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1. Introduction and Preliminaries

In 1968, Kannan [1] proved a fixed point theorem for a map satisfying a contractive condition
that did not require continuity at each point. This paper was a genesis for a multitude of fixed
point papers over the next two decades. Sessa [2] coined the term weakly commuting maps.
Jungck [3] generalized the notion of weak commutativity by introducing compatible maps
and then weakly compatible maps [4]. Al-Thagafi and Shahzad [5] gave a definition which is
proper generalization of nontrivial weakly compatible maps which have coincidence points.
Jungck and Rhoades [6] studied fixed point results for occasionally weakly compatible (owc)
maps. Recently, Zhang [7] obtained common fixed point theorems for some new generalized
contractive type mappings. Abbas and Rhoades [8] obtained common fixed point theorems
for hybrid pairs of single-valued and multivalued owc maps defined on a symmetric space
(see also [9]). For other related fixed point results in symmetric spaces and their applications,
we refer to [10–15]. The aim of this paper is to obtain fixed point theorems involving
hybrid pairs of single-valued and multivalued owc maps satisfying a generalized contractive
condition in the frame work of a symmetric space.
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Definition 1.1. A symmetric on a set X is a mapping d : X ×X → [0,∞) such that

d
(
x, y

)
= 0 iff x = y,

d
(
x, y

)
= d

(
y, x

)
.

(1.1)

A set X together with a symmetric d is called a symmetric space.

Wewill use the following notations, throughout this paper, where (X, d) is a symmetric
space, x ∈ X andA ⊆ X, d(x,A) = inf{d(x, a) : a ∈ A}, and B(X) is the class of all nonempty
bounded subsets of X. The diameter of A,B ∈ B(X) is denoted and defined by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}. (1.2)

Clearly, δ(A,B) = δ(B,A). For δ({a}, B) and δ({a}, {b}) we write δ(a, B) and d(a, b),
respectively. We appeal to the fact that δ(A,B) = 0 if and only ifA = B = {x} forA,B ∈ B(X).

Recall that x ∈ X is called a coincidence point (resp., common fixed point) of f : X →
X and T : X → B(X) if fx ∈ Tx (resp., x = fx ∈ Tx).

Definition 1.2. Maps f : X → X and T : X → B(X) are said to be compatible if fTx ∈ B(X) for
each x ∈ X and δ(fTxn, Tfxn) → 0 whenever {xn} is a sequence in X such that Txn → {t}
(δ(Txn, t) → 0) and fxn → t for some t ∈ X [21].

Definition 1.3. Maps f : X → X and T : X → B(X) are said to be weakly compatible if
fTx = Tfx whenever fx ∈ Tx.

Definition 1.4. Maps f : X → X and T : X → B(X) are said to be owc if and only if there
exists some point x in X such that fx ∈ Tx and fTx ⊆ Tfx.

Example 1.5. Consider X = [0,∞) with usual metric.
(a) Define f : X → X and T : X → B(X) as: f(x) = x2 and

T(x) =

⎧
⎪⎨

⎪⎩

(
0,

1
x

]
, when x /= 0,

{0}, when x = 0,
(1.3)

then f and T are weakly compatible.
(b) Define f : X → X, T : X → B(X) by

fx =

⎧
⎨

⎩

0, 0 ≤ x < 1,

x + 1, 1 ≤ x <∞,

Tx =

⎧
⎨

⎩

{x}, 0 ≤ x < 1,

[1, x + 2], 1 ≤ x <∞,

(1.4)
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It can be easily verified that x = 1 is coincidence point of f and T, but f and T are not weakly
compatible there, as Tf1 = [1, 4]/= fT1 = [2, 4]. Hence f and T are not compatible. However,
the pair {f, T} is occasionally weakly compatible, since the pair {f, T} is weakly compatible
at x = 0.

Assume that F : [0,∞) → R satisfies the following.

(i) F(0) = 0 and F(t) > 0 for each t ∈ (0,∞).

(ii) F is nondecreasing on [0,∞).

