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We obtain some existence results for a system of variational inequalities (for short, denoted by SVI)
by Brouwer fixed point theorem.We also establish the existence and uniqueness theorem using the
projection technique for the SVI and suggest an iterative algorithm and analysis convergence of the
algorithm.

1. Questions under Consideration in This Paper

Suppose thatX is a nonempty closed and convex subset ofRn; F : Rn → Rn is a vector-valued
mapping. Variational inequality problem (for short, VI(X,F)) is to find an x ∈ X, such that

〈F(x), u − x〉 ≥ 0, ∀u ∈ X. (1.1)

We denote the solution set for VI(X,F) by sol(X,F). In this paper, we suggest and study the
following SVI: find (x, y) ∈ A × B, such that

〈F(x, y), u − x〉 ≥ 0, ∀u ∈ A,
〈
G
(
x, y

)
, v − y〉 ≥ 0, ∀v ∈ B,

(1.2)
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where F : A × B → Rn, G : A × B → Rm are vector-valued mappings, and A ⊂ Rn, B ⊂ Rm.
The above SVI can be described as

VI
(
A,F

(·, y)),
VI(B,G(x, ·)).

(1.3)

2. Existence and Uniqueness of Solutions for SVI

In this paper, otherwise specification, Rn is a n-dimensional Euclidean space, for all x, y ∈ Rn,
〈x, y〉 denotes the inner product between x and y, ‖x‖ denotes norm of x, that is, ‖x‖ =√
〈x, x〉.

In order to obtain our main results, we recall the following definitions and lemmas.

Definition 2.1. Let X ⊂ Rn be a nonempty subset, and let F : X → Rn be a vector-valued
mapping.

(i) F is said to be monotone if, for all x, y ∈ X, 〈F(x) − F(y), x − y〉 ≥ 0.

(ii) F is said to be strictly monotone if, for all x, y ∈ X, x /=y, 〈F(x) − F(y), x − y〉 > 0.

(iii) F is said to be strongly monotone if there exists a constant α > 0 such that

〈
F(x) − F(y), x − y〉 ≥ α∥∥x − y∥∥2

, ∀x, y ∈ X. (2.1)

(iv) F is said to be coercive if there exists an x0 ∈ X and a constant R > 0 such that
‖x0‖ < R and

〈F(x), x − x0〉 ≥ 0, ∀x ∈ X, ‖x‖ = R. (2.2)

(v) F is said to be Lipschitz continuous if there exists a constant L > 0 such that

∥∥F(x) − F(y)∥∥ ≤ L∥∥x − y∥∥, ∀x, y ∈ X. (2.3)

Remark 2.2. It is easy to see that

F is strongly monotone =⇒
⎧
⎨

⎩

F is strictly monotone =⇒ F is monotone

F is coercive.
(2.4)

Based on the above all kinds of monotonicity, we have the following existence results for
VI(X,F).

Lemma 2.3 (see [1]). Let X ⊂ Rn be nonempty compact and convex set, and let F : X → Rn be
continuous mapping. Then VI(X,F) must has solution.
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Lemma 2.4 (see [2]). Let X ⊂ Rn be nonempty closed and convex set, and let F : X → Rn be
continuous mapping.

(i) If F is strictly monotone, then VI(X,F) has at most one solution,

(ii) If F is coercive, then VI(X,F) must has solution,

(iii) If F is strongly monotone, then VI(X,F) has a unique solution.

In order to obtain the existence results for SVI, one needs to study parametric variational
inequalities VI(A,F(·, y)) and VI(B,G(x, ·)) in SVI.

Setting Ω = {(x, y) ∈ Rn × Rm | x ∈ A, y ∈ B}/= ∅ and Ω is the feasible region of SVI,
A ⊂ Rn, B ⊂ Rm are nonempty subset, and F : A × B → Rn, G : A × B → Rm are two continuous
mappings. At first, one considers VI(B,G(x, ·)), which is a parametric variational inequality with
respect to x in SVI.

