞βn > 0;

(C3) {γn} ⊂ [c, d] for some c, d ∈ (ε, 1) and limn→∞|γn+1 − γn| = 0;

(C4) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0;

(C5) limn→∞|ζ(n+1)j − ζ
(n)
j | = 0 for all j = 1, 2, . . . ,N.

Theorem 3.1. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5), and let ϕ : C → R ∪ {+∞} be a proper
lower semicontinuous and convex function such that C ∩ domϕ/=∅. Let N ≥ 1 be an integer.
For each 1 ≤ j ≤ N, let Tj : C → C be an εj-strict pseudocontraction for some 0 ≤ εj < 1

such that Ω =
⋂N

j=1Fix(Tj) ∩ GEP(F, ϕ)/=∅. Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of

positive numbers such that
∑N

j=1ζ
(n)
j = 1 for all n and infn≥1ζ

(n)
j > 0 for all 0 ≤ j ≤ N. Let

ε = max{εj : 1 ≤ j ≤ N}. Assume that either (B1) or (B2) holds. Let f be a contraction of C
into itself and let {xn}, {un}, and {yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ(y) +

1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
, ∀y ∈ C,

yn = γnun +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjun,

xn+1 = αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn

(3.1)

for every n = 1, 2, . . ., where {γn}, {rn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of
numbers satisfying the conditions (C1)–(C5). Then, {xn}, {un}, and {yn} converge strongly to w =
PΩf(w).

Proof. We show that PΩf is a contraction of C into itself. In fact, there exists a ∈ [0, 1) such
that ‖f(x) − f(y)‖ ≤ a‖x − y‖ for all x, y ∈ C. So, we have

∥∥PΩf(x) − PΩf(y)
∥∥ ≤ ∥∥f(x) − f(y)

∥∥ ≤ a‖x − y‖ (3.2)

for all x, y ∈ C. Since H is complete, there exists a unique element u0 ∈ C such that u0 =
PΩf(u0).
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Let u ∈ Ω and let {Srn} be a sequence of mappings defined as in Lemma 2.2. From
un = Srn(xn) ∈ C, we have

∥
∥un − u

∥
∥ =

∥
∥Srn

(
xn

) − Srn(u)
∥
∥ ≤ ∥

∥xn − u
∥
∥. (3.3)

We define a mapping Wn by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C. (3.4)

By [21, Proposition 2.6], we know that Wn is an ε-strict pseudocontraction and F(Wn) =⋂N
j=1Fix(Tj). It follows from (3.3), yn = γnun + (1 − γn)Wnun and u = Wnu such that

∥∥yn − u
∥∥2 = γn

∥∥un − u
∥∥2 +

(
1 − γn

)∥∥Wnun − u
∥∥2 − γn

(
1 − γn

)∥∥un −Wnun

∥∥2

≤ γn
∥∥un − u

∥∥2 +
(
1 − γn

)[∥∥un − u
∥∥2 + ε

∥∥un −Wnun

∥∥2] − γn
(
1 − γn

)∥∥un −Wnun

∥∥2

=
∥∥un − u

∥∥2 +
(
1 − γn

)(
ε − γn

)∥∥un −Wnun

∥∥2

≤ ∥∥un − u
∥∥2

.

(3.5)

PutM0 = max{‖x1−u‖, (1/(1−a))‖f(u)−u‖}. It is obvious that ‖x1−u‖ ≤ M0. Suppose
‖xn − u‖ ≤ M0. From (3.3), (3.5), and xn+1 = αnf(xn) + βnxn + (1 − αn − βn)yn, we have

∥∥xn+1 − u
∥∥ =

∥∥αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn − u

∥∥

≤ αn

∥∥f
(
xn

) − f(u)
∥∥ + αn

∥∥f(u) − u
∥∥ + βn

∥∥xn − u
∥∥ +

(
1 − αn − βn

)∥∥yn − u
∥∥

≤ αna
∥∥xn − u

∥∥ + αn

∥∥f(u) − u
∥
∥ + βn

∥∥xn − u
∥∥ +

(
1 − αn − βn

)∥∥un − u
∥∥

≤ αna
∥∥xn − u

∥∥ + αn

∥∥f(u) − u
∥∥ +

(
1 − αn

)∥∥xn − u
∥∥

= (1 − a)αn

∥∥f(u) − u
∥∥

1 − a
+
[
1 − (1 − a)αn

]∥∥xn − u
∥∥,

≤ (1 − a)αnM0 +
[
1 − (1 − a)αn

]
M0 = M0

(3.6)

for every n = 1, 2, . . . . Therefore, {xn} is bounded. From (3.3) and (3.5), we also obtain that
{yn} and {un} are bounded.

