
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2010, Article ID 125082, 13 pages
doi:10.1155/2010/125082

Research Article
Common Fixed Point Theorem in Partially Ordered
L-Fuzzy Metric Spaces

S. Shakeri,1 L. J. B. Ćirić,2 and R. Saadati3
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We introduce partially orderedL-fuzzy metric spaces and prove a common fixed point theorem in
these spaces.

1. Introduction

The Banach fixed point theorem for contractionmappings has been generalized and extended
in many directions [1–43]. Recently Nieto and Rodrı́guez-López [27–29] and Ran and
Reurings [33] presented some new results for contractions in partially ordered metric
spaces. The main idea in [27–33] involves combining the ideas of iterative technique in the
contraction mapping principle with those in the monotone technique.

Recall that if (X,≤) is a partially ordered set and F : X → X is such that for x, y ∈
X, x ≤ y implies F(x) ≤ F(y), then a mapping F is said to be nondecreasing. The main result
of Nieto and Rodrı́guez-López [27–33] and Ran and Reurings [33] is the following fixed point
theorem.

Theorem 1.1. Let (X,≤) be a partially ordered set and suppose that there is a metric d onX such that
(X, d) is a complete metric space. Suppose that F is a nondecreasing mapping with

d
(
F(x), F

(
y
))

≤ kd
(
x, y
)

(1.1)

for all x, y ∈ X, x ≤ y, where 0 < k < 1. Also suppose the following.
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(a) F is continuous.

(b) If {xn} ⊂ X is a nondecreasing sequence with xn → x in X,

then xn ≤ x for all n hold.
If there exists an x0 ∈ X with x0 ≤ F(x0), then F has a fixed point.

The works of Nieto and Rodrı́guez-López [27, 28] and Ran and Reurings [33] have
motivated Agarwal et al. [1], Bhaskar and Lakshmikantham [3], and Lakshmikantham and
Ćirić [23] to undertake further investigation of fixed points in the area of ordered metric
spaces. We prove the existence and approximation results for a wide class of contractive
mappings in intuitionistic metric space. Our results are an extension and improvement of
the results of Nieto and Rodrı́guez-López [27, 28] and Ran and Reurings [33] to more general
class of contractive type mappings and include several recent developments.

2. Preliminaries

The notion of fuzzy sets was introduced by Zadeh [44]. Various concepts of fuzzy metric
spaces were considered in [15, 16, 22, 45]. Many authors have studied fixed point theory in
fuzzy metric spaces; see, for example, [7, 8, 25, 26, 39, 46–48]. In the sequel, we will adopt
the usual terminology, notation, and conventions of L-fuzzy metric spaces introduced by
Saadati et al. [36] which are a generalization of fuzzy metric sapces [49] and intuitionistic
fuzzy metric spaces [32, 37].

Definition 2.1 (see [46]). Let L = (L,≤L) be a complete lattice, and U a nonempty set called a
universe. An L-fuzzy setA onU is defined as a mappingA : U → L. For each u inU,A(u)
represents the degree (in L) to which u satisfies A.

Lemma 2.2 (see [13, 14]). Consider the set L∗ and the operation ≤L∗ defined by

L∗ =
{
(x1, x2) : (x1, x2) ∈ [0, 1]2, x1 + x2 ≤ 1

}
, (2.1)

(x1, x2)≤L∗(y1, y2) ⇔ x1 ≤ y1, and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a
complete lattice.

Classically, a triangular norm T on ([0, 1],≤) is defined as an increasing, commutative,
associative mapping T : [0, 1]2 → [0, 1] satisfying T(1, x) = x, for all x ∈ [0, 1]. These
definitions can be straightforwardly extended to any latticeL = (L,≤L). Define first 0L = infL
and 1L = supL.

Definition 2.3. A negation on L is any strictly decreasing mapping N : L → L satisfying
N(0L) = 1L and N(1L) = 0L. If N(N(x)) = x, for all x ∈ L, then N is called an involutive
negation.

In this paper the negation N : L → L is fixed.