Theorem 2.5. In VI(B,G(x, ·)), assume that A ⊂ Rn and B ⊂ Rm are two compact and convex
sets, G : A × B → Rm is continuous, and G is strictly monotone in y. Then, for any given x ∈ A,
VI(B,G(x, ·)) has a unique solution and for all x ∈ A, there exists an implicit function y = ϕ(x)
which is the unique solution to VI(B,G(x, ·)). In addition, the implicit function y = ϕ(x) determined
by VI(B,G(x, ·)) is continuous on A.

Proof. (i) For any given x ∈ A, since B ⊂ Rm is compact and convex andG is continuous onA×
B, then by Lemma 2.3, parametric variational inequality VI(B,G(x, ·)) has solutions. In terms
of strict monotonicity of themappingG in y and Lemma 2.4, we know that VI(B,G(x, ·)) has a
unique solution. So, for all x ∈ A, the implicit function y = ϕ(x) determined by VI(B,G(x, ·))
is well defined.

(ii)We claim that y = ϕ(x) is continuous on A. In fact, for any given x0 ∈ A, {xn} ⊂ A,
xn → x0 as n → ∞, by (i), we know that for all n, there exists yn ∈ B, such that yn = ϕ(xn).
That is,

〈G(xn, yn
)
, y − yn〉 ≥ 0, ∀y ∈ B. (2.5)

Since {yn} ⊂ B is bounded, then there exists convergent subsequence {ynk} such that ynk →
y0 as n → ∞, and y0 ∈ B. In the following, we prove that y0 is a solution to VI(B,G(x, ·)) in
x0. For given y ∈ B, there exists sequence {ynk} such that ynk ∈ B, k = 1, 2, . . . and ynk → y
as k → ∞ in view of the closedness of B. Letting y = ynk in (2.5), we have

〈G(xnk , ynk
)
, ynk − ynk〉 ≥ 0, k = 1, 2, . . . , (2.6)

that is,

〈G(xnk , ynk
)
, y − ynk〉 ≥ 〈G(xnk , ynk

)
, y − ynk〉, k = 1, 2, . . . , (2.7)

observe that G is continuous, and letting k → ∞ in (2.7), we have

〈G(x0, y0
)
, y − y0〉 ≥ 0. (2.8)
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For y ∈ B is arbitrary, then y0 is a solution to VI(B,G(x, ·)), implying y0 = ϕ(x0). In order
to explain that ϕ is continuous at x0, we only need to know that the sequence {yn} satisfies
yn → y0 as n → ∞. Let {ynl} be any subsequence of {yn}. Since {ynl} is bounded, there exists
a subsequence {ynlk } ⊂ {ynl} such that ynlk → y′

0 as k → ∞. Using the method appeared in
Theorem 2.5, we can show that

〈G(x0, y′
0
)
, y − y′

0〉 ≥ 0, ∀y ∈ B. (2.9)

Thus, by the uniqueness of the solution to the problem VI(B,G(x0, ·)), we conclude that y′
0 =

y0. Since, {ynl} ⊂ {yn} is arbitrary, we can conclude that yn → y0 as n → ∞, which means
that implicit function y = ϕ(x) is continuous at x0. For x0 ∈ A is arbitrary, we know that
y = ϕ(x) is continuous on A.

From Theorem 2.5, we see that in order to ensure that y = ϕ(x)(x ∈ A) is well defined,
the condition that G is strictly monotone on A × B is necessary, but the boundedness of B
is a strong condition. As usual, B is unbounded (e.g., inequality constraint set B = {y ∈
Rm | g(x, y) ≥ 0}, where g : Rn × Rm → Rl, is always unbounded). So, we try to weaken the
boundedness of B. For this, we introduce the concept uniform coercivity ofG in VI(B,G(x, ·)).