Following [26], define Bn : C → C by

Bn = γnI +
(
1 − γn

)
Wn. (3.7)
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As shown in [26], each Bn is a nonexpansive mapping on C. Set M1 = supn≥1{‖un −Wnun‖},
we have

∥
∥yn+1 − yn

∥
∥ =

∥
∥Bn+1

(
un+1

) − Bn

(
un

)∥∥

≤ ∥
∥Bn+1

(
un+1

) − Bn+1
(
un

)∥∥ +
∥
∥Bn+1

(
un

) − Bn

(
un

)∥∥

≤ ∥
∥un+1 − un

∥
∥ +M1

∣
∣γn+1 − γn

∣
∣ +

(
1 − γn+1

)∥∥Wn+1
(
un) −Wn

(
un)

∥
∥

≤ ∥
∥un+1 − un

∥
∥ +M1

∣
∣γn+1 − γn

∣
∣ +

(
1 − γn+1

) N∑

j=1

∣
∣ζ(n+1)j − ζ

(n)
j

∣
∣
∥
∥Tjun

∥
∥.

(3.8)

On the other hand, from un = Trn(xn) and un+1 = Trn+1(xn+1), we have

F
(
un, y

)
+ ϕ(y) +

1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
, ∀y ∈ C, (3.9)

F
(
un+1, y

)
+ ϕ(y) +

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ ϕ
(
un+1

)
, ∀y ∈ C. (3.10)

Putting y = un+1 in (3.9) and y = un in (3.10), we have

F
(
un, un+1

)
+ ϕ

(
un+1

)
+

1
rn

〈
un+1 − un, un − xn

〉 ≥ ϕ
(
un

)
,

F
(
un+1, un

)
+ ϕ

(
un

)
+

1
rn+1

〈
un − un+1, un+1 − xn+1

〉 ≥ ϕ
(
un+1

)
.

(3.11)

So, from the monotonicity of F, we get

〈
un+1 − un,

un − xn

rn
− un+1 − xn+1

rn+1

〉
≥ 0, (3.12)

hence

〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1

(
un+1 − xn+1

)
〉

≥ 0. (3.13)

Without loss of generality, let us assume that there exists a real number b such that rn > b > 0
for all n ∈ N. Then,

∥∥un+1 − un

∥∥2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(
un+1 − xn+1

)
〉

≤ ∥∥un+1 − un

∥∥
{∥∥xn+1 − xn

∥∥ +
∣∣∣∣1 −

rn
rn+1

∣∣∣∣
∥∥un+1 − xn+1

∥∥
}
,

(3.14)
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hence

∥
∥un+1 − un

∥
∥ ≤ ∥

∥xn+1 − xn

∥
∥ +

1
rn+1

∣
∣rn+1 − rn

∣
∣
∥
∥un+1 − xn+1

∥
∥

≤ ∥
∥xn+1 − xn

∥
∥ +

1
b

∣
∣rn+1 − rn

∣
∣M2,

(3.15)

where M2 = sup{‖un − xn‖ : n ≥ 1}.
It follows from (3.8) and (3.15) that

∥
∥yn+1 − yn

∥
∥ ≤ ∥

∥xn+1 − xn

∥
∥ +

1
b

∣
∣rn+1 − rn

∣
∣M2 +M1

∣
∣γn+1 − γn

∣
∣

+
(
1 − γn+1

) N∑

j=1

∣∣ζ(n+1)j − ζ
(n)
j

∣∣∥∥Tjun

∥∥.
(3.16)

Define a sequence {vn} such that

xn+1 = βnxn +
(
1 − βn

)
vn, ∀n ≥ 1. (3.17)

Then, we have

vn+1 − vn =
xn+2 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1f(xn+1) + (1 − αn+1 − βn+1)yn+1

1 − βn+1
− αnf(xn) + (1 − αn − βn)yn

1 − βn

=
αn+1

1 − βn+1
f
(
xn+1

) − αn

1 − βn
f
(
xn

)
+ yn+1 − yn +

αn

1 − βn
yn − αn+1

1 − βn+1
yn+1.

