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The purpose of this paper is to present a theory of Reich’s fixed point theorem for multivalued
operators in terms of fixed points, strict fixed points, multivalued weakly Picard operators,
multivalued Picard operators, data dependence of the fixed point set, sequence of multivalued
operators and fixed points, Ulam-Hyers stability of a multivalued fixed point equation, well-
posedness of the fixed point problem, and the generated fractal operator.

1. Introduction

Let (X, d) be a metric space and consider the following family of subsets Pcl(X) := {Y ⊆ X |
Y is nonempty and closed}.We also consider the following (generalized) functionals:

D : P(X) × P(X) −→ R+, D(A,B) := inf{d(a, b) | a ∈ A, b ∈ B}, (1.1)

D is called the gap functional betweenA andB. In particular, if x0∈X, thenD(x0, B) :=D({x0},
B):

ρ : P(X) × P(X) −→ R+ ∪ {+∞}, ρ(A,B) := sup{D(a, B) | a ∈ A}, (1.2)

ρ is called the (generalized) excess functional:

H : P(X) × P(X) −→ R+ ∪ {+∞}, H(A,B) := max
{
ρ(A,B), ρ(B,A)

}
, (1.3)

H is the (generalized) Pompeiu-Hausdorff functional.
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It is well known that if (X, d) is a complete metric space, then the pair (Pcl(X),H) is a
complete generalized metric space. (See [1, 2]).

Definition 1.1. If (X, d) is a metric space, then a multivalued operator T : X → Pcl(X) is said
to be a Reich-type multivalued (a, b, c)-contraction if and only if there exist a, b, c ∈ R+ with
a + b + c < 1 such that

H
(
T(x), T

(
y
)) ≤ ad

(
x, y

)
+ bD(x, T(x)) + cD

(
y, T

(
y
))
, for each x, y ∈ X. (1.4)

Reich proved that any Reich-type multivalued (a, b, c)-contraction on a complete
metric space has at least one fixed point (see [3]).

In a recent paper Petruşel and Rus introduced the concept of “theory of a metric fixed
point theorem” and used this theory for the case of multivalued contraction (see [4]). For the
singlevalued case, see [5].

The purpose of this paper is to extend this approach to the case of Reich-type
multivalued (a, b, c)-contraction. We will discuss Reich’s fixed point theorem in terms of

(i) fixed points and strict fixed points,

(ii) multivalued weakly Picard operators,

(iii) multivalued Picard operators,

(iv) data dependence of the fixed point set,

(v) sequence of multivalued operators and fixed points,

(vi) Ulam-Hyers stability of a multivaled fixed point equation,

(vii) well-posedness of the fixed point problem;

(viii) fractal operators.

Notice also that the theory of fixed points and strict fixed points for multivalued
operators is closely related to some important models in mathematical economics, such as
optimal preferences, game theory, and equilibrium of an abstract economy. See [6] for a nice
survey.

2. Notations and Basic Concepts

Throughout this paper, the standard notations and terminologies in nonlinear analysis are
used (see the papers by Kirk and Sims [7], Granas and Dugundji [8], Hu and Papageorgiou
[2], Rus et al. [9], Petruşel [10], and Rus [11]).

Let X be a nonempty set. Then we denote.

P(X) = {Y | Y is a subset of X}, P(X) =
{
Y ∈ P(X) | Y is nonempty

}
. (2.1)

Let (X, d) be a metric space. Then δ(Y ) = sup{d(a, b) | a, b ∈ Y} and

Pb(X) = {Y ∈ P(X) | δ(Y ) < +∞}, Pcp(X) =
{
Y ∈ P(X) | Y is compact

}
. (2.2)
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Let T : X → P(X) be a multivalued operator. Then the operator T̂ : P(X) → P(X),
which is defined by

T̂(Y ) :=
⋃

x∈Y
T(x), for Y ∈ P(X), (2.3)

is called the fractal operator generated by T . For a well-written introduction on the theory of
fractals see the papers of Barnsley [12], Hutchinson [13], Yamaguti et al. [14].

It is known that if (X, d) is a metric space and T : X → Pcp(X), then the following
statements hold:

(a) if T is upper semicontinuous, then T(Y ) ∈ Pcp(X), for every Y ∈ Pcp(X);

(b) the continuity of T implies the continuity of T̂ : Pcp(X) → Pcp(X).

