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1. Introduction

The following famous theorem is referred to as the Banach Contraction Principle.

Theorem 1.1 (Banach [1]). Let (E, d) be a complete metric space and let A be a contraction on X,
that is, there exists β ∈ (0, 1) such that

d
(
Ax,Ay

) ≤ βd(x, y), ∀x, y ∈ E. (1.1)

Then A has a unique fixed point.

In 2001, Rhoades [2] proved the following very interesting fixed point theorem
which is one of generalizations of Theorem 1.1 because the weakly contractions contains
contractions as the special cases (ϕ(t) = (1 − β)t).

Theorem 1.2 (Rhoades[2], Theorem 2). Let (E, d) be a complete metric space, and letA be a weak
contraction on E, that is,

d
(
Ax,Ay

) ≤ d(x, y) − ϕ(d(x, y)), ∀x, y ∈ E, (1.2)
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for some ϕ : [0,+∞) → [0,+∞) is a continuous and nondecreasing function such that ϕ is positive
on (0,+∞) and ϕ(0) = 0. Then A has a unique fixed point.

The concept of the weak contraction is defined by Alber and Guerre-Delabriere [3]
in 1997. The natural generalization of the contraction as well as the weak contraction is
nonexpansive. Let K be a nonempty subset of Banach space E, T : K → K is said to be
nonexpansive if

∥
∥Tx − Ty∥∥ ≤ ∥

∥x − y∥∥, ∀x, y ∈ K. (1.3)

One classical way to study nonexpansive mappings is to use a contraction to approximate a
nonexpansive mapping. More precisely, take t ∈ ( 0, 1) and define a contraction Tt : K → K
by Ttx = tu + (1 − t)Tx, x ∈ K, where u ∈ K is a fixed point. Banach Contraction Principle
guarantees that Tt has a unique fixed point xt in K, that is,

xt = tu + (1 − t)Txt. (1.4)

Halpern [4] also firstly introduced the following explicit iteration scheme in Hilbert spaces:
for u, x0 ∈ K, αn ∈ [0, 1],

xn+1 = αnu + (1 − αn)Txn, n ≥ 0. (1.5)

In the case of T having a fixed point, Browder [5] (resp. Halpern [4]) proved that if E is
a Hilbert space, then {xt} (resp. {xn}) converges strongly to the fixed point of T , that is,
nearest to u. Reich [6] extended Halpern’s and Browder’s result to the setting of Banach
spaces and proved that if E is a uniformly smooth Banach space, then {xt} and {xn} converge
strongly to a same fixed point of T , respectively, and the limit of {xt} defines the (unique)
sunny nonexpansive retraction fromK onto Fix(T). In 1984, Takahashi and Ueda [7] obtained
the same conclusion as Reich’s in uniformly convex Banach space with a uniformly Gâteaux
differentiable norm. Recently, Xu [8] showed that the above result holds in a reflexive Banach
space which has a weakly continuous duality mapping Jϕ. In 1992, Wittmann [9] studied
the iterative scheme (1.5) in Hilbert space, and obtained convergence of the iterations. In
particular, he proved a strong convergence result [9, Theorem 2] under the control conditions

(C1) lim
n→∞

αn = 0, (C2)
∞∑

n=1

αn = ∞, (C3)
∞∑

n=1

|αn − αn+1| <∞. (1.6)

In 2002, Xu [10, 11] extended wittmann’s result to a uniformly smooth Banach space, and
gained the strong convergence of {xn} under the control conditions (C1), (C2), and

(C4) lim
n→∞

αn+1
αn

= 1. (1.7)

Actually, Xu [10, 11] and Wittmann [9] proved the following approximate fixed points
theorem. Also see [12, 13].
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Theorem 1.3. LetK be a nonempty closed convex subset of a Banach space E. provided that T : K →
K is nonexpansive with Fix(T)/= ∅, and {xn} is given by (1.5) and αn ∈ (0, 1) satisfies the condition
(C1), (C2), and (C3) (or (C4)). Then {xn} is bounded and limn→∞‖xn − Txn‖ = 0.

