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1. Introduction and Preliminaries

Takahashi [1] introduced a notion of convex metric spaces and studied the fixed point theory
for nonexpansive mappings in such setting. For the convex metric spaces, Kirk [2] and
Goebel and Kirk [3] used the term “hyperbolic type space” when they studied the iteration
processes for nonexpansive mappings in the abstract framework. For the Banach space,
Petryshyn andWilliamson [4] proved a sufficient and necessary condition for Picard iterative
sequences and Mann iterative sequence to converge to fixed points for quasi-nonexpansive
mappings. In 1997, Ghosh and Debnath [5] extended the results of [4] and gave the sufficient
and necessary condition for Ishikawa iterative sequence to converge to fixed points for
quasi-nonexpansive mappings. Liu [6–8] proved some sufficient and necessary conditions
for Ishikawa iterative sequence and Ishikawa iterative sequence with errors to converge to
fixed point for asymptotically quasi-nonexpansive mappings in Banach space and uniform
convex Banach space. Tian [9] gave some sufficient and necessary conditions for an Ishikawa
iteration sequence for an asymptotically quasi-nonexpansive mapping to converge to a fixed
point in convex metric spaces. Very recently, Wang and Liu [10] gave some iteration sequence
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with errors to approximate a fixed point of two uniformly quasi-Lipschitzian mappings in
convex metric spaces. The purpose of this paper is to give some sufficient and necessary
conditions for a new Noor-type iterative sequence with errors to approximate a common
fixed point for a finite family of uniformly quasi-Lipschitzian mappings in convex metric
spaces. The results presented in this paper generalize, improve, and unify some main results
of [1–14].

First of all, let us list some definitions and notations.
Let T be a given self mapping of a nonempty convex subset C of an arbitrary real

normed space.The sequence {xn}∞n=0 defined by

x0 ∈ C,

xn+1 = αnxn + βnTyn + γnun, n ≥ 0,

yn = anxn + bnTzn + cnvn,

zn = dnxn + enTxn + fnwn,

(1.1)

is called the Noor iterative procedure with errors [11], where αn, βn, γn, an, bn, cn, dn, en, and
fn are appropriate sequences in [0, 1] with αn + βn + γn = an + bn + cn = dn + en + fn =
1, n ≥ 0 and {un},{vn}, and {wn} are bounded sequences in C. If dn = 1 (en = fn =
0), n ≥ 0 then (1.1) reduces to the Ishikawa iterative procedure with errors [15] defined as
follows:

x0 ∈ C,

xn+1 = αnxn + βnTyn + γnun, n ≥ 0,

yn = anxn + bnTxn + cnvn.

(1.2)

If an = 1 (bn = cn = 0) then (1.2) reduces to the following Mann type iterative procedure with
errors [15]:

x0 ∈ C,

xn+1 = αnxn + βnTxn + γnun, n ≥ 0.
(1.3)

Let (E, d) be a metric space. A mapping T : E → E is said to be asymptotically
nonexpansive, if there exists a sequence {Kn} ∈ [1,∞], limn→∞Kn = 1, such that

d
(
Tnx, Tny

) ≤ Knd
(
x, y

)
, ∀x, y ∈ E, n ≥ 0. (1.4)

Let F(T) be the set of fixed points of T in E and F(T)/= ∅, a mapping T is said to be
asymptotically quasi-nonexpansive, if there exists {Kn} ⊂ [1,∞) with limn→∞Kn = 1 such
that

d
(
Tnx, p

) ≤ Knd
(
x, p

)
, ∀x ∈ E, p ∈ F(T), n ≥ 0. (1.5)
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Moreover, T is said to be uniformly quasi-Lipschitzian, if there exists L > 0 such that

d
(
Tnx, p

) ≤ Ld
(
x, p

)
, ∀x ∈ E, p ∈ F(T), n ≥ 0. (1.6)

Remark 1.1. If F(T) is nonempty, then it follows from the above definitions that an
asymptotically nonexpansive mapping must be asymptotically quasi-nonexpansive, and an
asymptotically quasi-nonexpansive mapping must be a uniformly quasi-Lipschitzian with
L = supn≥0{Kn} < ∞. However, the inverse is not true in general.