The set of all nonempty invariant subsets of T is denoted by I(T), that is,

I(T) := {Y ∈ P(X) | T(Y ) ⊂ Y}. (2.4)

A sequence of successive approximations of T starting from x ∈ X is a sequence
(xn)n∈N

of elements in X with x0 = x, xn+1 ∈ T(xn), for n ∈ N.
If T : Y ⊆ X → P(X), then FT := {x ∈ Y | x ∈ T(x)} denotes the fixed point set of T

and (SF)T := {x ∈ Y | {x} = T(x)} denotes the strict fixed point set of T . By

Graph(T) :=
{(

x, y
) ∈ Y ×X : y ∈ T(x)

}
(2.5)

we denote the graph of the multivalued operator T .
If T : X → P(X), then T0 := 1X, T1 := T, . . . , Tn+1 = T ◦ Tn, n ∈ N, denote the iterate

operators of T .

Definition 2.1 (see [15]). Let (X, d) be a metric space. Then, T : X → P(X) is called a
multivalued weakly Picard operator (briefly MWP operator) if for each x ∈ X and each
y ∈ T(x) there exists a sequence (xn)n∈N

in X such that

(i) x0 = x and x1 = y;

(ii) xn+1 ∈ T(xn) for all n ∈ N;

(iii) the sequence (xn)n∈N
is convergent and its limit is a fixed point of T .

For the following concepts see the papers by Rus et al. [15], Petruşel [10], Petruşel and
Rus [16], and Rus et al. [9].

Definition 2.2. Let (X, d) be a metric space, and let T : X → P(X) be an MWP operator. The
multivalued operator T∞ : Graph(T) → P(FT) is defined by the formula T∞(x, y) = {z ∈ FT |
there exists a sequence of successive approximations of T starting from (x, y) that converges
to z}.

Definition 2.3. Let (X, d) be a metric space and T : X → P(X) an MWP operator. Then T is
said to be a c-multivalued weakly Picard operator (briefly c-MWP operator) if and only if
there exists a selection t∞ of T∞ such that d(x, t∞(x, y)) ≤ cd(x, y) for all (x, y) ∈ Graph(T).

We recall now the notion of multivalued Picard operator.
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Definition 2.4. Let (X, d) be a metric space and T : X → P(X). By definition, T is called a
multivalued Picard operator (briefly MP operator) if and only if

(i) (SF)T = FT = {x∗};
(ii) Tn(x) H→ {x∗} as n → ∞, for each x ∈ X.

In [10] other results on MWP operators are presented. For related concepts and results
see, for example, [1, 17–23].

3. A Theory of Reich’s Fixed Point Principle

We recall the fixed point theorem for a single-valued Reich-type operator, which is needed
for the proof of our first main result.

Theorem 3.1 (see [3]). Let (X, d) be a complete metric space, and let f : X → X be a Reich-type
single-valued (a, b, c)-contraction, that is, there exist a, b, c ∈ R+ with a + b + c < 1 such that

d
(
f(x), f

(
y
)) ≤ ad

(
x, y

)
+ bd

(
x, f(x)

)
+ cd

(
y, f

(
y
))
, for each x, y ∈ X. (3.1)

Then f is a Picard operator, that is, we have:

(i) Ff = {x∗};
(ii) for each x ∈ X the sequence (fn(x))n∈N

converges in (X, d) to x∗.

Our main result concerning Reich’s fixed point theorem is the following.

Theorem 3.2. Let (X, d) be a complete metric space, and let T : X → Pcl(X) be a Reich-type
multivalued (a, b, c)-contraction. Let α := (a + b)/(1 − c). Then one has the following

(i) FT /= ∅;
(ii) T is a 1/(1 − α)-multivalued weakly Picard operator;

(iii) let S : X → Pcl(X) be a Reich-type multivalued (a, b, c)-contraction and η > 0 such that
H(S(x), T(x)) ≤ η for each x ∈ X, thenH(FS, FT ) ≤ η/(1 − α);

(iv) let Tn : X → Pcl(X) (n ∈ N) be a sequence of Reich-type multivalued (a, b, c)-contraction,

such that Tn(x)
H→ T(x) uniformly as n → +∞. Then, FTn

H→ FT as n → +∞.