Define, �[0,∞) = {F : F satisfies (i)-(ii) above}.
Let ψ : [0,∞) → R satisfy the following.

(iii) ψ(t) < t for each t ∈ (0,∞).

(iv) ψ is nondecreasing on [0,∞).

Define, Ψ[0,∞) = {ψ : ψ satisfies (iii)-(iv) above}.
For some examples of mappings F which satisfy (i)-(ii),we refer to [7].

2. Common Fixed Point Theorems

In the sequel we shall consider, F ∈ �[0,∞) which is defined on [0, F(∞ − 0)), where ∞ − 0
stands for a real number to the left of ∞ and assume that the mapping ψ satisfies (iii)-(iv)
above.

Theorem 2.1. Let f, g be self maps of a symmetric space X, and let T, S be maps from X into B(X)
such that the pairs {f, T} and {g, S} are owc. If

F
(
δ
(
Tx, Sy

)) ≤ ψF(M(
x, y

))
, (2.1)

for each x, y ∈ X for which fx /= gy, where

M
(
x, y

)
:= max

{
d
(
fx, gy

)
, d

(
fx, Tx

)
, d

(
gy, Sy

)
, δ
(
fx, Sy

)
, δ
(
gy, Tx

)}
, (2.2)

then f, g, T , and S have a unique common fixed point.

Proof. By hypothesis there exist points x, y in X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx, and
gSy ⊆ Sgy. Also, d(f2x, g2y) ≤ δ(Tfx, Sgy). Therefore by (2.2) we have

M
(
fx, gy

)
= max

{
d
(
f2x, g2y

)
, d

(
f2x, Tfx

)
, d

(
g2y, Sgy

)
, δ
(
f2x, Sgy

)
, δ
(
g2y, Tfx

)}

≤ δ(Tfx, Sgy).
(2.3)

Now we claim that gy = fx. For, otherwise, by (2.1),

F
(
δ
(
Tfx, Sgy

)) ≤ ψ(F(M(
fx, gy

)))

≤ ψ(F(δ(Tfx, Sgy))) < F(δ(Tfx, Sgy)),
(2.4)
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a contradiction and hence gy = fx. Obviously, d(fx, g2y) ≤ δ(Tx, Sfx). Thus (2.2) gives

M
(
x, fx

)
= max

{
d
(
fx, g2y

)
, d

(
fx, Tx

)
, d

(
g2y, Sgy

)
, δ
(
gy, Sgy

)
, δ
(
g2y, Tx

)}

≤ δ(Tx, Sfx).
(2.5)

Next we claim that x = fx. If not, then (2.1) implies

F
(
δ
(
Tx, Sfx

)) ≤ ψ(F(M(
x, fx

))) ≤ ψ(F(δ(Tx, Sfx)))

< F
(
δ
(
Tx, Sfx

))
,

(2.6)

which is a contradiction and the claim follows. Similarly, we obtain y = gy. Thus f, g, T , and
S have a common fixed point. Uniqueness follows from (2.1).

Corollary 2.2. Let f, g be self maps of a symmetric space X and let T, S be maps from X into B(X)
such that the pairs {f, T} and {g, S} are owc. If

F
(
δ
(
Tx, Sy

)) ≤ ψ(F(m(
x, y

)))
(2.7)

for each x, y ∈ X, for which fx /= gy, where

m
(
x, y

)
= hmax

{
d
(
fx, gy

)
, d

(
fx, Tx

)
, d

(
gy, Sy

)
,
1
2
[
δ
(
fx, Sy

)
+ δ

(
gy, Tx

)]
}

(2.8)

and 0 ≤ h < 1, then f, g, S, T have a unique common fixed point.

Proof. Since (2.7) is a special case of (2.1), the result follows from Theorem 2.1.