Definition 1.2 (see [ 9]). Let (E, d) be a metric space, and let I =[0,1],{αn},{βn},{γn} be real
sequences in [0, 1] with αn + βn + γn = 1. A mapping W : E3 × I3 → X is said to be a convex
structure on E if, for any (x, y, z, αn, βn, γn) ∈ E3 × I3 and u ∈ E,

d
(
W

(
x, y, z, αn, βn, γn

)
u
) ≤ αnd(x, u) + βnd

(
y, u

)
+ γnd(z, u). (1.7)

If (E, d) is a metric space with a convex structure W , then (E, d) is called a convex metric
space. Let (E, d) be a convex metric space, a nonempty subset C of E is said to be convex if

W
(
x, y, z, λ1, λ2, λ3

) ∈ C, ∀(x, y, z, λ1, λ2, λ3
) ∈ C3 × I3. (1.8)

Definition 1.3. Let (E, d) be a convex metric space with a convex structure W : E3 × I3 and
Ti : E → E be a finite family of uniformly quasi-Lipschitzian mappings with i = 1, 2, . . . ,N.
Let {αn}, {βn}, {γn}, {an}, {bn},{cn}, {dn}, {en}, and {fn} be nine sequences in [0, 1] with

αn + βn + ηn = an + bn + cn = dn + en + fn = 1, n = 0, 1, 2, . . . . (1.9)

For a given x0 ∈ E, define a sequence {xn} as follows:

xn+1 = W
(
xn, T

n
nyn, un;αn, βn, γn

)
, n ≥ 0,

yn = W
(
f(xn), Tn

n zn, vn;an, bn, cn
)
,

zn = W
(
f(xn), Tn

n xn,wn;dn, en, fn
)
,

(1.10)

where Tn
n = Tn

n(modN), f : E → E is a Lipschitz continuous mapping with a Lipschitz
constant ξ > 0 and {un}, {vn},{wn} are any given three sequences in E. Then {xn} is called the
Noor-type iterative sequence with errors for a finite family of uniformly quasi-Lipschitzian
mappings {Ti}Ni=1. If f = I (the identity mapping on E) in (1.10), then the sequence {xn}
defined by (1.10) can be written as follows:

xn+1 = W
(
xn, T

n
nyn, un;αn, βn, γn

)
, n ≥ 0;

yn = W(xn, T
n
n zn, vn;an, bn, cn),

zn = W
(
xn, T

n
nxn,wn;dn, en, fn

)
.

(1.11)
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If dn = 1 for all n ≥ 0 in (1.10), then zn = xn for all n ≥ 0 and the sequence {xn} defined by
(1.10) can be written as follows:

xn+1 = W
(
f(xn), Tn

n yn, un;αn, βn, γn
)
, n ≥ 0,

yn = W
(
f(xn), Tn

n xn, vn;an, bn, cn
)
.

(1.12)

If f = I and dn = 1 for all n ≥ 0, then the sequence {xn} defined by (1.10) can be written as
follows:

xn+1 = W
(
xn, T

n
nyn, un;αn, βn, γn

)
, n ≥ 0,

yn = W(xn, T
n
nxn, vn;an, bn, cn),

(1.13)

which is the Ishikawa type iterative sequence with errors considered in [9]. Further, if f = I
and dn = an = 1 for all n ≥ 0, then zn = yn = xn for all n ≥ 0 and (1.10) reduces to the
following Mann type iterative sequence with errors [9]:

xn+1 ≡ W
(
xn, T

n
nxn, un;αn, βn, γn

)
, n ≥ 0. (1.14)

In order to prove our main results, the following lemmas will be needed.