If, moreover T(x) ∈ Pcp(X) for each x ∈ X, then one additionally has:

(v) (Ulam-Hyers stability of the inclusion x ∈ T(x)) Let ε > 0 and x ∈ X be such that
D(x, T(x)) ≤ ε, then there exists x∗ ∈ FT such that d(x, x∗) ≤ ε/(1 − α);

(vi) T̂ : (Pcp(X),H) → (Pcp(X),H), T̂(Y ) :=
⋃

x∈Y T(x) is a set-to-set (a, b, c)-contraction
and (thus) FT̂ = {A∗

T};
(vii) Tn(x) H→ A∗

T as n → +∞, for each x ∈ X;

(viii) FT ⊂ A∗
T and FT are compact;

(ix) A∗
T =

⋃
n∈N\{0} T

n(x) for each x ∈ FT .
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Proof. (i) Let x0 ∈ X and x1 ∈ T(x0) be arbitrarily chosen. Then, for each arbitrary q > 1 there
exists x2 ∈ T(x1) such that d(x1, x2) ≤ qH(T(x0), T(x1)). Hence

d(x1, x2) ≤ q[ad(x0, x1) + bD(x0, T(x0)) + cD(x1, T(x1))]

≤ q[ad(x0, x1) + bd(x0, x1) + cd(x1, x2)].
(3.2)

Thus

d(x1, x2) ≤
q(a + b)
1 − qc

d(x0, x1). (3.3)

Denote β := q(a + b)/(1 − qc). By an inductive procedure, we obtain a sequence of successive
approximations for T starting from (x0, x1) ∈ Graph(T) such that, for each n ∈ N, we have
d(xn, xn+1) ≤ βnd(x0, x1). Then

d
(
xn, xn+p

) ≤ βn
1 − βp

1 − β
d(x0, x1), for each n, p ∈ N \ {0}. (3.4)

If we choose 1 < q < 1/(a + b + c), then by (3.4) we get that the sequence (xn)n∈N
is Cauchy

and hence convergent in (X, d) to some x∗ ∈ X
Notice that, by D(x∗, T(x∗)) ≤ d(x∗, xn+1) + D(xn+1, T(x∗)) ≤ d(xn+1, x

∗) +
H(T(xn), T(x∗)) ≤ d(xn+1, x

∗) + ad(xn, x
∗) + bD(xn, T(xn)) + cD(x∗,T(x∗)) ≤ d(xn+1, x

∗) +
ad(xn, x

∗) + bd(xn, xn+1)) + cD(x∗, T(x∗)), we obtain that

D(x∗, T(x∗)) ≤ 1
1 − c

[d(xn+1, x
∗) + ad(xn, x

∗) + bd(xn, xn+1)] −→ as n −→ +∞. (3.5)

Hence x∗ ∈ FT .
(ii) Let p → +∞ in (3.4). Then we get that

d(xn, x
∗) ≤ βn

1
1 − β

d(x0, x1) for each n ∈ N \ {0}. (3.6)

For n = 1, we get

d(x1, x
∗) ≤ β

1 − β
d(x0, x1). (3.7)

Then

d(x0, x
∗) ≤ d(x0, x1) + d(x1, x

∗) ≤ 1
1 − β

d(x0, x1). (3.8)

Let q ↘ 1 in (3.8), then

d(x0, x
∗) ≤ 1

1 − α
d(x0, x1). (3.9)

Hence T is a 1/(1 − α)-multivalued weakly Picard operator.
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(iii) Let x0 ∈ FS be arbitrarily chosen. Then, by (ii), we have that

d(x0, t
∞(x0, x1)) ≤ 1

1 − α
d(x0, x1), for each x1 ∈ T(x0). (3.10)

Let q > 1 be an arbitrary. Then, there exists x1 ∈ T(x0) such that

d(x0, t
∞(x0, x1)) ≤ 1

1 − α
qH(S(x0), T(x0)) ≤

qη

1 − α
. (3.11)

In a similar way, we can prove that for each y0 ∈ FT there exists y1 ∈ S(y0) such that

d
(
y0, s

∞(y0, y1
)) ≤ qη

1 − α
. (3.12)

Thus, (3.11) and (3.12) together imply that H(FS, FT ) ≤ qη/(1 − α) for every q > 1. Let q ↘ 1
and we get the desired conclusion.