(3.18)

From (3.18) and (3.16), we have

∥∥vn+1 − vn

∥∥ − ∥∥xn+1 − xn

∥∥

≤ αn+1

1 − βn+1

(∥∥f
(
xn+1

)∥∥ +
∥∥yn+1

∥∥) +
αn

1 − βn

(∥∥f
(
xn

)∥∥ +
∥∥yn

∥∥)

+
∥∥yn+1 − yn

∥∥ − ∥∥xn+1 − xn

∥∥

≤ αn+1

1 − βn+1

(∥∥f
(
xn+1

)∥∥ +
∥∥yn+1

∥∥) +
αn

1 − βn

(∥∥f
(
xn

)∥∥ +
∥∥yn

∥∥)

+
1
b

∣∣rn+1 − rn
∣∣M2 +M1

∣∣γn+1 − γn
∣∣ +

(
1 − γn+1

) N∑

j=1

∣∣ζ(n+1)j − ζ
(n)
j

∣∣∥∥Tjun

∥∥.

(3.19)
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It follows from (C1)–(C5) that

lim sup
n→∞

(∥∥vn+1 − vn

∥
∥ − ∥

∥xn+1 − xn

∥
∥) ≤ 0. (3.20)

Hence, by [27, Lemma 2.2], we have limn→∞‖vn − xn‖ = 0. Consequently,

lim
n→∞

∥
∥xn+1 − xn

∥
∥ = lim

n→∞
(
1 − βn

)∥∥vn − xn

∥
∥ = 0. (3.21)

Since xn+1 = αnf(xn) + βnxn + (1 − αn − βn)yn, we have

∥
∥xn − yn

∥
∥ ≤ ∥

∥xn+1 − xn

∥
∥ +

∥
∥xn+1 − yn

∥
∥

≤ ∥
∥xn+1 − xn

∥
∥ + αn

∥
∥f

(
xn

) − yn

∥
∥ + βn

∥
∥xn − yn

∥
∥,

(3.22)

thus

∥∥xn − yn

∥∥ ≤ 1
1 − βn

(∥∥xn+1 − xn

∥∥ + αn

∥∥f(xn) − yn

∥∥). (3.23)

It follows from (C1) and (C2) that limn→∞‖xn − yn‖ = 0.
Since xn+1 = αnf(xn) + βnxn + (1 − αn − βn)yn, for u ∈ Ω, it follows from (3.5) and (3.3)

that

∥∥xn+1 − u
∥∥2 =

∥∥αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn − u

∥∥2

≤ αn

∥∥f
(
xn

) − u
∥∥2 + βn

∥∥xn − u
∥∥2 +

(
1 − αn − βn

)∥∥yn − u
∥∥2

≤ αn

∥∥f
(
xn

) − u
∥∥2 + βn

∥∥xn − u
∥∥2

+
(
1 − αn − βn

)[∥∥un − u
∥∥2 +

(
1 − γn

)(
ε − γn

)∥∥un −Wnun

∥∥2]

≤ αn

∥∥f
(
xn

) − u
∥
∥2 +

(
1 − αn

)∥∥xn − u
∥∥2

+
(
1 − αn − βn

)(
1 − γn

)(
ε − γn

)∥∥un −Wnun

∥∥2
,

(3.24)

from which it follows that

∥∥un −Wnun

∥∥2 ≤ αn

(1 − αn − βn)(1 − γn)(γn − ε)
(∥∥f

(
xn

) − u
∥∥2 − ∥∥xn − u

∥∥2)

+
1

(1 − αn − βn)(1 − γn)(γn − ε)
(∥∥xn − u

∥∥2 − ∥∥xn+1 − u
∥∥2)

.

≤ αn

(1 − αn − βn)(1 − γn)(γn − ε)
(∥∥f

(
xn

) − u
∥∥2 − ∥∥xn − u

∥∥2)

+
1

(1 − αn − βn)(1 − γn)(γn − ε)
(∥∥xn − u

∥∥ +
∥∥xn+1 − u

∥∥)∥∥xn+1 − xn

∥∥.