Definition 2.6. In VI(B,G(x, ·)), let x0 ∈ A; G is said to be uniformly coercive near x0, if there
exists some neighbourhood V of x0, y0 ∈ B and R > 0 such that ‖y0‖ < R and for all x ∈ V ,

〈G(x, y), y − y0〉 ≥ 0, (2.10)

where y ∈ B and ‖y‖ = R.
If for each x ∈ A,G is uniformly coercive near x, thenG is said to be uniformly coercive

on A.

Lemma 2.7. In VI(B,G(x, ·)), let B ⊂ Rm be nonempty closed and convex set, and let G be
uniformly coercive near x0 ∈ A, then there exists some neighbourhood V ⊂ A of x0, such that⋃
x∈V Sol(B,G(x, ·)) is bounded set.

Proof. For given x0 ∈ V , by the definition of the uniform coercivity of G near x0, there exists
some neighbourhood V ⊂ A of x0, y0 ∈ B, and R > 0 such that ‖y0‖ < R and for all x ∈ V ,

〈G(x, y), y − y0〉 ≥ 0, ∀y ∈ B, ∥∥y∥∥ = R. (2.11)

Let BR := {y ∈ Rm | ‖y‖ ≤ R} ∩ B. It is obvious that BR is a nonempty bounded closed convex
subset of Rm. In view of Lemma 2.3, we know that VI(BR,G(x0, y)) must have solution. That
is, there exists an y0 ∈ BR such that

〈G(x0, y0

)
, y − y0〉 ≥ 0, ∀y ∈ RR. (2.12)
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Now, we state that y0 ∈ Sol(B,G(x0, ·)) and ‖y0‖ ≤ R. In fact, if ‖y0‖ < R, for all y ∈ B, y /∈BR,
join y0 and y into λy0 + (1 − λ)y with 0 ≤ λ ≤ 1. Then take small enough λ > 0 such that
y = λy + (1 − λ)y0 ∈ BR. Substituting y with y in (2.12), we have

〈G(x0, y0

)
, y − y0〉 ≥ 0, (2.13)

implying that y0 ∈ Sol(B,G(x0, ·)) and ‖y0‖ < R. On the other hand, if ‖y0‖ = R, substituting
y with y0 in (2.11), we have

〈G(x0, y0

)
, y0 − y0〉 ≥ 0, (2.14)

which, by plus (2.12), we get

〈G(x0, y0

)
, y − y0〉 ≥ 0, ∀y ∈ BR,

∥∥y0
∥∥ < R. (2.15)

For all y ∈ B, y /∈BR, consider the connection of y and y0; following the same argument,
we have that y0 ∈ Sol(B,G(x0, ·)) and ‖y0‖ = R. Therefore, y0 ∈ Sol(B,G(x0, ·)) and ‖y0‖ ≤
R. That is, Sol(B,G(x0, ·)) is bounded. For x0 ∈ V is arbitrary, the conclusion holds. This
completes the proof.

If the boundedness of B is replaced by the uniform coercivity ofG in Theorem 2.5, then
we have the following result.

Theorem 2.8. In VI(B,G(x, ·)), let B ⊂ Rm be nonempty closed and convex set, and let G be
uniformly coercive on A with respect to B and strict monotone in y. Then for each x ∈ A,
VI(B,G(x, ·)) has a unique solution, and for all x ∈ A, the implicit function y = ϕ(x) determined by
VI(B,G(x, ·)) is continuous on A.

Proof. (i) For given x ∈ A, by Lemma 2.4 and the coercivity of G on B, we know that
VI(B,G(x, ·)) has solution. Noting thatG is strictly monotone in y, VI(B,G(x, ·)) has a unique
solution, and so the implicit function y = ϕ(x) is well defined.

(ii) For given x0 ∈ A, {xn} ⊂ A, satisfying xn → x0 as n → ∞. By Lemma 2.7,
there exists some neighbourhood U ⊂ A of x0 and bounded open set V , such that⋃
x∈U Sol(B,G(x, ·)) ⊂ V , that is, the solution set of VI(B,G(x, ·)) denoted by {y ∈ B | y =

ϕ(x), x ∈ U} ⊂ V . {xn} ⊂ A such that xn → x0 as n → ∞. Let {xn} ⊂ U without generality,
then {yn} ⊂ V is bounded; the following argument is similar to Theorem 2.5, so it is omitted,
and this completes the proof.