In 2000, for a nonexpansive selfmapping T with Fix(T)/= ∅ and a fixed contractive
selfmapping f , Moudafi [14] introduced the following viscosity approximation method for
T :

xn+1 = αnf(xn) + (1 − αn)Txn, (1.8)

and proved that {xn} converges to a fixed point p of T in a Hilbert space. They are very
important because they are applied to convex optimization, linear programming, monotone
inclusions, and elliptic differential equations. Xu [15] extended Moudafi’s results to a
uniformly smooth Banach space. Recently, Song and Chen [12, 13, 16–18] obtained a number
of strong convergence results about viscosity approximations (1.8). Very recently, Petrusel
and Yao [19], Wong, et al. [20] also studied the convergence of viscosity approximations,
respectively.

In this paper, we naturally introduce viscosity approximations (1.9) and (1.10) with
the weak contraction A for a nonexpansive mapping sequence {Tn},

yn = αnAyn + (1 − αn)Tnyn, (1.9)

xn+1 = αnAxn + (1 − αn)Tnxn. (1.10)

We will prove that Browder’s and Halpern’s type convergence theorems imply Moudafi’s
viscosity approximations with the weak contraction, and give the estimate of convergence
rate between Halpern’s type iteration andMoudafi’s viscosity approximations with the weak
contraction.

2. Preliminaries and Basic Results

Throughout this paper, a Banach space E will always be over the real scalar field. We denote
its norm by ‖ · ‖ and its dual space by E∗. The value of x∗ ∈ E∗ at y ∈ E is denoted by 〈y, x∗〉
and the normalized duality mappingJ from E into 2E

∗
is defined by

J(x) =
{
f ∈ E∗ :

〈
x, f

〉
= ‖x‖∥∥f∥∥, ‖x‖ =

∥∥f
∥∥}, ∀x ∈ E. (2.1)

Let Fix(T) denote the set of all fixed points for a mapping T , that is, Fix(T) = {x ∈ E : Tx = x},
and let N denote the set of all positive integers. We write xn ⇀ x (resp. xn

∗
⇀ x) to indicate

that the sequence xn weakly (resp. weak∗) converges to x; as usual xn → x will symbolize
strong convergence.

In the proof of our main results, we need the following definitions and results. Let
S(E) := {x ∈ E; ‖x‖ = 1} denote the unit sphere of a Banach space E. E is said to have (i) a
Gâteaux differentiable norm (we also say that E is smooth), if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

, (2.2)
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exists for each x, y ∈ S(E); (ii) a uniformly Gâteaux differentiable norm, if for each y in S(E),
the limit (2.2) is uniformly attained for x ∈ S(E); (iii) a Fréchet differentiable norm, if for
each x ∈ S(E), the limit (2.2) is attained uniformly for y ∈ S(E); (iv) a uniformly Fréchet
differentiable norm (we also say that E is uniformly smooth), if the limit (2.2) is attained
uniformly for (x, y) ∈ S(E) × S(E). A Banach space E is said to be (v) strictly convex if
‖x‖ = ‖y‖ = 1, x /=y implies ‖(x + y)/2‖ < 1; (vi) uniformly convex if for all ε ∈ [0, 2], ∃δε > 0
such that ‖x‖ = ‖y‖ = 1 with ‖x − y‖ ≥ ε implies ‖x + y‖/2 < 1 − δε. For more details on
geometry of Banach spaces, see [21, 22].

If C is a nonempty convex subset of a Banach space E, and D is a nonempty subset
of C, then a mapping P : C → D is called a retraction if P is continuous with Fix(P) = D.
A mapping P : C → D is called sunny if P(Px + t(x − Px)) = Px, for all x ∈ C whenever
Px + t(x − Px) ∈ C, and t > 0. A subset D of C is said to be a sunny nonexpansive retract of C
if there exists a sunny nonexpansive retraction of C onto D. We note that if K is closed and
convex of aHilbert spaceE, then themetric projection coincides with the sunny nonexpansive
retraction from C onto D. The following lemma is well known which is given in [22, 23].

Lemma 2.1 (see [22, Lemma 5.1.6]). Let C be nonempty convex subset of a smooth Banach space
E, ∅/=D ⊂ C, J : E → E∗ the normalized duality mapping of E, and P : C → D a retraction. Then
P is both sunny and nonexpansive if and only if there holds the inequality:

〈
x − Px, J(y − Px)〉 ≤ 0, ∀x ∈ C, y ∈ D. (2.3)

Hence, there is at most one sunny nonexpansive retraction from C onto D.