(3.25)
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It follows from (C1)–(C3) and ‖xn+1 − xn‖ → 0 that

∥
∥un −Wnun

∥
∥ −→ 0. (3.26)

For u ∈ Ω, we have from Lemma 2.2,

∥
∥un − u

∥
∥2 =

∥
∥Srnxn − Srnu

∥
∥2 ≤ 〈

Srnxn − Srnu, xn − u
〉

=
〈
un − u, xn − u

〉
=

1
2
{∥∥un − u

∥
∥2 +

∥
∥xn − u

∥
∥2 − ∥

∥xn − un

∥
∥2}

.
(3.27)

Hence,

∥∥un − u
∥∥2 ≤ ∥∥xn − u

∥∥2 − ∥∥xn − un

∥∥2
. (3.28)

By (3.24) and (3.28), we have

∥∥xn+1 − u
∥∥2 ≤ αn

∥∥f
(
xn

) − u
∥∥2 + βn

∥∥xn − u
∥∥2 +

(
1 − αn − βn

)∥∥un − u
∥∥2

≤ αn

∥∥f
(
xn

) − u
∥∥2 + βn

∥∥xn − u
∥∥2 +

(
1 − αn − βn

)[∥∥xn − u
∥∥2 − ∥∥xn − un

∥∥2]
.

(3.29)

Hence,

(
1 − αn − βn

)∥∥xn − un

∥∥2 ≤ αn

∥∥f
(
xn

) − u
∥∥2 − αn

∥∥xn − u
∥∥2 +

∥∥xn − u
∥∥2 − ∥∥xn+1 − u

∥∥2

≤ αn

∥∥f
(
xn

) − u
∥∥2 − αn

∥∥xn − u
∥∥2

+
(∥∥xn − u

∥∥ +
∥∥xn+1 − u

∥∥)∥∥xn − xn+1
∥∥.

(3.30)

It follows from (C1), (C2), and ‖xn − xn+1‖ → 0 that limn→∞‖xn − un‖ = 0.
Next, we show that

lim sup
n→∞

〈
f(u0) − u0, xn − u0

〉 ≤ 0, (3.31)

where u0 = PΩf(u0). To show this inequality, we can choose a subsequence {xni} of {xn} such
that

lim
i→∞

〈
f(u0) − u0, xni − u0

〉
= lim sup

n→∞

〈
f(u0) − u0, xn − u0

〉
. (3.32)

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges

weakly tow. Without loss of generality, we can assume that {xni} ⇀ w. From ‖xn − un‖ → 0,
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we obtain that uni ⇀ w. From ‖xn − yn‖ → 0, we also obtain that yni ⇀ w. Since {uni} ⊂ C
and C is closed and convex, we obtain w ∈ C.

We first show that w ∈ ⋂N
k=1Fix(Tk). To see this, we observe that we may assume (by

passing to a further subsequence if necessary) ζ(ni)
k

→ ζk (as i → ∞) for k = 1, 2, . . . ,N. It is
easy to see that ζk > 0 and

∑N
k=1ζk = 1. We also have

Wnix −→ Wx (as i −→ ∞) ∀x ∈ C, (3.33)

where W =
∑N

k=1ζkTk. Note that by [21, Proposition 2.6], W is an ε-strict pseudocontraction
and Fix(W) =

⋂N
i=1Fix(Ti). Since

∥∥uni −Wuni

∥∥ ≤ ∥∥uni −Wniuni

∥∥ +
∥∥Wniuni −Wuni

∥∥

≤ ∥∥uni −Wniuni

∥∥ +
N∑

k=1

∣∣ζ(ni)
k

− ζk
∣∣∥∥Tkuni

∥∥,
(3.34)

it follows from (3.26) and ζ
(ni)
k → ζk that

∥∥uni −Wuni

∥∥ −→ 0. (3.35)

So by the demiclosedness principle [21, Proposition 2.6(ii)], it follows that w ∈ Fix(W) =⋂N
i=1Fix(Ti).