Definition 2.4. A triangular norm (t-norm) on L is a mapping T : L2 → L satisfying the
following conditions:

(i) (for all x ∈ L)(T(x, 1L) = x) (boundary condition);
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(ii) (for all (x, y) ∈ L2)(T(x, y) = T(y, x)) (commutativity);

(iii) (for all (x, y, z) ∈ L3)(T(x,T(y, z)) = T(T(x, y), z)) (associativity);

(iv) (for all (x, x′, y, y′) ∈ L4)(x≤Lx′ and y≤Ly′ ⇒ T(x, y)≤LT(x′, y′)) (monotonicity).

A t-norm T on L is said to be continuous if for any x, y ∈ L and any sequences {xn}
and {yn}which converge to x and y we have

lim
n
T
(
xn, yn

)
= T
(
x, y
)
. (2.2)

For example, T(x, y) = min(x, y) and T(x, y) = xy are two continuous t-norms on [0, 1]. A
t-norm can also be defined recursively as an (n + 1)-ary operation (n ∈ N) by T1 = T and

Tn(x1, . . . , xn+1) = T
(
Tn−1(x1, . . . , xn), xn+1

)
(2.3)

for n ≥ 2 and xi ∈ L.
A t-normT is said to be ofHadžić type if the family {Tn}n∈N

is equicontinuous at x = 1L,
that is,

∀ε ∈ L \ {0L, 1L}∃δ ∈ L \ {0L, 1L} : a>LN(δ) =⇒ Tn(a)>LN(ε) (n ≥ 1) . (2.4)

TM is a trivial example of a t-norm of Hadžić type, but there exist t-norms of Hadžić
type weaker than TM [50] where

TM

(
x, y
)
=

⎧
⎨

⎩

x, if x≤Ly,

y, if y≤Lx.
(2.5)

Definition 2.5. The 3-tuple (X,M,T) is said to be an L-fuzzy metric space if X is an arbitrary
(nonempty) set, T is a continuous t-norm on L and M is an L-fuzzy set on X2× ]0,+∞[
satisfying the following conditions for every x, y, z in X and t, s in ]0,+∞[:

(a) M(x, y, t)>L0L;

(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;

(c) M(x, y, t) = M(y, x, t);

(d) T(M(x, y, t),M(y, z, s))≤LM(x, z, t + s);

(e) M(x, y, ·) : ]0,∞[ → L is continuous.
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If the L-fuzzy metric space (X,M,T) satisfies the condition:

(
f
)
lim
t→∞

M
(
x, y, t

)
= 1L, (2.6)

then (X,M,T) is said to beMenger L-fuzzy metric space or for short aML-fuzzy metric space.

Let (X,M,T) be an L-fuzzy metric space. For t ∈ ]0,+∞[, we define the open ball
B(x, r, t) with center x ∈ X and radius r ∈ L \ {0L, 1L}, as

B(x, r, t) =
{
y ∈ X : M

(
x, y, t

)
>LN(r)

}
. (2.7)

A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and r ∈ L \ {0L, 1L} such
that B(x, r, t) ⊆ A. Let τM denote the family of all open subsets of X. Then τM is called the
topology induced by the L-fuzzy metric M.

Example 2.6 (see [38]). Let (X, d) be a metric space. Denote T(a, b) = (a1b1,min(a2 + b2, 1))
for all a = (a1, a2) and b = (b1, b2) in L∗ and letM andN be fuzzy sets on X2 × (0,∞) defined
as follows:

MM,N

(
x, y, t

)
=
(
M
(
x, y, t

)
,N
(
x, y, t

))
=

(
t

t + d
(
x, y
) ,

d
(
x, y
)

t + d
(
x, y
)

)

. (2.8)

Then (X,MM,N,T) is an intuitionistic fuzzy metric space.

Example 2.7. Let X = N. Define T(a, b) = (max(0, a1 + b1 − 1), a2 + b2 − a2b2) for all a = (a1, a2)
and b = (b1, b2) in L∗, and let M(x, y, t) on X2 × (0,∞) be defined as follows:

M
(
x, y, t

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x

y
,
y − x
y

)
if x ≤ y,

(
y

x
,
x − y
x

)
if y ≤ x

(2.9)

for all x, y ∈ X and t > 0. Then (X,M,T) is an L-fuzzy metric space.

