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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of
influence in the development of what we call generalized Hyers-Ulam stability of functional
equations. A generalization of the Th. M. Rassias theorem was obtained by Găvruţa [5]
by replacing the unbounded Cauchy difference by a general control function in the spirit
of Th. M. Rassias’ approach. The stability problems of several functional equations have
been extensively investigated by a number of authors, and there are many interesting results
concerning this problem (see [6–19]).

J. M. Rassias [20, 21] following the spirit of the innovative approach of Th. M. Rassias
[4] for the unbounded Cauchy difference proved a similar stability theorem in which he
replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with p + q /= 1 (see also [22] for
a number of other new results).

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d

satisfies

(1) d(x, y) = 0 if and only if x = y;
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(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1 (see [23, 24]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.1)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

This paper is organized as follows. In Sections 2 and 3, using the fixed point method,
we prove the generalized Hyers-Ulam stability of homomorphisms in C∗-algebras and of
derivations on C∗-algebras for the Cauchy functional equation.

In Sections 4 and 5, using the fixed point method, we prove the generalized Hyers-
Ulam stability of homomorphisms in Lie C∗-algebras and of derivations on Lie C∗-algebras
for the Cauchy functional equation.

2. Stability of Homomorphisms in C∗-Algebras

Throughout this section, assume that A is a C∗-algebra with norm ‖ · ‖A and that B is a C∗-
algebra with norm ‖ · ‖B.

For a given mapping f : A → B, we define

Dμf(x, y) := μf(x + y) − f(μx) − f(μy) (2.1)

for all μ ∈ T
1 := {ν ∈ C | |ν| = 1} and all x, y ∈ A.

Note that a C-linear mappingH : A → B is called a homomorphism in C∗-algebras ifH
satisfies H(xy) = H(x)H(y) andH(x∗) = H(x)∗ for all x, y ∈ A.

We prove the generalized Hyers-Ulam stability of homomorphisms in C∗-algebras for
the functional equation Dμf(x, y) = 0.

Theorem 2.1. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞) such
that

∥∥Dμf(x, y)
∥∥
B ≤ ϕ(x, y), (2.2)

‖f(xy) − f(x)f(y)‖B ≤ ϕ(x, y), (2.3)
∥∥f

(
x∗) − f(x)∗

∥∥
B ≤ ϕ(x, x) (2.4)
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for all μ ∈ T
1 and all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all

x, y ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

‖f(x) −H(x)‖B ≤ 1
2 − 2L

ϕ(x, x) (2.5)

for all x ∈ A.

Proof. Consider the set

X := {g : A −→ B}, (2.6)

and introduce the generalized metric on X:

d(g, h) = inf
{
C ∈ R+ : ‖g(x) − h(x)‖B ≤ Cϕ(x, x), ∀x ∈ A

}
. (2.7)

It is easy to show that (X, d) is complete.
Now we consider the linear mapping J : X → X such that

Jg(x) :=
1
2
g(2x) (2.8)

for all x ∈ A.
By [23, Theorem 3.1],

d(Jg, Jh) ≤ Ld(g, h) (2.9)

for all g, h ∈ X.
Letting μ = 1 and y = x in (2.2), we get

‖f(2x) − 2f(x)‖B ≤ ϕ(x, x) (2.10)

for all x ∈ A. So

∥∥∥∥f(x) −
1
2
f(2x)

∥∥∥∥
B

≤ 1
2
ϕ(x, x) (2.11)

for all x ∈ A. Hence d(f, Jf) ≤ 1/2.
By Theorem 1.1, there exists a mapping H : A → B such that

(1) H is a fixed point of J , that is,

H(2x) = 2H(x) (2.12)
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for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}. (2.13)

This implies that H is a unique mapping satisfying (2.12) such that there exists
C ∈ (0,∞) satisfying

‖H(x) − f(x)‖B ≤ Cϕ(x, x) (2.14)

for all x ∈ A.

(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

f
(
2nx

)

2n
= H(x) (2.15)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,H) ≤ 1
2 − 2L

. (2.16)

This implies that the inequality (2.5) holds.

It follows from (2.2) and (2.15) that

‖H(x + y) −H(x) −H(y)‖B = lim
n→∞

1
2n

∥∥f
(
2n(x + y)

) − f
(
2nx) − f

(
2ny

)∥∥
B

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)
= 0

(2.17)

for all x, y ∈ A. So

H(x + y) = H(x) +H(y) (2.18)

for all x, y ∈ A.
Letting y = x in (2.2), we get

μf(2x) = f(μ2x) (2.19)

for all μ ∈ T
1 and all x ∈ A. By a similar method to above, we get

μH(2x) = H(2μx) (2.20)

for all μ ∈ T
1 and all x ∈ A. Thus one can show that the mapping H : A → B is C-linear.