Lemma 1.4. Let (E, d) be a convex metric space, Ti : E → E be a uniformly quasi-Lipschitzian
mapping for i = 1, 2, . . . ,N such that F :=

⋂N
i=1F(Ti)/= ∅. Then there exists a constant L ≥ 1 such

that, for all i = 1, 2, . . . ,N,

d
(
Tn
i x, p

) ≤ Ld
(
x, p

)
, ∀x ∈ X, p ∈ F, n ≥ 0. (1.15)

Proof. In fact, for each i = 1, 2, . . . ,N, since Ti : E → E is a uniformly quasi-Lipschitzian
mapping, we have

d
(
Tn
i x, p

) ≤ Lid
(
x, p

) ≤ Ld
(
x, p

)
, ∀x ∈ E, p ∈ F, n ≥ 0, (1.16)

where

L = max
i=1,2,...,N

{max{Li, 1}}. (1.17)

This completes the proof.
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Lemma 1.5 (see [7]). Let {pn}, {qn}, {rn} be three nonexpansive squences satisfying the following
conditions:

pn+1 ≤
(
1 + qn

)
pn + rn, ∀n ≥ 0,

∞∑

n=0

qn < ∞,
∞∑

n=0

rn < ∞. (1.18)

Then

(1) limn→∞pn exists;

(2) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

Lemma 1.6. Let (E, d) be a complete convex metric space and C be a nonempty closed convex subset
of E. Let Ti : C → C be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, . . . ,N
such that F :=

⋂N
i=1F(Ti)/= ∅ and f : C → C be a contractive mapping with a contractive constant

ξ ∈ (0, 1).Let {xn} be the iterative sequence with errors defined by (1.10) and {un}, {vn},{wn} be
three bounded sequences in C. Let {αn}, {βn}, {γn}, {an},{bn},{cn}, {dn}, {en},{fn} be sequences in
[0,1] satisfying the following conditions:

(i) αn + βn + γn = an + bn + cn = dn + en + fn = 1, ∀n ≥ 0;

(ii)
∑∞

n=0(βn + γn) < ∞;

(iii) M0 = Supp∈F,n≥0 {d(un, p) + d(vn, p) + d(wn, p) + d(f(p), p)} < ∞.

Then the following conclusions hold:

(1) for all p ∈ F and n ≥ 0,

d
(
xn+1, p

) ≤
[
1 + βnL

(
1 + L + L2

)]
d
(
xn, p

)
+Mηn, (1.19)

where L = maxi=1,2,...,N{Li}, ηn = βn + γn for all n ≥ 0 and

M = L(1 + L)
[
d
(
un, p

)
+ d

(
vn, p

)
+ d

(
wn, p

)
+ d

(
f
(
p
)
, p
)]
. (1.20)

(2) there exists a constant Mi > 0 such that

d
(
xn+m, p

) ≤ M1d
(
xn, p

)
+MM1

n+m−1∑

k=n

ηk, ∀p ∈ F, (1.21)

for all n,m ≥ 0.



6 Fixed Point Theory and Applications

Proof. (1) It follows from (1.7),(1.10), and Lemma 1.4 that

d
(
xn+1, p

)
= d

(
W

(
xn, T

n
nyn, un;αn, βn, γn

)
, p
)

≤ αnd
(
xn, p

)
+ βnd

(
Tn
nyn, p

)
+ γnd

(
un, p

)

≤ αnd
(
xn, p

)
+ βnLd

(
yn, p

)
+ γnd

(
un, p

)
,

(1.22)

d
(
yn, p

)
= d

(
W

(
f(xn), Tn

n zn, vn;an, bn, cn
)
, p
)

≤ and
(
f(xn), p

)
+ bnd

(
Tn
n zn, p

)
+ cnd

(
vn, p

)

≤ and
(
f(xn), f

(
p
))

+ and
(
f
(
p
)
, p
)
+ bnLd

(
zn, p

)
+ cnd

(
vn, p

)

≤ anξd
(
xn, p

)
+ and

(
f
(
p
)
, p
)
+ bnLd

(
zn, p

)
+ cnd

(
vn, p

)
,

(1.23)

d
(
zn, p

)
= d

(
W

(
f(xn), Tn

n xn,wn;dn, en, fn
)
, p
)

≤ dnd
(
f(xn), p

)
+ end

(
Tn
nxn, p

)
+ fnd

(
wn, p

)

≤ dnd
(
f(xn), f

(
p
))

+ dnd
(
f
(
p
)
, p
)
+ enLd

(
xn, p

)
+ fnd

(
wn, p

)

≤ dnξd
(
xn, p

)
+ dnd

(
f
(
p
)
, p
)
+ enLd

(
xn, p

)
+ fnd

(
wn, p

)

≤ (dnξ + enL)d
(
xn, p

)
+ dnd

(
f
(
p
)
, p
)
+ fnd

(
wn, p

)
.