Corollary 2.3. Let f, g be self maps of a symmetric space X and let T, S be maps from X into B(X)
such that the pairs {f, T} and {g, S} are owc. If

F
(
δ
(
Tx, Sy

)) ≤ ψ(F(M(
x, y

)))
(2.9)

for each x, y ∈ X for which fx /= gy, where

M
(
x, y

)
= αd

(
fx, gy

)
+ βmax

{
d
(
fx, Tx

)
, d

(
gy, Sy

)}

+ γmax
{
d
(
fx, gy

)
, δ
(
fx, Sy

)
, δ
(
gy, Tx

)}
,

(2.10)

where α, β, γ > 0 and α + β + γ = 1. Then f, g, T , and S have a unique common fixed point.
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Proof. Note that

M
(
x, y

) ≤ (
α + β + γ

)
max

{
d
(
fx, gy

)
, d

(
fx, Tx

)
, d

(
gy, Sy

)
, δ
(
fx, Sy

)
, δ
(
gy, Tx

)}
.
(2.11)

So, (2.9) is a special case of (2.1) and hence the result follows from Theorem 2.1.

Corollary 2.4. Let f be a self map on a symmetric space X and let T be a map from X into B(X) such
that f and T are owc. If

F
(
δ
(
Tx, Ty

)) ≤ ψ(F(m(
x, y

)))
(2.12)

for each x, y ∈ X, for which fx /= fy, where

m
(
x, y

)
= max

{
d
(
fx, fy

)
,
1
2
[
d
(
fx, Tx

)
+ d

(
fy, Ty

)]
,
1
2
[
δ
(
fy, Tx

)
+ δ

(
fx, Ty

)]
}
.

(2.13)

Then f and T have a unique common fixed point.

Proof. Condition (2.12) is a special case of condition (2.1)with f = g and T = S. Therefore the
result follows from Theorem 2.1.

Theorem 2.5. Let f, g be self maps of a symmetric space X and let T, S be maps from X into B(X)
such that the pairs {f, T} and {g, S} are owc. If

F
((
δ
(
Tx, Sy

))p) ≤ ψ(F(Mp

(
x, y

)))
(2.14)

for each x, y ∈ X for which fx /= gy,

Mp

(
x, y

)
= α

(
δ
(
Tx, gy

))p

+ (1 − α)max
{(
d
(
fx, Tx

))p
,
(
d
(
gy, Sy

))p
,
(
d
(
fx, Tx

))p/2(
d
(
gy, Tx

))p/2
,

(
δ
(
gy, Tx

))p/2(
δ
(
fx, Sy

))p/2}
,

(2.15)

where 0 < a ≤ 1, and p ≥ 1, then f, g, T, and S have a unique common fixed point.
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Proof. By hypothesis there exist points x, y in X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx and
gSy ⊆ Sgy. Therefore by (2.15) we have

Mp

(
fx, gy

)

= α
(
δ
(
Tfx, g2y

))p

+ (1 − α)max
{(

d
(
f2x, Tfx

))p
,
(
d
(
g2y, Sgy

))p
,
(
d
(
f2x, Tfx

))p/2(
d
(
g2y, Tfx

))p/2
,

(
δ
(
g2y, Tfx

))p/2(
δ
(
f2x, Sgy

))p/2}

= α
(
δ
(
g2y, Tfx

))p
+ (1 − α)

(
δ
(
g2y, Tfx

))p/2(
δ
(
f2x, Sgy

))p/2

≤ α(δ(Tfx, Sgy))p + (1 − α)(δ(Tfx, Sgy))p

=
(
δ
(
Tfx, Sgy

))p
.

(2.16)

Now we show that gy = fx. Suppose not. Then condition (2.14) implies that

F
((
δ
(
Tfx, Sgy

))p) ≤ ψ(F(Mp

(
fx, gy

)))

≤ ψ(F((δ(Tfx, Sgy))p)) < F((δ(Tfx, Sgy))p),
(2.17)

which is a contradiction and hence gy = fx. Note that, d(fx, g2y) ≤ δ(Tx, Sfx). Thus (2.15)
gives

Mp

(
x, fx

)
= α

(
δ
(
Tx, gfx

))p

+ (1 − α)max
{(
d
(
fx, Tx

))p
,
(
d
(
gfx, Sfx

))p
,
(
d
(
fx, Tx

))p/2(
d
(
gfx, Tx

))p/2
,

(
δ
(
gfx, Tx

))p/2(
δ
(
fx, Sfx

))p/2}

= α
(
δ
(
gfx, Tx

))p + (1 − α)
(
δ
(
g2y, Tx

))p/2(
δ
(
fx, Sgy

))p/2

≤ α(δ(Tx, Sgy))p + (1 − α)(δ(Tx, Sgy))p

=
(
δ
(
Tx, Sgy

))p
.