Set Λ = {y ∈ B | y = ϕ(x), x ∈ A}; it is to see that Λ ⊂ B. We will investigate the
parametric variational inequality VI(A,F(·, y)) with respect to y in SVI.

Corollary 2.9. In VI(A,F(·, y)), letA ⊂ Rn, B ⊂ Rm be two nonempty compact and convex subsets,
F : A × B → Rn be continuous and strict monotone in x. Then for each given y ∈ Λ, VI(A,F(·, y))
has a unique solution, and for all y ∈ Λ, the implicit function x = ψ(y) determined by VI(A,F(·, y))
is continuous on Λ.

Proof. The conclusion holds directly from Theorem 2.5.
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Lemma 2.10 (see [3, (Brouwer fixed point theorem)]). Let X ⊂ Rn be nonempty compact and
convex set, and let T : X → X be continuous. Then there exists an x0, such that x0 = T(x0).

Theorem 2.11. In SVI, let A ⊂ Rn, B ⊂ Rm be two compact and convex subset, and let F : A × B →
Rn and G : A × B → Rm be two continuous mappings and strict monotone in x and y, respectively.
Then SVI has solution.

Proof. By the given conditions of Theorems 2.11 and 2.5, we know that there exists continuous
implicit function y = ϕ(x) (x ∈ A) determined by parametric variational inequality
VI(B,G(x, ·)) with respect to x in SVI. Also denoted the range of y = ϕ(x) by Λ. By
Corollary 2.9, there exists continuous implicit function x = ψ(y) determined by parametric
variational inequality VI(A,F(·, y)) with respect to y in SVI such that for all y ∈ Λ, x = ψ(y)
is the unique solution to VI(A,F(·, y)). Let Φ(x) = ψ(ϕ(x)), for all x ∈ A. Making use of
Brouwer fixed point theorem (Lemma 2.10), we have that there exists x0 ∈ A, such that
x0 = Φ(x0) = ψ(ϕ(x0)). Setting y0 = ϕ(x0), by the definitions of ϕ and ψ, we know that
(x0, y0) is a solution of SVI.

Corollary 2.12. In SVI, letA ⊂ Rn be nonempty compact and convex subset, let B ⊂ Rm be nonempty
closed and convex subset, let F : A × B → Rn and G : A × B → Rm be two continuous mappings,
and F, G be strict monotone in x and y, respectively. Let G be uniformly coercive on A with respect
to B. Then SVI has solution.

Proof. By Theorem 2.8 and similar argument in Theorem 2.11, our conclusion holds.

Now, we give the definition of uniformly strong monotonicity, which is stronger
condition than the uniformly coercivity.

Definition 2.13. Let F : Rn × Rm → Rn be vector-valued mapping; if there exists α > 0, such
that for all y ∈ Rm,

〈
F
(
x1, y

) − F(x2, y
)
, x1 − x2

〉 ≥ α‖x1 − x2‖2, ∀x1, x2 ∈ Rn, (2.16)

then F is said to be uniformly strongly monotone in x.

Lemma 2.14. In VI(A,F(·, y)), let F be uniformly strongly monotone, then F is uniformly coercive.

Proof. For given y0 ∈ B, we only need to prove that F is uniformly coercive at y0. Let us
consider VI(A,F(·, y)). Assume that x0 ∈ A is a solution to VI(A,F(·, y)), and ‖x0‖ < R,
(R > 0). Since F is strongly monotone, then there exists α > 0, such that for all y ∈ B,

〈
F(x, z) − F(z, y), x − z〉 ≥ α‖x − z‖2, ∀x, z ∈ A. (2.17)

Letting z = x0, y = y0 in (2.17), we have

〈
F
(
x, y0

)
, x − x0

〉 ≥ α‖x − x0‖2 +
〈
F
(
x0, y0

)
, x − x0

〉
, ∀x ∈ A. (2.18)
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Noting that x0 ∈ A is a solution to VI(A,F(·, y)), we have