We now show w ∈ GEP(F, ϕ). By un = Trnxn, we know that

F
(
un, y

)
+ ϕ(y) +

1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
, ∀y ∈ C. (3.36)

It follows from (A2) that

ϕ(y) +
1
rn

〈
y − un, un − xn

〉 ≥ F
(
y, un

)
+ ϕ

(
un

)
, ∀y ∈ C. (3.37)

Hence,

ϕ(y) +
〈
y − uni ,

uni − xni

rni

〉
≥ F

(
y, uni

)
+ ϕ

(
un

)
, ∀y ∈ C. (3.38)
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It follows from (A4), (A5) and the weakly lower semicontinuity of ϕ, (uni −xni)/rni →
0, and uni ⇀ w that

F(y,w) + ϕ(w) ≤ ϕ(y), ∀y ∈ C. (3.39)

For t with 0 < t ≤ 1 and y ∈ C ∩ domϕ, let yt = ty + (1 − t)w. Since y ∈ C ∩ domϕ and
w ∈ C ∩domϕ, we obtain yt ∈ C ∩domϕ, and hence F(yt,w) +ϕ(w) ≤ ϕ(yt). So by (A4) and
the convexity of ϕ, we have

0 = F
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tF
(
yt, y

)
+ (1 − t)F

(
yt,w

)
+ tϕ(y) + (1 − t)ϕ(w) − ϕ

(
yt

)

≤ t
[
F
(
yt, y

)
+ ϕ(y) − ϕ

(
yt

)]
.

(3.40)

Dividing by t, we get

F
(
yt, y

)
+ ϕ(y) − ϕ

(
yt

) ≥ 0. (3.41)

Letting t → 0, it follows from (A3) and the weakly lower semicontinuity of ϕ that

F(w,y) + ϕ(y) ≥ ϕ(w) (3.42)

for all y ∈ C ∩ domϕ. Observe that if y ∈ C \ domϕ, then F(w,y) + ϕ(y) ≥ ϕ(w) holds.
Moreover, hence w ∈ GEP(F, ϕ). This implies w ∈ Ω. Therefore, we have

lim sup
n→∞

〈
f(u0) − u0, xn − u0

〉
= lim

i→∞
〈
f(u0) − u0, xni − u0

〉
=
〈
f(u0) − u0, w − u0

〉 ≤ 0. (3.43)

Finally, we show that xn → u0, where u0 = PΩf(u0).
From Lemma 2.5, we have

∥∥xn+1 − u0
∥∥2 =

∥∥αn

(
f
(
xn

) − u0
)
+ βn

(
xn − u0

)
+
(
1 − αn − βn

)(
yn − u0

)∥∥2

≤ ∥∥βn
(
xn − u0

)
+
(
1 − αn − βn

)(
yn − u0

)∥∥2 + 2αn

〈
f
(
xn

) − u0, xn+1 − u0
〉

≤ [(
1 − αn − βn

)∥∥yn − u0
∥∥ + βn

∥∥xn − u0
∥∥]2 + 2αn

〈
f
(
xn

) − u0, xn+1 − u0
〉

≤ (
1 − αn

)2∥∥xn − u0
∥∥2 + 2αn

〈
f
(
xn

) − f
(
u0
)
, xn+1 − u0

〉

+ 2αn

〈
f
(
u0
) − u0, xn+1 − u0

〉

≤ (
1 − αn

)2∥∥xn − u0
∥∥2 + 2αna

∥∥xn − u0
∥∥∥∥xn+1 − u0

∥∥ + 2αn

〈
f
(
u0
) − u0, xn+1 − u0

〉

≤ (
1 − αn

)2∥∥xn − u0
∥∥2 + αna

(∥∥xn − u0
∥∥2 +

∥∥xn+1 − u0
∥∥2)

+ 2αn

〈
f
(
u0
) − u0, xn+1 − u0

〉
,

(3.44)
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thus

∥
∥xn+1 − u0

∥
∥2 ≤

(
1 − 2(1 − a)αn

1 − aαn

)∥
∥xn − u0

∥
∥2

+
2(1 − a)αn

1 − aαn

{
αn

2(1 − a)
∥
∥xn − u0

∥
∥2 +

1
1 − a

〈
2f

(
u0
) − 2u0, xn+1 − u0

〉
}
.