Choonkil Park 5

It follows from (2.3) that

‖H(xy) −H(x)H(y)‖B = lim
n→∞

1
4n

∥
∥f

(
4nxy

) − f
(
2nx

)
f
(
2ny

)∥∥
B

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

)

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)

= 0

(2.21)

for all x, y ∈ A. So

H(xy) = H(x)H(y) (2.22)

for all x, y ∈ A.
It follows from (2.4) that

∥∥H
(
x∗) −H(x)∗

∥∥
B = lim

n→∞
1
2n

∥∥f
(
2nx∗) − f

(
2nx

)∗∥∥
B

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2nx

)
= 0

(2.23)

for all x ∈ A. So

H
(
x∗) = H(x)∗ (2.24)

for all x ∈ A.
Thus H : A → B is a C∗-algebra homomorphism satisfying (2.5), as desired.

Corollary 2.2. Let 0 < r < 1/2 and θ be nonnegative real numbers, and let f : A → B be a mapping
such that

∥∥Dμf(x, y)
∥∥
B ≤ θ · ‖x‖rA · ‖y‖rA, (2.25)

‖f(xy) − f(x)f(y)‖B ≤ θ · ‖x‖rA · ‖y‖rA, (2.26)
∥∥f

(
x∗) − f(x)∗

∥∥
B ≤ θ‖x‖2rA (2.27)

for all μ ∈ T
1 and all x, y ∈ A. Then there exists a unique C∗-algebra homomorphism H : A → B

such that

‖f(x) −H(x)‖B ≤ θ

2 − 4r
‖x‖2rA (2.28)

for all x ∈ A.
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Proof. The proof follows from Theorem 2.1 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (2.29)

for all x, y ∈ A. Then L = 22r−1 and we get the desired result.

Theorem 2.3. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2), (2.3), and (2.4). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique C∗-algebra homomorphism H : A → B such that

‖f(x) −H(x)‖B ≤ L

2 − 2L
ϕ(x, x) (2.30)

for all x ∈ A.

Proof. We consider the linear mapping J : X → X such that

Jg(x) := 2g
(
x

2

)
(2.31)

for all x ∈ A.
It follows from (2.10) that

∥∥∥∥f(x) − 2f
(
x

2

)∥∥∥∥
B

≤ ϕ

(
x

2
,
x

2

)
≤ L

2
ϕ(x, x) (2.32)

for all x ∈ A. Hence, d(f, Jf) ≤ L/2.
By Theorem 1.1, there exists a mapping H : A → B such that

(1) H is a fixed point of J , that is,

H(2x) = 2H(x) (2.33)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞}. (2.34)

This implies that H is a unique mapping satisfying (2.33) such that there exists
C ∈ (0,∞) satisfying

‖H(x) − f(x)‖B ≤ Cϕ(x, x) (2.35)

for all x ∈ A.
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(2) d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

2nf

(
x

2n

)

= H(x) (2.36)

for all x ∈ A.

(3) d(f,H) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d(f,H) ≤ L

2 − 2L
, (2.37)

which implies that the inequality (2.30) holds.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.25), (2.26), and (2.27). Then there exists a unique C∗-algebra homomorphismH : A →
B such that

‖f(x) −H(x)‖B ≤ θ

4r − 2
‖x‖2rA (2.38)

for all x ∈ A.

Proof. The proof follows from Theorem 2.3 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (2.39)

for all x, y ∈ A. Then L = 21−2r and we get the desired result.

3. Stability of Derivations on C∗-Algebras

Throughout this section, assume that A is a C∗-algebra with norm ‖ · ‖A.
Note that a C-linear mapping δ : A → A is called a derivation on A if δ satisfies

δ(xy) = δ(x)y + xδ(y) for all x, y ∈ A.
We prove the generalized Hyers-Ulam stability of derivations on C∗-algebras for the

functional equation Dμf(x, y) = 0.

Theorem 3.1. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞) such
that

∥∥Dμf(x, y)
∥∥
A ≤ ϕ(x, y), (3.1)

‖f(xy) − f(x)y − xf(y)‖A ≤ ϕ(x, y) (3.2)
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for all μ ∈ T
1 and all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all

x, y ∈ A. Then there exists a unique derivation δ : A → A such that

‖f(x) − δ(x)‖A ≤ 1
2 − 2L

ϕ(x, x) (3.3)

for all x ∈ A.