〈
F
(
x0, y0

)
, x − x0

〉 ≥ 0, ∀x ∈ A. (2.19)

Combining (2.18), we obtain

〈F(x, y0
)
, x − x0〉 ≥ 0, ∀x ∈ A, ‖x‖ = R. (2.20)

Since F is continuous, then there exists some neighbourhoodU of y0, such that for all y ∈ U,

〈
F
(
x, y

)
, x − x0

〉 ≥ 0, ∀x ∈ A, ‖x‖ = R, (2.21)

which implies that F is uniform coercive at y0.
Using the uniformly strong monotonicity of F, we can obtain the following existence

result for SVI under the condition that A is a nonempty closed and convex subset of Rn.

Corollary 2.15. In SVI, let A ⊂ Rn be a nonempty closed and convex set, let B ⊂ Rm be a compact
and convex set, let F,G be two continuous mapping, let F be uniformly strongly monotone in x, and
let G be strictly monotone in y. Then SVI has solution.

Proof. By Lemma 2.14 and Corollary 2.12, it is easy to see that the conclusion holds.

Corollary 2.16. In SVI, Let A and B be nonempty closed and convex subsets, let F,G be two
continuous mappings, and let F be uniformly strongly monotone in x, and let G be uniformly coercive
and strict monotone in y. Then SVI has solution.

Furthermore, If F and G are Lipschitz continuous in x and y, respectively, one can obtain the
following existence and uniqueness result for SVI.

Theorem 2.17. In SVI, letA,B be nonempty compact and convex subsets, let F be uniformly strongly
monotone with constant α1 > 0 and Lipschitz continuous with Lipschitz constant β1 > 0 in x, and
Lipschitz continuous with constant γ1 > 0 in y, and let G be uniformly strongly monotone with
constant α2 > 0 and Lipschitz continuous with constant β2 > 0 in y, and Lipschitz continuous with
constant γ2 > 0 in x. If there exists constants ρ1, ρ2 > 0 such that

max
{√

1 − 2ρ1α1 + ρ21β
2
1 + ρ2γ2,

√
1 − 2ρ2α2 + ρ22β

2
2 + ρ1γ1

}
< 1, (2.22)

then SVI has a unique solution.

In order to prove Theorem 2.17, we need the following lemma.

Lemma 2.18 (see [4]). In SVI, let A, B be nonempty closed and convex subsets, and let F,G be two
continuous mappings. SVI has solution (x, y) if and only if (x, y) satisfies

x = PA
(
x − ρ1F

(
x, y

))
,

y = PB
(
y − ρ2G

(
x, y

))
.

(2.23)
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where PA(·), PB(·) denote the projection from Rn and Rm to A and B, respectively; furthermore,
projection operator is nonexpansive and ρ1, ρ2 > 0 are constants.

The Proof of Theorem 2.17

For arbitrary given constant ρ1, ρ2 > 0, define Tρ1 : A × B → A and Tρ2 : A × B → B by

Tρ1
(
x, y

)
= PA

(
x − ρ1F

(
x, y

))
,

Tρ2
(
x, y

)
= PB

(
y − ρ2G

(
x, y

))
, ∀(x, y) ∈ A × B.

(2.24)

For any (x1, y1), (x2, y2) ∈ A × B, it follows from (2.24) and Lemma 2.18 that

∥
∥Tρ1

(
x1, y1

) − Tρ1
(
x2, y2

)∥∥

≤ ∥∥x1 − x2 − ρ1
(
F
(
x1, y1

) − F(x2, y2
))∥∥

≤ ∥∥x1 − x2 − ρ1
(
F
(
x1, y1

) − F(x2, y1
))∥∥ + ρ1

∥∥F
(
x2, y1

) − F(x2, y2
)∥∥

≤
√
1 − 2ρ1α1 + ρ21β

2
1‖x1 − x2‖ + ρ1γ1

∥∥y1 − y2
∥∥.