(2.18)

Now we claim that x = fx. If not, then condition (2.14) implies that

F
((
δ
(
Tx, Sfx

))p) ≤ ψ(F(Mp

(
x, fx

)))

≤ ψ(F((δ(Tx, Sgy))p)) < F((δ(Tfx, Sgy))p),
(2.19)
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which is a contradiction, and hence the claim follows. Similarly, we obtain y = gy. Thus
f, g, T , and S have a common fixed point. Uniqueness follows easily from (2.14).

Define G = {ġ : R
5 → R

5} such that

(g1) ġ is nondecreasing in the 4th and 5th variables,

(g2) if u ∈ R
+ is such that

u ≤ ġ(u, 0, 0, u, u) or u ≤ ġ(0, u, 0, u, u) or u ≤ ġ(0, 0, u, u, u), (2.20)

then u = 0.

Theorem 2.6. Let f, g be self maps of a symmetric space X and let T, S be maps from X into B(X)
such that the pairs {f, T} and {g, S} are owc. If

F
(
δ
(
Tx, Sy

))

≤ ġ(F(d(fx, gy)), F(d(fx, Tx)), F(d(gy, Sy)), F(δ(fx, Sy)), F(δ(gy, Tx)))
(2.21)

for all x, y ∈ X for which fx /= gy, where ġ ∈ G, then f, g, T , and S have a unique common fixed
point.

Proof. By hypothesis there exist points x, y in X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx,
and gSy ⊆ Sgy. Also, d(fx, gy) ≤ δ(Tx, Sy). First we show that gy = fx. Suppose not. Then
condition (2.21) implies that

F
(
δ
(
Tx, Sy

)) ≤ ġ(F(d(fx, gy)), 0, 0, F(δ(fx, Sy)), F(δ(gy, Tx)))

≤ ġ(F(δ(Tx, Sy)), 0, 0, F(δ(Tx, Sy)), F(δ(Tx, Sy))),
(2.22)

which, from (g2), implies that δ(Tx, Sy) = 0; this further implies that, d(fx, gy) = 0, a
contradiction. Hence the claim follows. Also, d(fx, f2x) ≤ δ(Tfx, Sy). Next we claim that
fx = f2x. If not, then condition (2.21) implies that

F
(
δ
(
Tfx, Sy

)) ≤ ġ
(
F
(
d
(
f2x, gy

))
, 0, 0, F

(
δ
(
f2x, Sy

))
, F

(
δ
(
gy, Tfx

)))

≤ ġ(F(δ(Tfx, Sy)), 0, 0, F(δ(Tfx, Sy)), F(δ(Tfx, Sy))),
(2.23)

which, from (g1) and (g2), implies that δ(Tfx, Sy) = 0; this further implies that d(fx, f2x) =
0. Hence the claim follows. Similarly, it can be shown that gy = g2y which proves that fx is
a common fixed point of f, g, S, and T . Uniqueness follows from (2.21) and (g2).

A control function Φ : R+ → R+ is a continuous monotonically increasing function
that satisfies Φ(2t) ≤ 2Φ(t) and, Φ(0) = 0 if and only if t = 0.

Let Ψ : R+ → R+ be such that Ψ(t) < t for each t > 0.
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Theorem 2.7. Let f, g be self maps of symmetric spaceX and let T, S be maps fromX into B(X) such
that the pairs {f, T} and {g, S} are owc. If for a control function Φ, one has

F
(
Φ
(
δ
(
Tx, Sy

))) ≤ ψ(F(MΦ
(
x, y

)))
(2.24)

for each x, y ∈ X for which right-hand side of (2.24) is not equal to zero, where

MΦ
(
x, y

)
= max

{{
Φ
(
d
(
fx, gy

))
,Φ

(
d
(
fx, Tx

))
,Φ

(
d
(
gy, Sy

))
,

1
2
[
Φ
(
δ
(
fx, Sy

))
+ Φ

(
δ
(
gy, Tx

))]
}}

,

(2.25)

then f, g, S, and T have a unique common fixed point.