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique involutive
C-linear mapping δ : A → A satisfying (3.3). The mapping δ : A → A is given by

δ(x) = lim
n→∞

f
(
2nx

)

2n
(3.4)

for all x ∈ A.
It follows from (3.2) that

‖δ(xy) − δ(x)y − xδ(y)‖A = lim
n→∞

1
4n

∥∥f
(
4nxy

) − f
(
2nx

) · 2ny − 2nxf
(
2ny

)∥∥
A

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

)

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)

= 0

(3.5)

for all x, y ∈ A. So

δ(xy) = δ(x)y + xδ(y) (3.6)

for all x, y ∈ A. Thus δ : A → A is a derivation satisfying (3.3).

Corollary 3.2. Let 0 < r < 1/2 and θ be nonnegative real numbers, and let f : A → A be a mapping
such that

∥∥Dμf(x, y)
∥∥
A ≤ θ · ‖x‖rA · ‖y‖rA, (3.7)

‖f(xy) − f(x)y − xf(y)‖A ≤ θ · ‖x‖rA · ‖y‖rA (3.8)

for all μ ∈ T
1 and all x, y ∈ A. Then there exists a unique derivation δ : A → A such that

‖f(x) − δ(x)‖A ≤ θ

2 − 4r
‖x‖2rA (3.9)

for all x ∈ A.
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Proof. The proof follows from Theorem 3.1 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (3.10)

for all x, y ∈ A. Then L = 22r−1 and we get the desired result.

Theorem 3.3. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (3.1) and (3.2). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique derivation δ : A → A such that

‖f(x) − δ(x)‖A ≤ L

2 − 2L
ϕ(x, x) (3.11)

for all x ∈ A.

Proof. The proof is similar to the proofs of Theorems 2.3 and 3.1.

Corollary 3.4. Let r > 1 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.7) and (3.8). Then there exists a unique derivation δ : A → A such that

‖f(x) − δ(x)‖A ≤ θ

4r − 2
‖x‖2rA (3.12)

for all x ∈ A.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (3.13)

for all x, y ∈ A. Then L = 21−2r and we get the desired result.

4. Stability of Homomorphisms in Lie C∗-Algebras

A C∗-algebra C, endowed with the Lie product [x, y] := (xy − yx)/2 on C, is called a Lie
C∗-algebra (see [9–11]).

Definition 4.1. Let A and B be Lie C∗-algebras. A C-linear mapping H : A → B is called a Lie
C∗-algebra homomorphism ifH([x, y]) = [H(x),H(y)] for all x, y ∈ A.

Throughout this section, assume thatA is a Lie C∗-algebra with norm ‖ · ‖A and that B
is a C∗-algebra with norm ‖ · ‖B.

We prove the generalized Hyers-Ulam stability of homomorphisms in Lie C∗-algebras
for the functional equation Dμf(x, y) = 0.

Theorem 4.2. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2) such that

‖f([x, y]) − [f(x), f(y)]‖B ≤ ϕ(x, y) (4.1)
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for all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all x, y ∈ A, then
there exists a unique Lie C∗-algebra homomorphism H : A → B satisfying (2.5).

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique C-linear
mapping δ : A → A satisfying (2.5). The mapping H : A → B is given by

H(x) = lim
n→∞

f
(
2nx

)

2n
(4.2)

for all x ∈ A.
It follows from (4.1) that

‖H([x, y]) − [H(x),H(y)]‖B = lim
n→∞

1
4n

∥
∥f

(
4n[x, y]

) − [
f
(
2nx

)
, f

(
2ny

)]∥∥
B

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

)

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)

= 0

(4.3)

for all x, y ∈ A. So

H([x, y]) = [H(x),H(y)] (4.4)

for all x, y ∈ A.
Thus H : A → B is a Lie C∗-algebra homomorphism satisfying (2.5), as desired.

Corollary 4.3. Let r < 1/2 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.25) such that

‖f([x, y]) − [f(x), f(y)]‖B ≤ θ · ‖x‖rA · ‖y‖rA (4.5)

for all x, y ∈ A. Then there exists a unique Lie C∗-algebra homomorphism H : A → B satisfying
(2.28).

Proof. The proof follows from Theorem 4.2 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (4.6)

for all x, y ∈ A. Then L = 22r−1 and we get the desired result.

Theorem 4.4. Let f : A → B be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (2.2) and (4.1). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique Lie C∗-algebra homomorphism H : A → B satisfying (2.30).

Proof. The proof is similar to the proofs of Theorems 2.3 and 4.2.