(2.25)

We have used the strong monotonicity and Lipschitz continuity of F in x and Lipschitz
continuity of F in y. Similarly, we have

∥∥Tρ2
(
x1, y1

) − Tρ2
(
x2, y2

)∥∥

≤ ∥∥y1 − y2 − ρ2
(
G
(
x1, y1

) −G(x2, y2
))∥∥

≤ ∥∥y1 − y2 − ρ2
(
G
(
x1, y1

) −G(x2, y1
))∥∥ + ρ2

∥∥G
(
x2, y1

) −G(x2, y2
)∥∥

≤
√
1 − 2ρ2α2 + ρ22β

2
2

∥∥y1 − y2
∥∥ + ρ2γ2‖x1 − x2‖.

(2.26)

It follows from (2.25) and (2.26) that

∥∥Tρ1
(
x1, y1

) − Tρ1
(
x2, y2

)∥∥ +
∥∥Tρ2

(
x1, y1

) − Tρ2
(
x2, y2

)∥∥

≤
(√

1 − 2ρ1α1 + ρ21β
2
1 + ρ2γ2

)
‖x1 − x2‖ +

(√
1 − 2ρ2α2 + ρ22β

2
2 + ρ1γ1

)∥∥y1 − y2
∥∥

≤ k(‖x1 − x2‖ +
∥∥y1 − y2

∥∥),

(2.27)

where

k = max
{√

1 − 2ρ1α1 + ρ21β
2
1 + ρ2γ2,

√
1 − 2ρ2α2 + ρ22β

2
2 + ρ1γ1

}
. (2.28)

Define ‖ · ‖1 on A × B by

∥∥(x, y)
∥∥
1 = ‖x‖ + ∥∥y

∥∥, ∀(x, y) ∈ A × B. (2.29)
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It is easy to see that (A × B, ‖ · ‖1) is a Banach space. For any given ρ1, ρ2 > 0, define Sρ1,ρ2 :
A × B → A × B by

Sρ1,ρ2
(
x, y

)
=
(
Tρ1

(
x, y

)
, Tρ2

(
x, y

))
, ∀(x, y) ∈ A × B. (2.30)

By assumption, we know that 0 < k < 1. It follows from (2.27) that

∥
∥Sρ1,ρ2(x1, y1) − Sρ1,ρ2(x2, y2)

∥
∥
1 ≤ k

∥
∥(x1, y1

) − (
x2, y2

)∥∥, (2.31)

which implies that Sρ1,ρ2 : A × B → A × B is a contraction operator. Hence, there exists a
unique (x∗, y∗) ∈ A × B, such that

Sρ1,ρ2
(
x∗, y∗) =

(
x∗, y∗). (2.32)

That is,

x∗ = PA
(
x∗ − ρ1F

(
x∗, y∗)),

y∗ = PB
(
y∗ − ρ2G

(
x∗, y∗)).

(2.33)

By Lemma 2.18, (x∗, y∗) is the unique solution of SVI.

3. Iterative Algorithm and Convergence

In this section, we will construct an iterative algorithm for approximating the unique solution
of SVI and discuss the convergence analysis of the algorithm.

Lemma 3.1 (see, [5]). Let {cn} and {kn} be two real sequence of nonnegative numbers that satisfy
the following conditions.

(i) 0 ≤ kn < 1, n = 0, 1, 2, . . . and lim supnkn < 1,

(ii) cn+1 ≤ kncn, n = 0, 1, 2, . . . .

Then, cn converges to 0 as n → ∞.