(1.24)

Substituting (1.23) into (1.22) and simplifying it, we have

d
(
xn+1, p

) ≤ αnd
(
xn, p

)

+ βnL
[
anξd

(
xn, p

)
+ and

(
f
(
p
)
, p
)
+ bnLd

(
zn, p

)
+ cnd

(
vn, p

)]
+ γnd

(
un, p

)

≤ (
αn + βnLξan

)
d
(
xn, p

)
+ βnLand

(
f
(
p
)
, p
)

+ βnL
2bnd

(
zn, p

)
+ βnLcnd

(
vn, p

)
+ γnd

(
un, p

)
.

(1.25)

Substituting (1.24) into (1.25) and simplifying it, we get

d
(
xn+1, p

) ≤ (
αn + βnLanξ

)
d
(
xn, p

)

+ βnL
2bn

[
(dnξ + enL)dn

(
xn, p

)
+ dnd

(
f
(
p
)
, p
)
+ fnd

(
wn, p

)]

+ βnLand
(
f
(
p
)
, p
)
+ βnLcnd

(
vn, p

)
+ γnd

(
un, p

)

=
{
αn + βnL[anξ + Lbn(dnξ + enL)]

}
d
(
xn, p

)
+ βnL

2bndnd
(
f
(
p
)
, p
)

+ βnLand
(
f
(
p
)
, p
)
+ βnL

2bnfnd
(
wn, p

)
+ βnLcnd

(
vn, p

)
+ γnd

(
un, p

)
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≤
[
1 + βnL

(
1 + L + L2

)]
d
(
xn, p

)
+
[
βnL

2bndn + βnLan

]
d
(
f
(
p
)
, p
)
+ γnd

(
un, p

)

+ βnLcnd
(
vn, p

)
+ βnL

2bnfnd
(
wn, p

)

≤
[
1 + βnL

(
1 + L + L2

)]
d
(
xn, p

)
+ βnL(1 + L)d

(
f
(
p
)
, p
)
+ γnL(1 + L)d

(
f
(
p
)
, p
)

+ L(1 + L)
(
βn + γn

)
d
(
un, p

)
+ L(1 + L)

(
βn + γn

)
d
(
vn, p

)

+ L(1 + L)
(
βn + γn

)
d
(
wn, p

)

=
[
1 + βnL

(
1 + L + L2

)]
d
(
xn, p

)

+ L(1 + L)
(
βn + γn

)[
d
(
un, p

)
+ d

(
vn, p

)
+ d

(
wn, p

)
+ d

(
f
(
p
)
, p
)]

=
[
1 + βnL

(
1 + L + L2

)]
d
(
xn, p

)
+Mηn, ∀n ≥ 0, p ∈ F,

(1.26)

where

M = L(1 + L)
[
d
(
un, p

)
+ d

(
vn, p

)
+ d

(
wn, p

)
+ d

(
f
(
p
)
, p
)]
, ηn = βn + γn. (1.27)

(2) Since 1 + x ≤ ex for all x ≥ 0, it follows from (1.26) that, for n,m ≥ 0 and p ∈ F,

d
(
xn+m, p

) ≤
[
1 + βn+m−1L

(
1 + L + L2

)]
d
(
xn+m−1, p

)
+Mηn+m−1

≤ eβn+m−1L(1+L+L2)d
(
xn+m−1, p

)
+Mηn+m−1

≤ eβn+m−1L(1+L+L2)
{[

1 + βn+m−2L
(
1 + L + L2

)]
d
(
xn+m−2, p

)
+Mηn+m−2

}
+Mηn+m−1

≤ eL(1+L+L
2)(βn+m−1+βn+m−2)d

(
xn+m−1, p

)
+M

[
eβn+m−1L(1+L+L2)ηn+m−2 + ηn+m−1

]

≤ · · ·

≤ M1d
(
xn, p

)
+M1M

n+m−1∑

k=n

ηk,

(1.28)

where

M1 = eL(1+L+L
2)∑∞

k=0βk . (1.29)

This completes the proof.
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2. Main Results