(iv) follows immediately from (iii).
(v) Let ε > 0 and x ∈ X be such that D(x, T(x)) ≤ ε. Then, since T(x) is compact, there

exists y ∈ T(x) such that d(x, y) ≤ ε. From the proof of (i), we have that

d
(
x, t∞

(
x, y

)) ≤ 1
1 − α

d
(
x, y

)
. (3.13)

Since x∗ := t∞(x, y) ∈ FT , we get that d(x, x∗) ≤ ε/(1 − α).
(vi)We will prove for any A,B ∈ Pcp(X) that

H(T(A), T(B)) ≤ aH(A,B) + bH(A, T(A)) + cH(B, T(B)). (3.14)

For this purpose, let A,B ∈ Pcp(X) and let u ∈ T(A). Then, there exists x ∈ A such that
u ∈ T(x). Since the sets A,B are compact, there exists y ∈ B such that

d
(
x, y

) ≤ H(A,B). (3.15)

From (3.15) we get that D(u, T(B)) ≤ D(u, T(y)) ≤ H(T(x), T(y)) ≤ ad(x, y) + bD(x, T(x)) +
cD(y, T(y)) ≤ ad(x, y) + bρ(A, T(x)) + cρ(B, T(y)) ≤ aH(A,B) + bρ(A, T(A)) + cρ(B, T(B)) ≤
aH(A,B) + bH(A, T(A)) + cH(B, T(B)). Hence

ρ(T(A), T(B)) ≤ aH(A,B) + bH(A, T(A)) + cH(B, T(B)). (3.16)

In a similar way we obtain that

ρ(T(B), T(A)) ≤ aH(A,B) + bH(A, T(A)) + cH(B, T(B)). (3.17)
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Thus, (3.16) and (3.17) together imply that

H(T(A), T(B)) ≤ aH(A,B) + bH(A, T(A)) + cH(B, T(B)). (3.18)

Hence, T̂ is a Reich-type single-valued (a, b, c)-contraction on the complete metric space
(Pcp(X),H). From Theorem 3.1 we obtain that

(a) FT̂ = {A∗
T} and

(b) T̂n(A) H→ A∗
T as n → +∞, for each A ∈ Pcp(X).

(vii) From (vi)-(b)we get that Tn({x}) = T̂n({x}) H→ A∗
T as n → +∞, for each x ∈ X.

(viii)-(ix) Let x ∈ FT be an arbitrary. Then x ∈ T(x) ⊂ T2(x) ⊂ · · · ⊂ Tn(x) ⊂ · · · .
Hence x ∈ Tn(x), for each n ∈ N

∗. Moreover, limn→+∞Tn(x) =
⋃

n∈N∗ Tn(x). From (vii), we
immediately get that A∗

T =
⋃

n∈N∗ Tn(x). Hence x ∈ ⋃
n∈N∗ Tn(x) = A∗

T . The proof is complete.
A second result for Reich-typemultivalued (a, b, c)-contractions formulates as follows.

Theorem 3.3. Let (X, d) be a complete metric space and T : X → Pcl(X) a Reich-type multivalued
(a, b, c)-contraction with (SF)T /= ∅. Then, the following assertions hold:

(x) FT = (SF)T = {x∗};
(xi) (Well-posedness of the fixed point problem with respect toD [24]) If (xn)n∈N

is a sequence

in X such that D(xn, T(xn)) → 0 as n → ∞, then xn
d→ x∗ as n → ∞;

(xii) (Well-posedness of the fixed point problem with respect toH [24]) If (xn)n∈N
is a sequence

in X such that H(xn, T(xn)) → 0 as n → ∞, then xn
d→ x∗ as n → ∞.

Proof. (x) Let x∗ ∈ (SF)T . Note that (SF)T = {x∗}. Indeed, if y ∈ (SF)T , then d(x∗, y) =
H(T(x∗), T(y)) ≤ ad(x∗, y) + bD(x∗, T(x∗)) + cD(y, T(y)) = ad(x∗, y). Thus y = x∗.