In order to showing our main outcomes, we also need the following results. For
completeness, we give a proof.

Proposition 2.2. Let K be a convex subset of a smooth Banach space E. Let C be a subset of K and
let P be the unique sunny nonexpansive retraction from K onto C. Suppose A is a weak contraction
with a function ϕ on K, and T is a nonexpansive mapping. Then

(i) the composite mapping TA is a weak contraction on K;

(ii) For each t ∈ (0, 1), a mapping Tt = (1−t)T+tA is a weak contraction onK. Moreover,
{xt} defined by (2.4) is well definition:

xt = tAxt + (1 − t)Txt; (2.4)

(iii) z = P(Az) if and only if z is a unique solution of the following variational
inequality:

〈
Az − z, J(y − z)〉 ≤ 0, ∀y ∈ C. (2.5)

Proof. For any x, y ∈ K, we have

∥∥T(Ax) − T(Ay)∥∥ ≤ ∥∥Ax −Ay∥∥ ≤ ∥∥x − y∥∥ − ϕ(∥∥x − y∥∥). (2.6)
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So, TA is a weakly contractive mapping with a function ϕ. For each fixed t ∈ (0, 1), and
ψ(s) = tϕ(s), we have

∥
∥Ttx − Tty

∥
∥ =

∥
∥(tAx + (1 − t)Tx) − (

tAy + (1 − t)Ty)∥∥

≤ (1 − t)∥∥Tx − Ty∥∥ + t
∥
∥Ax −Ay∥∥

≤ (1 − t)∥∥x − y∥∥ + t
∥
∥x − y∥∥ − tϕ(∥∥x − y∥∥)

=
∥
∥x − y∥∥ − ψ(∥∥x − y∥∥).

(2.7)

Namely, Tt is a weakly contractive mapping with a function ψ. Thus, Theorem 1.2 guarantees
that Tt has a unique fixed point xt in K, that is, {xt} satisfying (2.4) is uniquely defined for
each t ∈ (0, 1). (i) and (ii) are proved.

Subsequently, we show (iii). Indeed, by Theorem 1.2, there exists a unique element
z ∈ K such that z = P(Az). Such a z ∈ C fulfils (2.5) by Lemma 2.1. Next we show that the
variational inequality (2.5) has a unique solution z. In fact, suppose p ∈ C is another solution
of (2.5). That is,

〈
Ap − p, J(z − p)〉 ≤ 0,

〈
Az − z, J(p − z)〉 ≤ 0. (2.8)

Adding up gets

ϕ
(∥∥p − z∥∥)∥∥p − z∥∥ ≤ ∥∥p − z∥∥2 − ∥∥Ap −Az∥∥∥∥p − z∥∥ ≤ 〈(

p − z) − (
Ap −Az), J(p − z)〉 ≤ 0.

(2.9)

Hence z = p by the property of ϕ. This completes the proof.
Let {Tn} be a sequence of nonexpansive mappings with F =

⋂∞
n=0Fix(Tn)/= ∅ on a

closed convex subset K of a Banach space E and let {αn} be a sequence in (0, 1] with (C1).
(E,K, {Tn}, {αn}) is said to have Browder’s property if for each u ∈ K, a sequence {yn} defined
by

yn = (1 − αn)Tnyn + αnu, (2.10)

for n ∈ N, converges strongly. Let {αn} be a sequence in [0, 1] with (C1) and (C2). Then
(E,K, {Tn}, {αn}) is said to have Halpern’s property if for each u ∈ K, a sequence {yn} defined
by

yn+1 = (1 − αn)Tnyn + αnu, (2.11)

for n ∈ N, converges strongly.
We know that if E is a uniformly smooth Banach space or a uniformly convex

Banach space with a uniformly Gâteaux differentiable norm, K is bounded, {Tn} is a
constant sequence T , then (E,K, {Tn}, {1/n}) has both Browder’s and Halpern’s property
(see [7, 10, 11, 23], resp.).
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Lemma 2.3 (see [24, Proposition 4]). Let (E,K, {Tn}, {αn}) have Browder’s property. For each ∈
K, put Pu = limn→∞ yn, where {yn} is a sequence inK defined by (2.10). Then P is a nonexpansive
mapping on K.