Theorem 2.1. Let (E, d) be a complete convex metric space andC be a nonempty closed convex subset
of E. Let Ti : C → C be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, . . . ,N
such that F :=

⋂N
i=1F(Ti)/= ∅ and f : C → C be a contractive mapping with a contractive constant

ξ ∈ (0, 1). Let {xn} be the iterative sequence with errors defined by (1.10) and{un},{vn},{wn} be three
bounded sequence in C and {αn},{βn},{γn},{an},{bn},{cn},{dn},{en} and {fn} be nine sequences in
[0,1] satisfying the following conditions:

(i) αn + βn + γn = an + bn + cn = dn + en + fn = 1, ∀n ≥ 0,

(ii)
∑∞

n=0(βn + γn) < ∞,

(iii) M0 = Supp∈F, n≥0{d(un, p) + d(vn, p) + d(wn, p) + d(f(p), p)} < ∞.

Then the sequence {xn} converges to a common fixed point p ∈ F if and only if
lim infn→∞ d(xn, F) = 0, where d(x, F) = inf{d(x, F), p ∈ F}.

Proof. The necessity is obvious. Now prove the sufficiency. In fact, from Lemma 1.6, we have

d(xn+1, F) ≤
[
1 + βnL

(
1 + L + L2

)]
d(xn, F) +Mηn, ∀n ≥ 0, (2.1)

where ηn = βn + γn. By conditions (i) and (ii), we know that

∞∑

n=0

ηn < ∞,
∞∑

n=0

βn < ∞. (2.2)

It follows from Lemma 1.5 that limn→∞d(xn, F) exists. Since lim infn→∞d(xn, F) = 0, we have

lim
n→∞

d(xn, F) = 0. (2.3)

Next prove that {xn} is a Cauchy sequence inC. In fact, for any given ε > 0, there exists
a positive integer N0 such that

d(xn, F) ≤ ε

8M1
,

∞∑

n=N0

ηn ≤ ε

4M1M
, ∀n ≥ 0. (2.4)

From (2.4), there exist p1 ∈ F and positive integer N1 > N0 such that

d
(
xN1 , p1

)
<

ε

4M1
. (2.5)
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Thus Lemma 1.6 implies that, for any positive integers n,m with n > N1,

d(xn+m, xn) ≤ d
(
xn+m, p1

)
+ d

(
p1, xn

)

≤ M1d(xN1 , P1) +M1M
n+m−1∑

k=N1

ηk +M1d
(
xN1 , p1

)
+M1M

n−1∑

k=N1

ηk

≤ 2M1
ε

4M1
+ 2M1M

ε

4M1M

= ε.

(2.6)

This shows that {xn} is a Cauchy sequence in a nonempty closed convex subset C of a
complete convex metric space E. Without loss of generality, we can assume that limn→∞xn =
p∗ ∈ E. Next prove that p∗ ∈ F. In fact, for any given ε′ > 0, there exists a positive integer N2

such that for all n ≥ N2,

d
(
xn, p

∗) ≤ ε′

4L
, d(xn, F) ≤ ε′

8L
. (2.7)

Again from (2.7), there exist p2 ∈ F and positive integer N3 > N such that

d(xN3 , P2) ≤ ε′

4L
. (2.8)

Thus, for any i = 1, 2, . . . ,N, from (2.7) and (2.8), we have

d(TiP ∗, P ∗) ≤ d(TiP ∗, P2) + d(P2, TixN3) + d(TixN3 , P
∗)

≤ Ld
(
P ∗, p2

)
+ Ld

(
p2, xN3

)
+ Ld(xN3 , P

∗)

≤ L
{
d(P ∗, xN3) + d

(
xN3 , p2

)}
+ Ld

(
p2, xN3

)
+ Ld(xN3 , P

∗)

= 2Ld(P ∗, xN3) + 2Ld
(
xN3 , p2

)

<
ε′

2
+
ε′

2
= ε′.

(2.9)

By the arbitrariness of ε′ > 0, we know that TiP ∗ = P ∗ for all i = 1, 2, . . . ,N, that is, p∗ ∈ F.
This completes the proof of Theorem 2.1.

Taking f = I in Theorem 2.1, then we have the following theorem.