Choonkil Park 11

Corollary 4.5. Let r > 1 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.25) and (4.5). Then there exists a unique Lie C∗-algebra homomorphism H : A → B
satisfying (2.38).

Proof. The proof follows from Theorem 4.4 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (4.7)

for all x, y ∈ A. Then L = 21−2r and we get the desired result.

Definition 4.6. A C∗-algebra A, endowed with the Jordan product x ◦ y := (xy + yx)/2 for all
x, y ∈ A, is called a Jordan C∗-algebra (see [25]).

Definition 4.7. Let A and B be Jordan C∗-algebras.

(i) A C-linear mapping H : A → B is called a Jordan C∗ -algebra homomorphism if
H(x ◦ y) = H(x) ◦H(y) for all x, y ∈ A.

(ii) A C-linear mapping δ : A → A is called a Jordan derivation if δ(x ◦ y) = x ◦ δ(y) +
δ(x) ◦ y for all x, y ∈ A.

Remark 4.8. If the Lie products [·, ·] in the statements of the theorems in this section are
replaced by the Jordan products · ◦ ·, then one obtains Jordan C∗-algebra homomorphisms
instead of Lie C∗-algebra homomorphisms.

5. Stability of Lie Derivations on C∗-Algebras

Definition 5.1. Let A be a Lie C∗-algebra. A C-linear mapping δ : A → A is called a Lie
derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ A.

Throughout this section, assume that A is a Lie C∗-algebra with norm ‖ · ‖A.
We prove the generalized Hyers-Ulam stability of derivations on Lie C∗-algebras for

the functional equation Dμf(x, y) = 0.

Theorem 5.2. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (3.1) such that

‖f([x, y]) − [f(x), y] − [x, f(y)]‖A ≤ ϕ(x, y) (5.1)

for all x, y ∈ A. If there exists an L < 1 such that ϕ(x, y) ≤ 2Lϕ(x/2, y/2) for all x, y ∈ A. Then
there exists a unique Lie derivation δ : A → A satisfying (3.3).

Proof. By the same reasoning as the proof of Theorem 2.1, there exists a unique involutive
C-linear mapping δ : A → A satisfying (3.3). The mapping δ : A → A is given by

δ(x) = lim
n→∞

f
(
2nx

)

2n
(5.2)

for all x ∈ A.
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It follows from (5.1) that

‖δ([x, y]) − [δ(x), y] − [x, δ(y)]‖A

= lim
n→∞

1
4n

∥
∥f

(
4n[x, y]

) − [
f
(
2nx

)
, 2ny

] − [
2nx, f

(
2ny

)]∥∥
A

≤ lim
n→∞

1
4n

ϕ
(
2nx, 2ny

)

≤ lim
n→∞

1
2n

ϕ
(
2nx, 2ny

)

= 0

(5.3)

for all x, y ∈ A. So

δ([x, y]) = [δ(x), y] + [x, δ(y)] (5.4)

for all x, y ∈ A. Thus δ : A → A is a derivation satisfying (3.3).

Corollary 5.3. Let 0 < r < 1/2 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.7) such that

‖f([x, y]) − [f(x), y] − [x, f(y)]‖A ≤ θ · ‖x‖rA · ‖y‖rA (5.5)

for all x, y ∈ A. Then there exists a unique Lie derivation δ : A → A satisfying (3.9).

Proof. The proof follows from Theorem 5.2 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (5.6)

for all x, y ∈ A. Then L = 22r−1 and we get the desired result.

Theorem 5.4. Let f : A → A be a mapping for which there exists a function ϕ : A2 → [0,∞)
satisfying (3.1) and (5.1). If there exists an L < 1 such that ϕ(x, y) ≤ (1/2)Lϕ(2x, 2y) for all
x, y ∈ A, then there exists a unique Lie derivation δ : A → A satisfying (3.11).

Proof. The proof is similar to the proofs of Theorems 2.3 and 5.2.

Corollary 5.5. Let r > 1 and θ be nonnegative real numbers, and let f : A → A be a mapping
satisfying (3.7) and (5.5). Then there exists a unique Lie derivation δ : A → A satisfying (3.12).

Proof. The proof follows from Theorem 5.4 by taking

ϕ(x, y) := θ · ‖x‖rA · ‖y‖rA (5.7)

for all x, y ∈ A. Then L= 21−2r and we get the desired result.
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Remark 5.6. If the Lie products [·, ·] in the statements of the theorems in this section are
replaced by the Jordan products · ◦ ·, then one obtains Jordan derivations instead of Lie
derivations.
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