Lemma 2.4 (see [24, Proposition 5]). Let (E,K, {Tn}, {αn}) have Halpern’s property. For each
∈ K, put Pu = limn→∞ yn, where {yn} is a sequence in K defined by (2.11). Then the following
hold: (i) Pu does not depend on the initial point y1. (ii) P is a nonexpansive mapping on K.

Proposition 2.5. Let E be a smooth Banach space, and (E,K, {Tn}, {αn}) have Browder’s property.
Then F is a sunny nonexpansive retract of K, and moreover, Pu = limn→∞ yn define a sunny
nonexpansive retraction from K to F.

Proof. For each p ∈ F, it is easy to see from (2.10) that

〈
u − yn, J

(
p − yn

)〉
=

1 − αn
αn

〈
yn − p + Tnp − Tnyn, J

(
p − yn

)〉

≤ 1 − αn
αn

(∥∥Tnp − Tnyn
∥∥∥∥p − yn

∥∥ − ∥∥p − yn
∥∥2

)
≤ 0,

(2.12)

〈
u − yn, J

(
p − yn

)〉
=
〈
u − Pu, J(p − yn

)〉
+
〈
Pu − yn, J

(
p − yn

)〉
. (2.13)

This implies for any p ∈ F and some L ≥ ‖yn − p‖,
〈
u − Pu, J(p − yn

)〉 ≤ 〈
yn − Pu, J

(
p − yn

)〉 ≤ L∥∥yn − Pu
∥∥ → 0. (2.14)

The smoothness of E implies the norm weak∗ continuity of J [22, Theorems 4.3.1, 4.3.2], so

lim
n→∞

〈
u − Pu, J(p − yn

)〉
=
〈
u − Pu, J(p − Pu)〉. (2.15)

Thus

〈
u − Pu, J(p − Pu)〉 ≤ 0, ∀p ∈ F. (2.16)

By Lemma 2.1, Pu = limn→∞yn is a sunny nonexpansive retraction from K to F.

We will use the following facts concerning numerical recursive inequalities (see [25–
27]).

Lemma 2.6. Let {λn}, and {βn} be two sequences of nonnegative real numbers, and {αn} a sequence
of positive numbers satisfying the conditions

∑∞
n=0 γn = ∞, and limn→∞ βn/αn = 0. Let the recursive

inequality

λn+1 ≤ λn − αnψ(λn) + βn, n = 0, 1, 2, . . . , (2.17)



Fixed Point Theory and Applications 7

be given where ψ(λ) is a continuous and strict increasing function for all λ ≥ 0 with ψ(0) = 0. Then
( 1) {λn} converges to zero, as n → ∞; ( 2) there exists a subsequence {λnk} ⊂ {λn}, k = 1, 2, . . . ,
such that

λnk ≤ ψ−1
(

1
∑nk

m=0 αm
+
βnk
αnk

)

,

λnk+1 ≤ ψ−1
(

1
∑nk

m=0 αm
+
βnk
αnk

)

+ βnk ,

λn ≤ λnk+1 −
n−1∑

m=nk+1

αm
θm

, nk + 1 < n < nk+1, θm =
m∑

i=0

αi,

λn+1 ≤ λ0 −
n∑

m=0

αm
θm

≤ λ0, 1 ≤ n ≤ nk − 1,

1 ≤ nk ≤ smax = max

{

s;
s∑

m=0

αm
θm

≤ λ0
}

.

(2.18)

3. Main Results

We first discuss Browder’s type convergence.

Theorem 3.1. Let (E,K, {Tn}, {αn}) have Browder’s property. For each u ∈ K, put Pu =
limn→∞yn, where {yn} is a sequence in K defined by (2.10). Let A : K → K be a weak contraction
with a function ϕ. Define a sequence {xn} in K by

xn = αnAxn + (1 − αn)Tnxn, n ∈ N. (3.1)

Then {xn} converges strongly to the unique point z ∈ K satisfying P(Az) = z.