Lemma 2.8 (see [49]). Let (X,M,T) be anL-fuzzy metric space. Then,M(x, y, t) is nondecreasing
with respect to t, for all x, y in X.

Definition 2.9. A sequence {xn}n∈N
in an L-fuzzy metric space (X,M,T) is called a Cauchy

sequence, if for each ε ∈ L \ {0L} and t > 0, there exists n0 ∈ N such that for allm ≥ n ≥ n0 (n ≥
m ≥ n0),

M(xm, xn, t)>LN(ε). (2.10)

The sequence {xn}n∈N
is said to be convergent to x ∈ X in the L-fuzzy metric space (X,M,T)

(denoted by xn
M→ x) if M(xn, x, t) = M(x, xn, t) → 1L whenever n → +∞ for every t > 0. A

L-fuzzymetric space is said to be complete if and only if every Cauchy sequence is convergent.
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Definition 2.10. Let (X,M,T) be an L-fuzzy metric space. M is said to be continuous on X ×
X×]0,∞[ if

lim
n→∞

M
(
xn, yn, tn

)
= M

(
x, y, t

)
(2.11)

whenever a sequence {(xn, yn, tn)} in X × X×]0,∞[ converges to a point (x, y, t) ∈ X ×
X×]0,∞[, that is, limnM(xn, x, t) = limnM(yn, y, t) = 1L and limnM(x, y, tn) = M(x, y, t).

Lemma 2.11. Let (X,M,T) be an L-fuzzy metric space. Then M is continuous function on X ×
X×]0,∞[.

Proof. The proof is the same as that for fuzzy spaces (see [35, Proposition 1]).

Lemma 2.12. If an ML-fuzzy metric space (X,M,T) satisfies the following condition:

M
(
x, y, t

)
= C, ∀t > 0, (2.12)

then one has C = 1L and x = y.

Proof. Let M(x, y, t) = C for all t > 0. Then by (f) of Definition 2.5, we have C = 1L and by
(b) of Definition 2.5, we conclude that x = y.

Lemma 2.13 (see [50]). Let (X,M,T) be an ML-fuzzy metric space in which T is Hadžic’ type.
Suppose

M(xn, xn+1, t)≥LM
(
x0, x1,

t

kn

)
(2.13)

for some 0 < k < 1 and n ∈ N. Then {xn} is a Cauchy sequence.

3. Main Results

Definition 3.1. Suppose that (X,≤) is a partially ordered set and F, h : X → X are mappings
of X into itself. We say that F is h-nondecreasing if for x, y ∈ X,

h(x) ≤ h
(
y
)

implies F(x) ≤ F
(
y
)
. (3.1)

Now we present the main result in this paper.

Theorem 3.2. Let (X,≤) be a partially ordered set and suppose that there is an L-fuzzy metric M
on X such that (X,M,T) is a complete ML-fuzzy metric space in which T is Hadžic’ type. Let
F, h : X → X be two self-mappings of X such that there exist k ∈ (0, 1) and q ∈ (0, 1) such that
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F(X) ⊆ h(X), F is a h-nondecreasing mapping and

M
(
F(x), F

(
y
)
, kt
)
≥LTM

{
M
(
h(x), h

(
y
)
, t
)
,M(h(x), F(x), t),M

(
h
(
y
)
, F
(
y
)
, t
)
,

M
(
h(x), F

(
y
)
,
(
1 + q

)
t
)
,M
(
h
(
y
)
, F(x),

(
1 − q

)
t
)} (3.2)

for all x, y ∈ X for which h(x) ≤ h(y) and all t > 0.
Also suppose that

if {h(xn)} ⊂ X is a nondecreasing sequence with h(xn) −→ h(z) in h(X),

then h(z) ≤ h(h(z)) and h(xn) ≤ h(z) ∀n hold.
(3.3)

Also suppose that h(X) is closed. If there exists an x0 ∈ X with h(x0) ≤ F(x0), then F and h have
a coincidence. Further, if F and h commute at their coincidence points, then F and h have a common
fixed point.