Proof. By hypothesis there exist points x, y inX such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx, and
gSy ⊆ Sgy. Also, using the triangle inequality, we obtain d(fx, gy) ≤ δ(Tx, Sy). Therefore
by (2.25) we have

MΦ
(
x, y

)
= max

{
Φ
(
d
(
fx, gy

))
, 0, 0,

1
2
Φ
(
2δ

(
Tx, Sy

))
}

≤ Φ
(
δ
(
Tx, Sy

))
.

(2.26)

Now we show that δ(Tx, Sy) = 0. Suppose not. Then condition (2.24) implies that

F
(
Φ
(
δ
(
Tx, Sy

))) ≤ ψ(F(MΦ
(
x, y

)))

= ψ
(
F
(
Φ
(
δ
(
Tx, Sy

))))
< F

(
Φ
(
δ
(
Tx, Sy

)))
,

(2.27)

which is a contradiction. Therefore δ(Tx, Sy) = 0, which further implies that, d(fx, gy) = 0.
Hence the claim follows. Again, d(f2x, fx) ≤ δ(Tfx, Sy). Therefore by (2.25)we have

MΦ
(
fx, y

)
= max

{
Φ
(
d
(
f2x, gy

))
, 0, 0,

1
2
Φ
(
2δ

(
Tfx, Sy

))
}

≤ Φ
(
δ
(
Tfx, Sy

))
.

(2.28)

Next we claim that δ(Tfx, Sy) = 0. If not, then condition (2.24) implies

F
(
Φ
(
δ
(
Tfx, Sy

))) ≤ ψ(F(MΦ
(
fx, y

)))

≤ ψ(F(Φ(
δ
(
Tfx, Sy

))))
< F

(
Φ
(
δ
(
Tfx, Sy

)))
,

(2.29)

which is a contradiction. Therefore δ(Tfx, Sy) = 0,which further implies that d(fx, f2x) = 0.
Hence the claim follows. Similarly, it can be shown that gy = g2ywhich proves the result.
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Set G = {ψ : [0,∞) → [0,∞) : ψ is continuous and nondecreasing mapping with
ψ(t) = 0 if and only if t = 0}.

The following theorem generalizes [16, Theorem 2.1].

Theorem 2.8. Let f, g be self maps of a symmetric space X, and let T, S be maps from X into B(X)
such that the pairs {f, T} and {g, S} are owc. If

ψ
(
δ
(
Tx, Sy

)) ≤ ψ(d(fx, gy)) − ϕ(d(fx, gy)) (2.30)

for all x, y ∈ X, for which right-hand side of (2.30) is not equal to zero, where ψ, ϕ ∈ G, then f, g, S,
and T have a unique common fixed point.

Proof. By hypothesis there exist points x, y in X such that fx ∈ Tx, gy ∈ Sy, fTx ⊆ Tfx, and
gSy ⊆ Sgy. Also, using the triangle inequality, we obtain, d(fx, gy) ≤ δ(Tx, Sy). Now we
claim that gy = fx. For, otherwise, by (2.30),

ψ
(
δ
(
Tx, Sy

)) ≤ ψ(d(fx, gy)) − ϕ(d(fx, gy))

≤ ψ(δ(Tx, Sy)) − ϕ(d(fx, gy))
(2.31)

which is a contradiction. Therefore fx = gy. Hence the claim follows. Again, d(f2x, fx) ≤
δ(Tfx, Sy). Now we claim that f2x = fx. If not, then condition (2.30) implies that

ψ
(
δ
(
Tfx, Sy

)) ≤ ψ
(
d
(
f2x, gy

))
− ϕ

(
d
(
f2x, gy

))

= ψ
(
d
(
f2x, fx

))
− ϕ

(
d
(
f2x, fx

))

≤ ψ(δ(Tfx, Sy)) − ϕ
(
d
(
f2x, fx

))
,

(2.32)

which is a contradiction, and hence the claim follows. Similarly, it can be shown that gy = g2y
which, proves that fx is a common fixed point of f, g, S, and T . Uniqueness follows easily
from (2.30).