Proof. We note that Proposition 2.2(ii) assures the existence and uniqueness of {xn}. It
follows from Proposition 2.2(i) and Lemma 2.3 that PA is a weak contraction on K, then by
Theorem 1.2, there exists the unique element z ∈ K such that P(Az) = z. Define a sequence
{yn} in K by

yn = αnAz + (1 − αn)Tnyn, for any n ∈ N. (3.2)

Then by the assumption, {yn} converges strongly to P(Az). For every n, we have

∥∥xn − yn
∥∥ ≤ (1 − αn)

∥∥Tnxn − Tnyn
∥∥ + αn‖Axn −Az‖

≤ (1 − αn)
∥∥xn − yn

∥∥ + αn
∥∥Axn −Ayn

∥∥ + αn
∥∥Ayn −Az

∥∥

≤ ∥∥xn − yn
∥∥ − αnϕ

(∥∥xn − yn
∥∥) + αn

(∥∥yn − z
∥∥ − ϕ(‖xn − z‖)

)
,

(3.3)
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then

ϕ
(∥∥xn − yn

∥∥) ≤ ∥∥yn − z
∥∥. (3.4)

Therefore,

lim
n→∞

ϕ
(∥∥xn − yn

∥
∥) ≤ 0, i.e., lim

n→∞
∥
∥xn − yn

∥
∥ = 0. (3.5)

Hence,

lim
n→∞

‖xn − z‖ ≤ lim
n→∞

(∥∥xn − yn
∥
∥ +

∥
∥yn − z

∥
∥) = 0. (3.6)

Consequently, {xn} converges strongly to z. This completes the proof.

We next discuss Halpern’s type convergence.

Theorem 3.2. Let (E,K, {Tn}, {αn}) have Halpern’s property. For each u ∈ K, put Pu = limn→∞yn,
where {yn} is a sequence inK defined by (2.11). LetA : K → K be a weak contraction with a function
ϕ. Define a sequence {xn} in K by x1 ∈ K and

xn+1 = αnAxn + (1 − αn)Tnxn, n ∈ N. (3.7)

Then {xn} converges strongly to the unique point z ∈ K satisfying P(Az) = z. Moreover, there exist
a subsequence {xnk} ⊂ {xn}, k = 1, 2, . . ., and ∃{εn} ⊂ (0,+∞) with limn→∞εn = 0 such that

∥∥ynk − xnk
∥∥ ≤ ϕ−1

(
1

∑nk
m=0 αm

+ εnk

)

,

∥∥xnk+1 − ynk+1
∥∥ ≤ ϕ−1

(
1

∑nk
m=0 αm

+ εnk

)

+ αnkεnk ,

∥∥xn − yn
∥∥ ≤ ∥∥xnk+1 − ynk+1

∥∥ −
n−1∑

m=nk+1

αm
θm

, nk + 1 < n < nk+1, θm =
m∑

i=0

αi,

∥∥yn+1 − xn+1
∥∥ ≤ ∥∥x0 − y0

∥∥ −
n∑

m=0

αm
θm

≤ ∥∥y0 − x0
∥∥, 1 ≤ n ≤ nk − 1,

1 ≤ nk ≤ smax = max

{

s;
s∑

m=0

αm
θm

≤ ∥∥y0 − x0
∥∥
}

.

(3.8)

Proof. It follows from Proposition 2.2(i) and Lemma 2.4 that PA is a weak contraction on K,
then by Theorem 1.2, there exists a unique element z ∈ K such that z = P(Az). Thus we may
define a sequence {yn} in K by

yn+1 = αnAz + (1 − αn)Tnyn, n = 0, 1, 2, . . . . (3.9)
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Then by the assumption, yn → P(Az) as n → ∞. For every n, we have

∥
∥xn+1 − yn+1

∥
∥ ≤ αn‖Axn −Az‖ + (1 − αn)

∥
∥Tnxn − Tnyn

∥
∥

≤ αn
(∥∥Axn −Ayn

∥∥ +
∥∥Ayn −Az

∥∥) + (1 − αn)
∥∥xn − yn

∥∥

≤ ∥
∥xn − yn

∥
∥ − αnϕ

(∥∥xn − yn
∥
∥) + αn

(∥∥yn − z
∥
∥ − ϕ(∥∥yn − z

∥
∥)).

(3.10)

Thus, we get for λn = ‖xn − yn‖ the following recursive inequality:

λn+1 ≤ λn − αnϕ(λn) + βn, (3.11)

where βn = αnεn, and εn = ‖yn − z‖. Thus by Lemma 2.6,

lim
n→∞

∥∥xn − yn
∥∥ = 0. (3.12)

Hence,

lim
n→∞

‖xn − z‖ ≤ lim
n→∞

(∥∥xn − yn
∥∥ +

∥∥yn − z
∥∥) = 0. (3.13)

Consequently, we obtain the strong convergence of {xn} to z = P(Az), and the remainder
estimates now follow from Lemma 2.6.