Proof. Let x0 ∈ X be such that h(x0) ≤ F(x0). Since F(X) ⊆ h(X), we can choose x1 ∈ X such
that h(x1) = F(x0). Again from F(X) ⊆ h(X) we can choose x2 ∈ X such that h(x2) = F(x1).
Continuing this process we can choose a sequence {xn} in X such that

h(xn+1) = F(xn) ∀n ≥ 0. (3.4)

Since h(x0) ≤ F(x0) and h(x1) = F(x0),we have h(x0) ≤ h(x1). Then from (3.1),

F(x0) ≤ F(x1), (3.5)

that is, by (3.4), h(x1) ≤ h(x2). Again from (3.1),

F(x1) ≤ F(x2), (3.6)

that is, h(x2) ≤ h(x3). Continuing we obtain

F(x0) ≤ F(x1) ≤ F(x2) ≤ F(x3) ≤ · · · ≤ F(xn) ≤ F(xn+1) ≤ · · · . (3.7)

Now we will show that a sequence {M(F(xn), F(xn+1), t)} converges to 1L for each
t > 0. If M(F(xn), F(xn+1), t) = 1L for some n and for each t > 0, then it is easily to show that
M(F(xn+k), F(xn+k+1), t) = 1L for all k ≥ 0. So we suppose that M(F(xn), F(xn+1), t)<L1L for
all n.We show that for each t > 0,

M(F(xn), F(xn+1), kt)≥LM(F(xn−1), F(xn), t) ∀n ≥ 1. (3.8)
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Since from (3.4) and (3.7)we have h(xn−1) ≤ h(xn), from (3.1)with x = xn and y = xn+1,

M(F(xn), F(xn+1), kt)≥LTM{M(h(xn), h(xn+1), t),M(h(xn), F(xn), t),M(h(xn+1), F(xn+1), t),

M
(
h(xn), F(xn+1),

(
1 + q

)
t
)
,M
(
h(xn+1), F(xn),

(
1 − q

)
t
)}
.

(3.9)

So by (3.4),

M(F(xn), F(xn+1), kt)≥LTM{M(F(xn−1), F(xn), t),M(F(xn−1), F(xn), t),M(F(xn), F(xn+1), t),

M
(
F(xn−1), F(xn+1),

(
1 + q

)
t
)
, 1L
}
.

(3.10)

Since by (d) of Definition 2.5

M
(
F(xn−1), F(xn+1),

(
1 + q

)
t
)
≥LTM

{
M(F(xn−1), F(xn), t),M

(
F(xn), F(xn+1), qt

)}
, (3.11)

we have

M(F(xn), F(xn+1), kt)≥LTM{M(F(xn−1), F(xn), t),M(F(xn), F(xn+1), t),

M
(
F(xn), F(xn+1), qt

)}
.

(3.12)

As t-norm is continuous, letting q → 1L we get

M(F(xn), F(xn+1), kt)≥LTM{M(F(xn−1), F(xn), t),M(F(xn), F(xn+1), t)}. (3.13)

Consequently,

M(F(xn), F(xn+1), t)≥LTM

{
M
(
F(xn−1), F(xn),

1
k
t

)
,M
(
F(xn), F(xn+1),

1
k
t

)}
. (3.14)

By repeating the above inequality, we obtain

M(F(xn), F(xn+1), t)≥LTM

{
M
(
F(xn−1), F(xn),

1
k
t

)
,M
(
F(xn), F(xn+1),

1
kp
t

)}
. (3.15)

Since M(F(xn), F(xn+1), (1/kp)t) → 1L as p → ∞, it follows that

M(F(xn), F(xn+1), t)≥LM
(
F(xn−1), F(xn),

1
k
t

)
. (3.16)

Thus we proved (3.7). By repeating the above inequality (3.7), we get

M(F(xn), F(xn+1), t)≥LM
(
F(x0), F(x1),

1
kn
t

)
. (3.17)
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Since M(x, y, t) → 1L as t → +∞ and k < 1, letting n → ∞ in (3.17)we get

lim
n→∞

M(F(xn), F(xn+1), t) = 1L for each t > 0. (3.18)

Now we will prove that {F(xn)} is a Cauchy sequence which means that for every
δ > 0 and ε ∈ L \ {0L, 1L} there exists n(δ, ε) ∈ N such that

M
(
F(xn), F

(
xn+p

)
, δ
)
>LN(ε) for every n ≥ n(δ, ε) and every p ∈ N. (3.19)