Algorithm 3.2. Let A, B, F, G, ρ1, and ρ2 be the same as in Theorem 2.17. For any given
(x0, y0) ∈ A × B, define iterative sequence {(xn, yn)} by

xn+1 = anxn + (1 − an)PA
(
xn − ρ1F

(
xn, yn

))
, n = 0, 1, 2, . . . ,

yn+1 = anyn + (1 − an)PB
(
xn − ρ2G

(
xn, yn

))
, n = 0, 1, 2, . . . ,

(3.1)

where

0 ≤ an < 1, lim sup
n

an < 1. (3.2)



10 Fixed Point Theory and Applications

Theorem 3.3. Let A, B, F, G, ρ1, and ρ2 be the same as in Theorem 2.17. Assume that all the
conditions of Theorem 2.17 hold. Then, (xn, yn) generated by Algorithm 3.2 converges to the unique
solution (x∗, y∗) of SVI and there exists d ∈ [0, 1), such that

‖xn − x∗‖ + ∥
∥yn − y∗∥∥ ≤ dn(‖x0 − x∗‖ + ∥

∥y0 − y∗∥∥), ∀n ≥ 0. (3.3)

Proof. By Theorem 2.17, SVI admits a unique solution (x∗, y∗). It follows from Lemma 2.18
that

x∗ = anx∗ + (1 − an)PA
(
x∗ − ρ1F

(
x∗, y∗)),

y∗ = any∗ + (1 − an)PB
(
y∗ − ρ2G

(
x∗, y∗)).

(3.4)

It follows from (3.1) and (3.4) that

‖xn+1 − x∗‖ ≤ an‖xn − x∗‖ + (1 − an)
∥∥PA

(
xn − ρ1F

(
xn, yn

)) − PA
(
x∗ − ρ1F

(
x∗, y∗))∥∥

≤ an‖xn − x∗‖ + (1 − an)
∥∥xn − x∗ + ρ1

(
F
(
xn, yn

) − F(x∗, y∗))∥∥

≤ an‖xn − x∗‖ + (1 − an)
√
1 − 2ρ1α1 + ρ21β

2
1‖xn − x∗‖ + (1 − an)ρ1γ1

∥∥yn − y∗∥∥,
∥∥yn+1 − y∗∥∥ ≤ an

∥∥yn − y∗∥∥ + (1 − an)
∥∥PB

(
yn − ρ2G

(
xn, yn

)) − PB
(
y∗ − ρ2G

(
x∗, y∗))∥∥

≤ an
∥∥yn − y∗∥∥ + (1 − an)

∥∥yn − y∗ + ρ2
(
G
(
xn, yn

) −G(x∗, y∗))∥∥

≤ an
∥∥yn − y∗∥∥ + (1 − an)

√
1 − 2ρ2α2 + ρ22β

2
2

∥∥yn − y∗∥∥ + (1 − an)ρ2γ2‖xn − x∗‖.
(3.5)

By (3.5), we get

‖xn+1 − x∗‖ + ∥∥yn+1 − y∗∥∥ ≤ an
(‖xn − x∗‖ + ∥∥yn − y∗∥∥) + (1 − an)k

(‖xn − x∗‖ + ∥∥yn − y∗∥∥)

= (k + (1 − k)an)
(‖xn − x∗‖ + ∥∥yn − y∗∥∥),

(3.6)

where 0 ≤ k < 1 is defined by

k = max
{√

1 − 2ρ1α1 + ρ21β
2
1 + ρ2γ2,

√
1 − 2ρ2α2 + ρ22β

2
2 + ρ1γ1

}
. (3.7)

Set

cn = ‖xn − x∗‖ + ∥∥yn − y∗∥∥, kn = k + (1 − k)an. (3.8)

Then (3.6) can be rewritten as

cn+1 ≤ kncn, n = 0, 1, 2, . . .. (3.9)
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By (3.2), we know that lim supnkn < 1. It follows from Lemma 3.1 that 0 ≤ kn ≤ d < 1 and that

‖xn − x∗‖ + ∥
∥yn − y∗∥∥ ≤ dn(‖x0 − x∗‖ + ∥

∥y0 − y∗∥∥), ∀n ≥ 0 (3.10)

for all n ≥ 0. Therefore, (xn, yn) converges geometrically to the unique solution (x∗, y∗) of
SVI. This completes the proof.
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