Let us show now that FT = {x∗}. Suppose that y ∈ FT . Then, d(x∗, y) = D(T(x∗), y) ≤
H(T(x∗), T(y)) ≤ ad(x∗, y) + bD(x∗, T(x∗)) + cD(y, T(y)) = ad(x∗, y). Thus y = x∗. Hence
FT ⊂ (SF)T = {x∗}. Since (SF)T ⊂ FT , we get that (SF)T = FT = {x∗}.

(xi) Let (xn)n∈N
be a sequence in X such that D(xn, T(xn)) → 0 as n → ∞. Then,

d(xn, x
∗) ≤ D(xn, T(xn)) + H(T(xn), T(x∗)) ≤ D(xn, T(xn)) + ad(xn, x

∗) + bD(xn, T(xn)) +
cD(x∗, T(x∗)) = (1 + b)D(xn, T(xn)) + ad(xn, x

∗). Then d(xn, x
∗) ≤ ((1 + b)/(1 −

a))D(xn, T(xn)) → 0 as n → +∞.
(xii) follows by (xi) since D(xn, T(xn)) ≤ H(xn, T(xn)) → 0 as n → +∞.

A third result for the case of (a, b, c)-contraction is the following.

Theorem 3.4. Let (X, d) be a complete metric space, and let T : X → Pcp(X) be a Reich-type
multivalued (a, b, c)-contraction such that T(FT) = FT . Then one has

(xiii)Tn(x) H→ FT as n → +∞, for each x ∈ X;
(xiv)T(x) = FT for each x ∈ FT ;

(xv)If (xn)n∈N
⊂ X is a sequence such that xn

d→ x∗ ∈ FT as n → ∞ and T isH-continuous,

then T(xn)
H→ FT as n → +∞.

Proof. (xiii) From the fact that T(FT) = FT and Theorem 3.2 (vi) we have that FT = A∗
T . The

conclusion follows by Theorem 3.2 (vii).
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(xiv) Let x ∈ FT be an arbitrary. Then x ∈ T(x), and thus FT ⊂ T(x). On the other hand
T(x) ⊂ T(FT) ⊂ FT . Thus T(x) = FT , for each x ∈ FT .

(xv) Let (xn)n∈N
⊂ X be a sequence such that xn

d→ x∗ ∈ FT as n → ∞. Then, we have

T(xn)
H→ T(x∗) = FT as n → ∞. The proof is complete.

For compact metric spaces we have the following result.

Theorem 3.5. Let (X, d) be a compact metric space, and let T : X → Pcl(X) be a H-continuous
Reich-type multivalued (a, b, c)-contraction. Then

(xvi) if (xn)n∈N
is such that D(xn, T(xn)) → 0 as n → ∞, then there exists a subsequence

(xni)i∈N
of (xn)n∈N

such that xni

d→ x∗ ∈ FT as i → ∞ (generalized well-posedness of the fixed point
problem with respect to D [24, 25]).

Proof. (xvi) Let (xn)n∈N
be a sequence inX such thatD(xn, T(xn)) → 0 as n → ∞. Let (xni)i∈N

be a subsequence of (xn)n∈N
such that xni

d→ x∗ as i → ∞. Then, there exists yni ∈ T(xni), such

that yni

d→ x∗ as i → ∞. Then D(x∗, T(x∗)) ≤ d(x∗, yni) +D(yni , T(xni)) +H(T(xni), T(x
∗)) ≤

d(x∗, yni) + ad(x∗, xni) + bD(xni , T(xni)) + cD(x∗, T(x∗)). Hence

D(x∗, T(x∗)) ≤ 1
1 − c

[
d
(
x∗, yni

)
+ ad(x∗, xni) + bD(xni , T(xni))

] −→ 0 (3.19)

as n → +∞.Hence x∗ ∈ FT .

Remark 3.6. For b = c = 0 we obtain the results given in [4]. On the other hand, our results
unify and generalize some results given in [12, 13, 17, 26–34]. Notice that, if the operator T is
singlevalued, then we obtain the well-posedness concept introduced in [35].

Remark 3.7. An open question is to present a theory of the Ćirić-type multivalued contraction
theorem (see [36]). For some problems for other classes of generalized contractions, see for
example, [17, 21, 27, 34, 37].
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