Example 2.9. Let X = {1, 2, 3}. Define d : X ×X → [0,∞) by

d(1, 1) = d(2, 2) = d(3, 3) = 0, d(1, 2) = d(2, 1) = 2,

d(1, 3) = d(3, 1) = 4, d(2, 3) = d(3, 2) = 1.
(2.33)

Note that d is symmetric but not a metric on X.
Define T, S : X → B(X) by

T(1) = {1, 3}, T(2) = {1, 2, 3}, T(3) = {1, 3},
S(1) = {1, 2}, S(2) = {1, 3}, S(3) = {2, 3},

(2.34)
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and f, g : X → X as follows:

f(1) = 1, f(2) = 3, f(3) = 1,

g(1) = 1, g(2) = 1, g(3) = 2.
(2.35)

Clearly, f(1) ∈ T(1) but fT(1)/= Tf(1), and f(3) ∈ T(3) but fT(3)/= Tf(3); they show that
{f, T} is not weakly compatible. On the other hand, f(2) ∈ T(2) gives that fT(2) = Tf(2).
Hence {f, T} is occasionally weakly compatible. Note that g(1) ∈ S(1), gS(1)/=Sg(1), g(3) ∈
S(3), and gS(3)/=Sg(3); they imply that {g, S} is not weakly compatible. Now g(2) ∈ S(2)
gives that gS(2) = Sg(2). Hence {g, S} is occasionally weakly compatible. As f(1) = g(1) ∈
T(1) and f(1) = g(1) ∈ S(1), so 1 is the unique common fixed point of f, g, S, and T.

Remarks 2.10. Weakly compatible maps are occasionally weakly compatible but converse is
not true in general. The class of symmetric spaces is more general than that of metric spaces.
Therefore the following results can be viewed as special cases of our results:

(a) ([17, Theorem 1] and [18, Theorem 1]) are special cases of Theorem 2.7.

(b) [19, Theorem 1], [20, Theorem 2.1], [21, Theorem 4.1], and [22, Theorem 2] are
special cases of Corollary 2.2. Moreover, [23, Theorem 2] and [24, Theorem 1] also
become special cases of Corollary 2.2.

(c) ([25, Theorem 2]) is a special case of Theorem 2.1. Theorem 2.1 also generalizes
([26, Theorem 1]) and ( [27, Theorems 1 and 2]).

(d) [28, Theorem 3.1] becomes special case of Corollary 2.4.
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[22] O. Hadžić, “Common fixed point theorems for single-valued and multivalued mappings,” Review of
Research. Faculty of Science. Mathematics Series, vol. 18, no. 2, pp. 145–151, 1988.

[23] H. Kaneko and S. Sessa, “Fixed point theorems for compatible multi-valued and single-valued
mappings,” International Journal of Mathematics and Mathematical Sciences, vol. 12, no. 2, pp. 257–262,
1989.

[24] H. Kaneko, “A common fixed point of weakly commuting multi-valued mappings,” Mathematica
Japonica, vol. 33, no. 5, pp. 741–744, 1988.

[25] B. Fisher, “Common fixed points for set-valued mappings,” Indian Journal of Mathematics, vol. 25, no.
3, pp. 265–270, 1983.

[26] S. Sessa and B. Fisher, “On common fixed points of weakly commuting mappings and set-valued
mappings,” International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 2, pp. 323–329,
1986.

[27] B. Fisher, “Common fixed point theorem for commutative mappings and set valued mappings,”
Journal of University of Kuwait, vol. 11, pp. 15–21, 1984.

[28] B. C. Dhage, “Common fixed point theorems for coincidentally commuting pairs of nonself mappings
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