(3.45)

It follows from (C1), (3.43), (3.45), and Lemma 2.4 that limn→∞‖xn − u0‖ = 0. From
‖xn − un‖ → 0 and ‖yn − xn‖ → 0, we have un → u0 and yn → u0. The proof is now
complete.

Theorem 3.2. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5), and let ϕ : H → R ∪ {+∞} be a proper
lower semicontinuous and convex function such that C ∩ domϕ/=∅. Let N ≥ 1 be an integer.
For each 1 ≤ j ≤ N, let Tj : C → C be an εj-strict pseudocontraction for some 0 ≤ εj < 1

such that Ω =
⋂N

j=1Fix(Tj) ∩ GEP(F, ϕ)/=∅. Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of

positive numbers such that
∑N

j=1ζ
(n)
j = 1 for all n and infn≥1ζ

(n)
j > 0 for all 0 ≤ j ≤ N. Let

ε = max{εj : 1 ≤ j ≤ N}. Assume that either (B1) or (B2) holds. Let v be an arbitrary point in
C and let {xn}, {un}, and {yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ(y) +

1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
, ∀y ∈ C,

yn = γnun +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjun,

xn+1 = αnv + βnxn +
(
1 − αn − βn

)
yn

(3.46)

for every n = 1, 2, . . . , where {γn}, {rn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of
numbers satisfying the conditions (C1)–(C5). Then, {xn}, {un}, and {yn} converge strongly to w =
PΩv.

Proof. Let f(x) = v for all x ∈ C, by Theorem 3.1, we obtain the desired result.

4. Applications

By Theorems 3.1 and 3.2, we can obtain many new and interesting strong convergence
theorems. Now, give some examples as follows: for j = 1, 2, . . . ,N, let T1 = T2 = · · · = TN = T ,
by Theorems 3.1 and 3.2, respectively, we have the following results.

Theorem 4.1. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5), and let ϕ : H → R ∪ {+∞} be a proper lower
semicontinuous and convex function such that C ∩ domϕ/=∅. Let T : C → C be an ε-strict
pseudocontraction for some 0 ≤ ε < 1 such that Fix(T) ∩ GEP(F, ϕ)/=∅. Assume that either (B1) or
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(B2) holds. Let f be a contraction of C into itself and let {xn}, {un}, and {yn} be sequences generated
by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ(y) +

1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
, ∀y ∈ C,

yn = γnun +
(
1 − γn

)
Tun,

xn+1 = αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn

(4.1)

for every n = 1, 2, . . . , where {γn}, {rn}, {αn}, and {βn} are sequences of numbers satisfying the
conditions (C1)–(C4). Then, {xn}, {un}, and {yn} converge strongly tow = PFix(T)∩GEP(F,ϕ)f(w).

Theorem 4.2. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let F be a
bifunction from C × C to R satisfying (A1)–(A5), and let ϕ : H → R ∪ {+∞} be a proper lower
semicontinuous and convex function such that C ∩ domϕ/=∅. Let T : C → C be an ε-strict
pseudocontraction for some 0 ≤ ε < 1 such that Fix(T) ∩ GEP(F, ϕ)/=∅. Assume that either (B1)
or (B2) holds. Let v be an arbitrary point in C, and let {xn}, {un}, and {yn} be sequences generated
by

x1 = x ∈ C,

F
(
un, y

)
+ ϕ(y) +

1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
, ∀y ∈ C,

yn = γnun +
(
1 − γn

)
Tun,

xn+1 = αnv + βnxn +
(
1 − αn − βn

)
yn

(4.2)

for every n = 1, 2, . . . , where {γn}, {rn}, {αn}, and {βn} are sequences of numbers satisfying the
conditions (C1)–(C4). Then, {xn}, {un}, and {yn} converge strongly tow = PFix(T)∩GEP(F,ϕ)v.

We need the following two assumptions.