Theorem 2.2. Let (E, d) be a complete convex metric space and C be a nonempty closed
convex subset of E. Let Ti : C → C be a finite family of uniformly quasi-Lipschitzian
mapping for i = 1, 2, . . . ,N such that F :=

⋂N
i=1F(Ti)/= ∅. Let {xn} be the iterative seq-

uence with errors defined by (1.11) and {un},{vn},{wn} be three bounded sequence in C,
and {αn},{βn},{γn},{an},{bn},{cn},{dn}, {en}, and {fn} be nine sequence in [ 0,1] satisfying the
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conditions (i)–(iii) of Theorem 2.1. Then the sequence {xn} converges to a common fixed point p ∈ F
if and only if

liminf
n→∞

d(xn, F) = 0, (2.10)

where d(x, F) = inf {d(x, F), p ∈ F}.

Taking dn = 1 in Theorem 2.1, then we have the following theorem.

Theorem 2.3. Let (E, d) be a complete convex metric space andC be a nonempty closed convex subset
of E. Let Ti : C → C be a finite family of uniformly quasi-Lipschitzian mapping for i = 1, 2, . . . ,N
such that F :=

⋂N
i=1F(Ti)/= ∅ and f : C → C be a contractive mapping with a contractive constant

ξ ∈ (0, 1). Let {xn} be the iterative sequence with errors defined by (1.12) and {un},{vn} be two
bounded sequences in C and {αn},{βn},{γn},{an},{bn},{cn} be nine sequences in [ 0, 1] satisfying the
conditions (ii) and (iii) of Theorem 2.1 and αn + βn + γn = an + bn + cn = 1 for all n ≥ 0. Then the
sequence {xn} converges to a common fixed point p ∈ F if and only if

liminf
n→∞

d(xn, F) = 0, (2.11)

where d(x, F) = inf {d(x, p), p ∈ F}.

Remark 2.4. Theorems 2.1–2.3 generalize, improve, and unify some corresponding results in
[1–14].

Similarly, we can obtain the following results.

Theorem 2.5. Let (E, d) be a complete convex metric space and C be a nonempty closed convex
subset of E. Let Ti : C → C be a finite family of asymptotically quasi-nonexpansive mapping for
i = 1, 2, . . . ,N such that F :=

⋂N
i=1F(Ti)/= ∅ and f : C → C be a contractive mapping with a

contractive constant ξ ∈ (0, 1). Let {xn} be the iterative sequence with errors defined by (1.10) and
{un},{vn},{wn} be three bounded sequences in C and {αn},{βn}, {γn},{an},{bn},{cn},{dn}, {en},
and {fn} be nine sequences in [0, 1] satisfying the conditions (i)–(iii) of Theorem 2.1. Then the
sequence {xn} converges to a common fixed point p ∈ F if and only if

liminf
n→∞

d(xn, F) = 0, (2.12)

where d(x, F) = inf f{d(x, p), p ∈ F}.

Proof. From Remark 1.1, we know that each asymptotically quasi-nonexpansive mapping Ti :
C → C, i = 1, 2, . . . ,N must be a uniformly quasi-Lipschitzian with

Li = Sup
n≥0

{
k
(i)
n

}
< ∞, (2.13)

where {k(i)
n } ⊂ [1,∞) is the sequence appeared in (1.5). Hence the conclusion of Theorem 2.5

can be obtained from Theorem 2.1 immediately. This completes the proof.
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Theorem 2.6. Let (E, d) be a complete convex metric space and C be a nonempty closed
convex subset of E. Let Ti : C → C be a finite family of asymptotically quasi-nonexpansive
mapping for, i = 1, 2, . . . ,N such that F :=

⋂N
i=1F(Ti)/= ∅. Let {xn} be the iterative

sequence with errors defined by (1.11) and {un},{vn},{wn} be three bounded sequence in C
and {αn},{βn},{γn},{an}, {bn},{cn},{dn},{en}, and {fn} be nine sequence in [0, 1] satisfying the
conditions (i)–(iii) of Theorem 2.1. Then the sequence {xn} converges to a common fixed point p ∈ F
if and only if

liminf
n→∞

d(xn, F) = 0, (2.14)

where d(x, F) = inf {d(x, p), p ∈ F}.
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