Theorem 3.3. Let E be a Banach space E whose norm is uniformly Gâteaux differentiable, and
{αn} satisfies the condition (C2). Assume that (E,K, {Tn}, {αn}) have Browder’s property and
limn→∞‖yn − Tmyn‖ = 0 for every m ∈ N, where {yn} is a bounded sequence in K defined by
(2.10). then (E,K, {Tn}, {αn}) have Halpern’s property.

Proof. Define a sequence {zm} in K by u ∈ K and

zm = αmu + (1 − αm)Tmzm, m ∈ N. (3.14)

It follows from Proposition 2.5 and the assumption that Pu = limm→∞zm is the unique sunny
nonexpansive retraction from K to F. Subsequently, we approved that

∀ε > 0, lim sup
n→∞

〈
u − Pu, J(yn − Pu

)〉 ≤ ε. (3.15)
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In fact, since Pu ∈ F, then we have

∥
∥zm − yn

∥
∥2 = (1 − αm)

〈
Tmzm − yn, J

(
zm − yn

)〉
+ αm

〈
u − yn, J

(
zm − yn

)〉

= (1 − αm)
(〈
Tmzm − Tmyn, J

(
zm − yn

)〉
+
〈
Tmyn − yn, J

(
zm − yn

)〉)

+ αm
〈
u − Pu, J(zm − yn

)〉
+ αm

〈
Pu − zm, J

(
zm − yn

)〉

+ αm
〈
zm − yn, J

(
zm − yn

)〉

≤ ∥
∥yn − zm

∥
∥2 +

∥
∥Tmyn − yn

∥
∥M + αm

〈
u − Pu, J(zm − yn

)〉

+ αm‖zm − Pu‖M,

(3.16)

then

〈
u − Pu, J(yn − zm

)〉 ≤
∥∥yn − Tmyn

∥∥

αm
M +M‖zm − Pu‖, (3.17)

where M is a constant such that M ≥ ‖yn − zm‖ by the boundedness of {yn}, and {zm}.
Therefore, using limn→∞‖yn − Tmyn‖ = 0, and zm → Pu, we get

lim sup
m→∞

lim sup
n→∞

〈
u − Pu, J(yn − zm

)〉 ≤ 0. (3.18)

On the other hand, since the duality map J is norm topology to weak∗ topology uniformly
continuous in a Banach space E with uniformly Gâteaux differentiable norm, we get that as
m → ∞,

∣∣〈u − Pu, J(yn − Pu
) − J(yn − zm

)〉∣∣ → 0, ∀n . (3.19)

Therefore for any ε > 0, ∃N > 0 such that for allm > N and all n ≥ 0, we have that

〈
u − Pu, J(yn − Pu

)〉
<
〈
u − Pu, J(yn − zm

)〉
+ ε. (3.20)

Hence noting (3.18), we get that

lim sup
n→∞

〈
u − Pu, J(yn − Pu

)〉 ≤ lim sup
m→∞

lim sup
n→∞

(〈
u − Pu, J(yn − zm

)〉
+ ε

) ≤ ε. (3.21)

(3.15) is proved. From (2.10) and Pu ∈ F, we have for all n ≥ 0,

∥∥yn+1 − Pu
∥∥2 = αn

〈
u − Pu, J(yn+1 − Pu

)〉
+ (1 − αn)

〈
Tnyn − Pu, J

(
yn+1 − Pu

)〉

≤ (1 − αn)
∥∥Tnyn − Pu

∥∥2 +
∥∥J(yn+1 − Pu)

∥∥2

2
+ αn

〈
u − Pu, J(yn+1 − Pu

)〉

≤ (1 − αn)
∥∥yn − Pu

∥∥2

2
+

∥∥yn+1 − Pu
∥∥2

2
+ αn

〈
u − Pu, J(yn+1 − Pu

)〉
.