(B3) For each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C such
that for any z ∈ C \Dx,

F
(
z, yx

)
+
1
r

〈
yx − z, z − x

〉
< 0. (4.3)

(B4) For each x ∈ H and r > 0, there exist a bounded subset Dx ⊆ C and yx ∈ C ∩ domϕ
such that for any z ∈ C \Dx,

g
(
yx

)
+ ϕ

(
yx

)
+
1
r

〈
yx − z, z − x

〉
< ϕ(z) + g(z). (4.4)

Let ϕ(x) = δC(x), ∀x ∈ H, by Theorems 3.1 and 3.2, respectively, we obtain the
following results.
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Theorem 4.3. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let F be a
bifunction from C×C to R satisfying (A1)–(A5). LetN ≥ 1 be an integer. For each 1 ≤ j ≤ N, let Tj :
C → C be an εj -strict pseudocontraction for some 0 ≤ εj < 1 such that Γ =

⋂N
j=1Fix(Tj)∩EP(F)/=∅.

Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of positive numbers such that
∑N

j=1ζ
(n)
j = 1 for all n

and infn≥1ζ
(n)
j > 0 for all 0 ≤ j ≤ N. Let ε = max{εj : 1 ≤ j ≤ N}. Assume that either (B3) or (B2)

holds. Let f be a contraction of H into itself, and let {xn}, {un}, and {yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = γnun +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjun,

xn+1 = αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn

(4.5)

for every n = 1, 2, . . . , where {γn}, {rn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of
numbers satisfying the conditions (C1)–(C5). Then, {xn}, {un}, and {yn} converge strongly to w =
PΓf(w).

Theorem 4.4. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let F be a
bifunction from C×C to R satisfying (A1)–(A5). LetN ≥ 1 be an integer. For each 1 ≤ j ≤ N, let Tj :
C → C be an εj -strict pseudocontraction for some 0 ≤ εj < 1 such that Γ =

⋂N
j=1Fix(Tj)∩EP(F)/=∅.

Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of positive numbers such that
∑N

j=1ζ
(n)
j = 1 for all n

and infn≥1ζ
(n)
j > 0 for all 0 ≤ j ≤ N. Let ε = max{εj : 1 ≤ j ≤ N}. Assume that either (B3) or (B2)

holds. Let v be an arbitrary point in C, and let {xn}, {un}, and {yn} be sequences generated by

x1 = x ∈ C,

F
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = γnun +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjun,

xn+1 = αnv + βnxn +
(
1 − αn − βn

)
yn

(4.6)

for every n = 1, 2, . . . , where {γn}, {rn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of
numbers satisfying the conditions (C1)–(C5). Then, {xn}, {un}, and {yn} converge strongly to w =
PΓv.

Let F(x, y) = g(y) − g(x) for all x, y ∈ C, by Theorems 3.1 and 3.2, respectively, we
obtain the following results.

Theorem 4.5. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let g : C → R
be a lower semicontinuous and convex function, and let ϕ : H → R ∪ {+∞} be a proper lower
semicontinuous and convex function such that C ∩ domϕ/=∅. Let N ≥ 1 be an integer. For each
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1 ≤ j ≤ N, let Tj : C → C be an εj-strict pseudocontraction for some 0 ≤ εj < 1 such that Θ =
⋂N

j=1Fix(Tj)∩Argmin(g, ϕ)/=∅. Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of positive numbers

such that
∑N

j=1ζ
(n)
j = 1 for all n and infn≥1ζ

(n)
j > 0 for all 0 ≤ j ≤ N. Let ε = max{εj : 1 ≤ j ≤ N}.

Assume that either (B4) or (B2) holds. Let f be a contraction of H into itself, and let {xn}, {un} and
{yn} be sequences generated by

x1 = x ∈ C,

g(y) + ϕ(y) +
1
rn

〈
y − un, un − xn

〉 ≥ g
(
un

)
+ ϕ

(
un

)
, ∀y ∈ C,

yn = γnun +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjun,

xn+1 = αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn

(4.7)

for every n = 1, 2, . . ., where {γn}, {rn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of
numbers satisfying the conditions (C1)–(C5). Then, {xn}, {un}, and {yn} converge strongly to w =
PΘf(w).

Theorem 4.6. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let g : C → R
be a lower semicontinuous and convex function, and let ϕ : H → R ∪ {+∞} be a proper lower
semicontinuous and convex function such that C ∩ domϕ/=∅. Let N ≥ 1 be an integer. For each
1 ≤ j ≤ N, let Tj : C → C be an εj-strict pseudocontraction for some 0 ≤ εj < 1 such that Θ =
⋂N

j=1Fix(Tj)∩Argmin(g, ϕ)/=∅. Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of positive numbers

such that
∑N

j=1ζ
(n)
j = 1 for all n and infn≥1ζ

(n)
j > 0 for all 0 ≤ j ≤ N. Let ε = max{εj : 1 ≤ j ≤ N}.