Let ε ∈ L \ {0L, 1L} and δ > 0 be arbitrary. For any p ≥ 1 we have

δ = δ(1 − k)(1 + k + · · · + kp + · · · ) > δ(1 − k)
(
1 + k + · · · + kp−1

)
. (3.20)

SinceM(x, y, t) is nondecreasing with respect to t, for all x, y in X,

M
(
F(xn), F

(
xn+p

)
, δ
)
≥LM

(
F(xn), F

(
xn+p

)
, δ(1 − k)

(
1 + kn + · · · + kp−1

))
(3.21)

and hence, by (d) of Definition 2.5,

M
(
F(xn), F

(
xn+p

)
, δ
)
≥LT

p−2
M

{
M(F(xn), F(xn+1), (1 − k)δ),M(F(xn+1), F(xn+2), (1 − k)δk)

, . . . ,M
(
F
(
xn+p−1

)
, F
(
xn+p

)
, (1 − k)δkp−1

)}
.

(3.22)

From (3.17) it follows that

M(F(xn+i), F(xn+i+1), t)≥LM
(
F(xn), F(xn+1),

t

ki

)
for each i≥L1L. (3.23)

From (3.23) with t = (1 − k)δki we get

M
(
F(xn+i), F(xn+i+1), (1 − k)δki

)
≥LM(F(xn), F(xn+1), (1 − k)δ). (3.24)

Thus by (3.22),

M
(
F(xn), F

(
xn+p

)
, δ
)
≥LTn

M{M(F(xn), F(xn+1), (1 − k)δ),M(F(xn), F(xn+1), (1 − k)δ)

, . . . ,M(F(xn), F(xn+1), (1 − k)δ)}.
(3.25)

Hence we get

M
(
F(xn), F

(
xn+p

)
, δ
)
≥LM(F(xn), F(xn+1), (1 − k)δ). (3.26)
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From (3.26) and (3.17),

M
(
F(xn), F

(
xn+p

)
, δ
)
≥LM

(
F(x0), F(x1),

(1 − k)δ
kn

)
. (3.27)

Hence we conclude, as M(x, y, t) → 1L as t → +∞ and k < 1, that there exists n(δ, ε) ∈ N

such that

M
(
F(xn), F

(
xn+p

)
, δ
)
>LN(ε) for every n ≥ n(δ, ε) and every p ∈ N. (3.28)

Thus we proved that {F(xn)} is a Cauchy sequence.
Since h(X) is closed and as F(xn) = h(xn+1), there is some z ∈ X such that

lim
n→∞

h(xn) = h(z). (3.29)

Now we show that z is a coincidence of F and h. Since from (3.3) and (3.29) we have
h(xn) ≤ h(z) for all n, then from (3.2) and by (d) of Definition 2.5 we have

M(F(xn), F(z), kt)≥LTM{M(h(xn), h(z), t),M(h(xn), F(xn), t),M(h(z), F(z), t),

M
(
h(xn), F(z),

(
1 + q

)
t
)
,M
(
h(z), F(xn),

(
1 − q

)
t
)}
.

(3.30)

Letting n → ∞ we get

M(h(z), F(z), kt)≥LTM{M(h(z), h(z), t),M(h(z), h(z), t),M(h(z), F(z), t),

M
(
h(z), F(z),

(
1 + q

)
t
)
,M
(
h(z), h(z),

(
1 − q

)
t
)} (3.31)

for all t > 0. Therefore,

M(h(z), F(z), t)≥LM
(
h(z), F(z),

1
k
t

)
. (3.32)

Hence we get

M(h(z), F(z), t)≥LM
(
h(z), F(z),

1
kn
t

)
−→ 1L as n −→ ∞ ∀t > 0. (3.33)

Hence we conclude that M(h(z), F(z), t) = 1L for all t > 0. Then by (b) of Definition 2.5 we
have F(z) = h(z). Thus we proved that F and h have a coincidence.