(3.22)
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Thus,

∥
∥yn+1 − Pu

∥
∥2 ≤ ∥

∥yn − Pu
∥
∥2 − αn

∥
∥yn − Pu

∥
∥2 + 2αn

〈
u − Pu, J(yn+1 − Pu

)〉
. (3.23)

Consequently, we get for λn = ‖yn − Pu‖2 the following recursive inequality:

λn+1 ≤ λn − αnψ(λn) + βn, (3.24)

where ψ(t) = t, and βn = 2αnε. The strong convergence of {yn} to Pu follows from Lemma 2.6.
Namely, (E,K, {Tn}, {αn}) have Halpern’s property.

4. Deduced Theorems

Using Theorems 3.1, 3.2, and 3.3, we can obtain many convergence theorems. We state some
of them.

We now discuss convergence theorems for families of nonexpansive mappings. Let K
be a nonempty closed convex subset of a Banach space E. A (one parameter) nonexpansive
semigroups is a family F = {T(t) : t > 0} of selfmappings of K such that

(i) T(0)x = x for x ∈ K;

(ii) T(t + s)x = T(t)T(s)x for t, s > 0, and x ∈ K;

(iii) limt→ 0T(t)x = x for x ∈ K;

(iv) for each t > 0, T(t) is nonexpansive, that is,

∥∥T(t)x − T(t)y∥∥ ≤ ∥∥x − y∥∥, ∀x, y ∈ K. (4.1)

We will denote by F the common fixed point set of F, that is,

F := Fix(F) = {x ∈ K : T(t)x = x, t > 0} =
⋂

t>0

Fix(T(t)). (4.2)

A continuous operator semigroup F is said to be uniformly asymptotically regular (in
short, u.a.r.) (see [28–31]) on K if for all h ≥ 0 and any bounded subset C of K,

lim
t→∞

sup
x∈C

‖T(h)(T(t)x) − T(t)x‖ = 0. (4.3)

Recently, Song and Xu [31] showed that (E,K, {T(tn)}, {αn}) have both Browder’s
andHalpern’s property in a reflexive strictly convex Banach space with a uniformly
Gâteaux differentiable norm whenever tn → ∞ (n → ∞). As a direct consequence
of Theorems 3.1, 3.2, and 3.3, we obtain the following.

Theorem 4.1. Let E be a real reflexive strictly convex Banach space with a uniformly Gâteaux
differentiable norm, and K a nonempty closed convex subset of E, and {T(t)} a u.a.r. nonexpansive
semigroup fromK into itself such that F := Fix(F)/= ∅, andA : K → K a weak contraction. Suppose
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that limn→∞ tn = ∞, and βn ∈ (0, 1) satisfies the condition (C1), and αn ∈ (0, 1) satisfies the
conditions (C1) and (C2). If {yn} and {xn} defined by

yn = βnAyn +
(
1 − βn

)
T(tn)yn, n ∈ N,

xn+1 = αnAxn + (1 − αn)T(tn)xn, n ≥ 1.
(4.4)

Then as n → ∞, both {yn}, and{xn} strongly converge to z = P(Az), where P is a sunny
nonexpansive retraction from K to F.

Let {tn} a sequence of positive real numbers divergent to ∞, and for each t > 0 and
x ∈ K, σt(x) is the average given by

σt(x) =
1
t

∫ t

0
T(s)xds. (4.5)

Recently, Chen and Song [32] showed that (E,K, {σtn}, {αn}) have both Browder’s and
Halpern’s property in a uniformly convex Banach space with a uniformly Gâeaux
differentiable norm whenever tn → ∞ (n → ∞). Then we also have the following.

Theorem 4.2. Let E be a uniformly convex Banach space with uniformly Gâteaux differentiable norm,
and let K,A be as in Theorem 4.1. Suppose that {T(t)} a nonexpansive semigroups from K into itself
such that F := Fix(F) = ⋂

t>0 Fix(T(t))/= ∅, {yn}, and {xn} defined by

yn = βnAyn +
(
1 − βn

)
σtn

(
yn

)
, n ∈ N,

xn+1 = αnAxn + (1 − αn)σtn(xn), n ∈ N,
(4.6)

where tn → ∞, and βn ∈ (0, 1) satisfies the condition (C1), and αn ∈ (0, 1) satisfies the conditions
(C1) and (C2). Then as n → ∞, both {yn}, and {xn} strongly converge to z = P(Az), where P is a
sunny nonexpansive retraction from K to F.
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