Assume that either (B4) or (B2) holds. Let v be an arbitrary point in C, and let {xn}, {un}, and {yn}
be sequences generated by

x1 = x ∈ C,

g(y) + ϕ(y) +
1
rn

〈
y − un, un − xn

〉 ≥ ϕ
(
un

)
+ g

(
un

)
, ∀y ∈ C,

yn = γnun +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjun,

xn+1 = αnv + βnxn +
(
1 − αn − βn

)
yn

(4.8)

for every n = 1, 2, . . . , where {γn}, {rn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of
numbers satisfying the conditions (C1)–(C5). Then, {xn}, {un}, and {yn} converge strongly to w =
PΘv.

Let ϕ(x) = δC(x), ∀x ∈ H, and let F(x, y) = 0 for all x, y ∈ C. Then un = PCxn = xn. By
Theorems 3.1 and 3.2, we obtain the following results.

Theorem 4.7. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let N ≥ 1 be an
integer. For each 1 ≤ j ≤ N, let Tj : C → C be an εj -strict pseudocontraction for some 0 ≤ εj < 1
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such that
⋂N

j=1Fix(Tj)/=∅. Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of positive numbers such

that
∑N

j=1ζ
(n)
j = 1 for all n and infn≥1ζ

(n)
j > 0 for all 0 ≤ j ≤ N. Let ε = max{εj : 1 ≤ j ≤ N}. Let f

be a contraction ofH into itself, and let {xn} and {yn} be sequences generated by

x1 = x ∈ C,

yn = γnxn +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjxn,

xn+1 = αnf
(
xn

)
+ βnxn +

(
1 − αn − βn

)
yn

(4.9)

for every n = 1, 2, . . ., where {γn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of numbers
satisfying the conditions (C1)–(C3) and (C5). Then, {xn}, and {yn} converge strongly to w =
P∩N

j=1Fix(Tj )
f(w).

Theorem 4.8. Let C be a nonempty-closed convex subset of a real Hilbert space H. Let N ≥ 1 be an
integer. For each 1 ≤ j ≤ N, let Tj : C → C be an εj -strict pseudocontraction for some 0 ≤ εj < 1

such that
⋂N

j=1Fix(Tj)/=∅. Assume for each n, {ζ(n)j }N
j=1

is a finite sequence of positive numbers such

that
∑N

j=1ζ
(n)
j = 1 for all n and infn≥1ζ

(n)
j > 0 for all 0 ≤ j ≤ N. Let ε = max{εj : 1 ≤ j ≤ N}. Let v

be an arbitrary point in C, and let {xn} and {yn} be sequences generated by

x1 = x ∈ C,

yn = γnxn +
(
1 − γn

) N∑

j=1

ζ
(n)
j Tjxn,

xn+1 = αnv + βnxn +
(
1 − αn − βn

)
yn

(4.10)

for every n = 1, 2, . . ., where {γn}, {αn}, {ζ(n)1 }, {ζ(n)2 }, . . . , {ζ(n)N }, and {βn} are sequences of numbers
satisfying the conditions (C1)–(C3) and (C5). Then, {xn} and {yn} converge strongly to w =
P∩N

j=1Fix(Tj )
v.

Remark 4.9. (1) Since the nonexpansive mappings have been replaced by the strict
pseudocontractions, Theorems 3.1, 3.2, 4.1 and 4.2 extend and improve [6, Theorem 3.1], [8,
Theorem 3.5], [9, Theorems 4.1 and 4.2], [18, Theorem 4.1], and the main results in [9–11, 13–
16].

(2) Since the weak convergence has been replaced by strong convergence, Theorems
3.1, 3.2, 4.1−4.4 extend and improve [12, Theorem 3.1], [10, Corollary 4.1].

(3) Theorems 4.7 and 4.8 are strong convergence theorems for strict pseudocontrac-
tions without CQ constraints and hence they improve the corresponding results in [19, 21].
Theorems 3.1 and 3.2 also improve [10, Corollary 3.1].
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