Suppose now that F and h commute at z. Set w = h(z) = F(z). Then

F(w) = F(h(z)) = h(F(z)) = h(w). (3.34)
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Since from (3.3) we have h(z) ≤ h(h(z)) = h(w) and as h(z) = F(z) and h(w) = F(w), from
(3.2) we get

M(w,F(w), kt) = M(F(z), F(w), kt)

≥LTM{M(h(z), h(w), t),M(h(z), F(z), t),M(h(w), F(w), t),

M
(
h(w), F(z),

(
1 + q

)
t
)
,M
(
h(z), F(w),

(
1 − q

)
t
)}

= M
(
F(z), F(w),

(
1 − q

)
t
)
.

(3.35)

Letting q → 0 we get

M(F(z), F(w), kt)≥LM(F(z), F(w), t). (3.36)

Hence, similarly as above, we get

M(F(z), F(w), t)≥LM
(
F(z), F(w),

1
kn
t

)
−→ 1L as n −→ ∞ ∀t > 0. (3.37)

Hence we conclude that F(w) = F(z). Since F(z) = h(z) = w,we have

F(w) = h(w) = w. (3.38)

Thus we proved that F and h have a common fixed point.

Remark 3.3. Note that F is h-nondecreasing and can be replaced by F which is h-non-
increasing in Theorem 3.2 provided that h(x0) ≤ F(x0) is replaced byF(x0) ≥ h(x0) in
Theorem 3.2.

Corollary 3.4. Let (X,≤) be a partially ordered set and suppose that there is an L-fuzzy metric M
on X such that (X,M,T) is a complete ML-fuzzy metric space in which T is Hadžic’ type. Let
F : X → X be a nondecreasing self-mappings ofX such that there exist k ∈ (0, 1) and q ∈ (0, 1) such
that

M
(
F(x), F

(
y
)
, kt
)
≥LTM

{
M
(
x, y, t

)
,M(x, F(x), t),M

(
y, F
(
y
)
, t
)
,

M
(
x, F
(
y
)
,
(
1 + q

)
t
)
,M
(
y, F(x),

(
1 − q

)
t
)} (3.39)

for all x, y ∈ X for which x ≤ y and all t > 0. Also suppose the following.

(i) If {xn} ⊂ X is a nondecreasing sequence with xn → z in X, then xn ≤ z for all n hold.

(ii) F is continuous.

If there exists an x0 ∈ X with x0 ≤ F(x0), then F has a fixed point.

Proof. Taking h = I (I = the identity mapping) in Theorem 3.2, then (3.3) reduces to the
hypothesis (i).
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Suppose now that F is continuous. Since from (3.4)we have xn+1 = F(xn) for all n ≥ 0,
and as from (3.29), xn → z, then

F(z) = F
(

lim
n→∞

xn

)
= lim

n→∞
F(xn) = z. (3.40)

Corollary 3.5. Let (X,≤) be a partially ordered set and suppose that there is an L-fuzzy metric M
on X such that (X,M,T) is a complete ML-fuzzy metric space in which T is Hadžic’ type. Let
F : X → X be a nondecreasing self-mappings ofX such that there exist k ∈ (0, 1) and q ∈ (0, 1) such
that

M
(
F(x), F

(
y
)
, kt
)
≥LTM

{
M
(
x, y, t

)
,M(x, F(x), t),M

(
y, F
(
y
)
, t
)}

(3.41)

for all x, y ∈ X for which x ≤ y and all t > 0. Also suppose the following.

(i) If {xn} ⊂ X is a nondecreasing sequence with xn → z in X, then xn ≤ z for all n hold.

(ii) F is continuous.

If there exists an x0 ∈ X with x0 ≤ F(x0), then F has a fixed point.
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[21] S. N. Ješić and N. A. Babačev, “Common fixed point theorems in intuitionistic fuzzy metric spaces
and L-fuzzy metric spaces with nonlinear contractive condition,” Chaos, Solitons & Fractals, vol. 37,
no. 3, pp. 675–687, 2008.

[22] T. Kamran, “Common fixed points theorems for fuzzy mappings,” Chaos, Solitons & Fractals, vol. 38,
no. 5, pp. 1378–1382, 2008.
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[27] J. J. Nieto and R. Rodrı́guez-López, “Contractive mapping theorems in partially ordered sets and
applications to ordinary differential equations,” Order, vol. 22, no. 3, pp. 223–239, 2005.
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